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O PyTorch

PyTorch [1] is a deep learning framework (free and open-sourced under the modified BSD license) based on the Torch library,
originally developed by Meta Al and now part of the Linux Foundation umbrella.
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O PyTorch

PyTorch [1] is a deep learning framework (free and open-sourced under the modified BSD license) based on the Torch library,
originally developed by Meta Al and now part of the Linux Foundation umbrella.

Many pieces of deep learning software are built on top of PyTorch, including Tesla Autopilot, Uber's Pyro, Hugging Face's
Transformers, PyTorch Lightning, and Catalyst.

Other prominent deep learning frameworks include JAX, Tensorflow, etc. You can find more in [3].

Real Fython
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Popularity of PyTorch

PyTorch is popular (especially in “research”) and has a great ecosystem.
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Design Principles in PyTorch

An excerpt of [1]:

Be Pythonic Data scientists are familiar with the Python language, its programming model, and its
tools. PyTorch should be a first-class member of that ecosystem. It follows the commonly established
design goals of keeping interfaces simple and consistent, ideally with one idiomatic way of doing
things. It also integrates naturally with standard plotting, debugging, and data processing tools.
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easy and productive as possible. The complexity inherent to machine learning should be handled
internally by the PyTorch library and hidden behind intuitive APIs free of side-effects and unexpected
performance cliffs.
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although not at the expense of simplicity and ease of use. Trading 10% of speed for a significantly
simpler to use model is acceptable; 100% is not. Therefore, its implementation accepts added
complexity in order to deliver that performance. Additionally, providing tools that allow researchers
to manually control the execution of their code will empower them to find their own performance
improvements independent of those that the library provides automatically.



Design Principles in PyTorch

An excerpt of [1]:

Be Pythonic Data scientists are familiar with the Python language, its programming model, and its
tools. PyTorch should be a first-class member of that ecosystem. It follows the commonly established
design goals of keeping interfaces simple and consistent, ideally with one idiomatic way of doing
things. It also integrates naturally with standard plotting, debugging, and data processing tools.

Put researchers first PyTorch strives to make writing models, data loaders, and optimizers as
easy and productive as possible. The complexity inherent to machine learning should be handled
internally by the PyTorch library and hidden behind intuitive APIs free of side-effects and unexpected
performance cliffs.

Provide pragmatic performance To be useful, PyTorch needs to deliver compelling performance,
although not at the expense of simplicity and ease of use. Trading 10% of speed for a significantly
simpler to use model is acceptable; 100% is not. Therefore, its implementation accepts added
complexity in order to deliver that performance. Additionally, providing tools that allow researchers
to manually control the execution of their code will empower them to find their own performance
improvements independent of those that the library provides automatically.

Worse is better Given a fixed amount of engineering resources, and all else being equal, the
time saved by keeping the internal implementation of PyTorch simple can be used to implement
additional features, adapt to new situations, and keep up with the fast pace of progress in the field of
Al Therefore it is better to have a simple but slightly incomplete solution than a comprehensive but
complex and hard to maintain design.
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PyTorch

* PyTorch wraps the backend (C/C++/CUDA) in a Python interface. You can write highly customized and efficient deep learning
models directly in Python without worrying about the low-level implementation.

» PyTorch’s eager execution evaluates tensor operations immediately and dynamically, thus supporting models on varying-size data

well.

* Pytorch can be roughly viewed as Numpy with GPU supports. E.g. torch.Tensor is the basic object in PyTorch, similar to

numpy . array in Numpy.

Python >>>

>>>

>>>

>>>

>>>

>>>

>>>

import torch
import numpy as np

x = np.array([[2., 4., 6.1]1)

y = np.array([[1.], [3.]1, [5.11)
m = torch.mul(torch.from_numpy(x), torch.from_numpy(y))
m. numpy ()

array([[ 2., 4., 6-];

Image Credit: [2]

[ 6., 12., 18.1,
[10., 20., 30.]11)
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PyTorch

Let us look at another code snippet to get a sense of torch.Tensor and its operations:

Image Credit: [5]

0 ~J o U B W N

import torch

dtype = torch.float

device = torch.device("cpu") # This executes all calculations on the CPU

# device = torch.device("cuda:0") # This executes all calculations on the GPU

# Creation of a tensor and filling of a tensor with random numbers
a = torch.randn(2, 3, device=device, dtype=dtype)

print(a) # Output of tensor A

# Output: tensor([[-1.1884, 0.8498, -1.7129],

# [-0.8816, 0.1944, 0.5847]])

# Creation of a tensor and filling of a tensor with random numbers
b = torch.randn(2, 3, device=device, dtype=dtype)

print(b) # Output of tensor B

# Output: tensor([[ 0.7178, -0.8453, -1.3403],

# [ 1.3262, 1.1512, -1.7070]])

print(a*b) # Output of a multiplication of the two tensors
# Output: tensor([[-0.8530, -0.7183, 2.58],
# [-1.1692, 0.2238, -0.9981]])

print(a.sum()) # Output of the sum of all elements in tensor A
# Output: tensor(-2.1540)

print(a[l,2]) # Output of the element in the third column of the second row (zero based)

# Output: tensor(0.5847)

print(a.max()) # Output of the maximum value in tensor A
# Output: tensor(-1.7129)
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Computational Graphs & Autograd

Let us look at the following example:

f(z,y) = log(zy)

Image Credit: [6]
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Computational Graphs & Autograd

Let us look at the following example:

f(z,y) = log(zy)

Each operand (e.g., scalar, vector, matrix, or tensor) is a node and each operator is a node. The arrow represents the computational
dependency. The computational graph is a directed acyclic graph (DAG).

dummy variable in
function composition

Image Credit: [6]
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Computational Graphs & Autograd

Let us look at the following example:

f(z,y) = log(zy)

Each operand (e.g., scalar, vector, matrix, or tensor) is a node and each operator is a node. The arrow represents the computational
dependency. The computational graph is a directed acyclic graph (DAG).

dummy variable in
function composition

Sometimes one uses cycles to represent recurrent computations. But we can always unroll a recurrent computational graph as a DAG!

Image Credit: [6]
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Computational Graphs & Autograd

Let us look at the following example:

f(z,y) = log(zy)

Let us try it in PyTorch:

torch.tensor(9.5) L
\~\\_\_‘
torch.tensor( ) L
Log
torch.log(x * y) /

tensor(-0.9808)

17
Image Credit: [6]



Computational Graphs & Autograd

If you need to compute gradients in the computational graph, you need to set the requires_grad attribute to be true for the tensor.

Every time Autograd (i.e., the automatic differentiation
engine) executes an operation in the graph, the derivative
of that operation is added to the graph to be executed
later in the backward pass. Note that Autograd knows

the derivatives of the basic functions.

Image Credit: [6]



Computational Graphs & Autograd

If you need to compute gradients in the computational graph, you need to set the requires_grad attribute to be true for the tensor.

forward

f(z,y) = log(zy)

Every time Autograd (i.e., the automatic differentiation
engine) executes an operation in the graph, the derivative

of that operation is added to the graph to be executed

later in the backward pass. Note that Autograd knows

the derivatives of the basic functions.

. Mult
Derivative

backward

Image Credit: [6]
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forward
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Computational Graphs & Autograd

If you need to compute gradients in the computational graph, you need to set the requires_grad attribute to be true for the tensor.

forward

f(z,y) = log(ry)

Every time Autograd (i.e., the automatic differentiation
engine) executes an operation in the graph, the derivative
of that operation is added to the graph to be executed
later in the backward pass. Note that Autograd knows

the derivatives of the basic functions.

{  Mult Log
¥ Derivative Derivative

backward
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Computational Graphs & Autograd

If you need to compute gradients in the computational graph, you need to set the requires_grad attribute to be true for the tensor.

forward

f(z,y) = log(ry)

Every time Autograd (i.e., the automatic differentiation
engine) executes an operation in the graph, the derivative

of that operation is added to the graph to be executed

later in the backward pass. Note that Autograd knows \ Dummy variable (scalar).

the derivatives of the basic functions. R

Recall as we learn in BP, Autograd always computes

| Mult
d Derivative Derivative

scalar-by-xxx gradients via Jacobian (transposed) vector

product and never explicitly forms a Jacobian matrix!

backward

22
Image Credit: [6]



Computational Graphs & Autograd

If you need to compute gradients in the computational graph, you need to set the requires_grad attribute to be true for the tensor.

f(z,y) = log(zy)

torch. tensor( , requires_grad=
torch. tensor( )

torch.log(x * y)

tensor(-0.9808, grad_fn=<LogBackward>)

grad_x = torch.autograd.grad(w, x)

grad_x
(tensor(2.),)

Image Credit: [6]

forward

Mult  § . Log L
Derivative Derivative

backward

a
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Computational Graphs & Autograd

If you need to compute gradients in the computational graph, you need to set the requires_grad attribute to be true for the tensor.

forward
f(z,y) = log(zy)
torch
torch.tensor(0.5, requires_grad=

torch.tensor( )

torch.log(x * y)

tensor(-0.9808, grad_fn=<LogBackward>)

grad_x = torch.autograd.grad(w, x)

grad_x = 7 .
(tensor(2.),) ., LUClivValvce U1 L

More details of how computational graphs are
constructed and executed can be found in [7,8].

backward

Image Credit: [6]
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Gradient Checking

How can we check if gradients (even those returned by Autograd) are correctly implemented?
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Gradient Checking

How can we check if gradients (even those returned by Autograd) are correctly implemented?

Consider y = f(X) where x € R4 y€eR
2L (p)]

Recall Vflp) = : and of (p) = lim f(p+ee;) — f(p)

8Xi e—0 €

Here we use the standard basis vector e; = [O, -0, %, 0,--- O}

i-th entry

Based on the (forward difference) finite approximation, we have

of f(p+ee)— f(p) _ f(p+ee)— f(p)

— 1 ~
aXZ' (p) 61—I>I(1) € €

One can also use central difference finite approximation. Make sure using float64 with small perturbation, e.g., € = le™
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Gradient Checking

How can we check if gradients (even those returned by Autograd) are correctly implemented?

Consider y = f(X) where x € R4 y€eR
2L (p)]
Recall Vflp) = ; and

OF (1) = lim TP+ <€) = f(P)

8Xi e—0 €

Here we use the standard basis vector e; = [O, -0, %, 0,--- O}

i-th entry

Based on the (forward difference) finite approximation, we have

af . f(ptee;)—f(p) _ f(p+ee;)— f(p)
P -(p) = lim ~
X; e—0 € €

One can also use central difference finite approximation. Make sure using float64 with small perturbation, e.g., € = le™®

How many times of function evaluations do we need to compute the gradient in this case?
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Creating Models

We can create a MLP with two hidden layers in PyTorch as follows

Image Credit: [5]

import torch
from torch import nn # Import the nn sub-module from PyTorch

class NeuralNetwork(nn.Module): # Neural networks are defined as classes

def

def

__init__ (self): # Layers and variables are defined in the __init _ method

super (NeuralNetwork, self). init_ () # Must be in every network.
self.flatten = nn.Flatten() # Defining a flattening layer.
self.linear_relu_stack = nn.Sequential( # Defining a stack of layers.
nn.Linear(28*28, 512), # Linear Layers have an input and output shape
nn.ReLU(), # ReLU is one of many activation functions provided by nn
nn.Linear(512, 512),
nn.ReLU(),
nn.Linear (512, 10),

forward(self, x): # This function defines the forward pass.
x = self.flatten(x)

logits = self.linear relu_ stack(x)

return logits

32



Creating Models

We can create a MLP with two hidden layers in PyTorch as follows

Specify the model

Image Credit: [5]

0 o U WK

= I e A S S
O 00 N O Ul > WN = O W

import torch

from torch import nn # Import the nn sub-module from PyTorch

class NeuralNetwork(nn.Module): # Neural networks are defined as classes
def _ init__ (self): # Layers and variables are defined in the __init _ method
super (NeuralNetwork, self). init () # Must be in every network.

nn
nn
nn
nn
nn

2

(’Eelf.flatten = nn.Flatten() # Defining a flattening layer. <‘\
self.linear_relu_stack = nn.Sequential( # Defining a stack of layers.
.Linear(28+*28, 512), # Linear Layers have an input and output shape
.ReLU(), # ReLU is one of many activation functions provided by nn
.Linear (512, 512),

.ReLU(),

.Linear(512, 10),

J

def forward(self, x): # This function defines the forward pass.
x = self.flatten(x)

logits
return

= self.linear relu_ stack(x)
logits

33



Creating Models

We can create a MLP with two hidden layers in PyTorch as follows

Specify the model

Image Credit: [5]

0 o U WK
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import torch
from torch import nn # Import the nn sub-module from PyTorch

class NeuralNetwork(nn.Module): # Neural networks are defined as classes
def _ init__ (self): # Layers and variables are defined in the __init _ method
super (NeuralNetwork, self). init () # Must be in every network.
(’Eelf.flatten = nn.Flatten() # Defining a flattening layer. <‘\
self.linear_relu_stack = nn.Sequential( # Defining a stack of layers.
nn.Linear(28*28, 512), # Linear Layers have an input and output shape
nn.ReLU(), # ReLU is one of many activation functions provided by nn
nn.Linear(512, 512),
nn.ReLU(),
nn.Linear (512, 10),

2 J

def forward(self, x): # This function defines the forward pass.
x = self.flatten(x)
logits = self.linear relu_ stack(x)
return logits

Execute the forward function will create the computational graph. Since parameters in nn.Linear
have requires_grad=True by default, it will also create the backward graph for BP.
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Creating Models

Let us zoom in to the nn.Linear:

def

def

def

Image Credit: [9]

__init__(self, in_features: int, out_features: int, bias: bool = True,
device=None, dtype=None) -> None:
factory_kwargs = {'device': device, 'dtype': dtype?}
super(Lineax, self).__init__()
self.in_features = in_features
self.out_features = out_features
self.weight = Parameter(torch.empty((out_features, in_features), **factory_kwargs))
if bias:
self.bias = Parameter(torch.empty(out_features, »xfactory_kwargs))
else:
self.register_parameter('bias', None)
self.reset_parameters()

reset_parameters(self) -> None:
# Setting a=sqrt(5) in kaiming_uniform is the same as initializing with
# uniform(-1/sqrt(in_features), 1/sqrt(in_features)). For details, see
# https://github.com/pytorch/pytorch/issues/57109
init.kaiming_uniform_(self.weight, a=math.sqrt(5))
if self.bias is not None:
fan_in, _ = init._calculate_fan_in_and_fan_out(self.weight)
bound = 1 / math.sqrt(fan_in) if fan_in > 0 else 0
init.uniform_(self.bias, -bound, bound)

forward(self, input: Tensor) -> Tensor:
return F.linear(input, self.weight, self.bias)
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Creating Models

Let us zoom in to the nn.Linear:

def

__init__(self, in_features: int, out_features: int, bias: bool = True,
device=None, dtype=None) -> None:

factory_kwargs = {'device': device, 'dtype': dtype?}

super(Lineax, self).__init__()

self.in_features = in_features

self.out features = out features

nn.Parameter will create tensors of
parameters which by default require
gradients

self.weight = Parameter(torxch.empty((out_features, in_features), xxfactory_kwargs))
if bias:

self.bias = Parameter(torch.empty(out_features, »xfactory_kwargs))
else:

self.register_parameter('bias', None)

def

def

Image Credit: [9]

self.reset_ﬁarameters()

reset_parameters(self) -> None:
# Setting a=sqrt(5) in kaiming_uniform is the same as initializing with
# uniform(-1/sqrt(in_features), 1/sqrt(in_features)). For details, see
# https://github.com/pytorch/pytorch/issues/57109
init.kaiming_uniform_(self.weight, a=math.sqrt(5))
if self.bias is not None:
fan_in, _ = init._calculate_fan_in_and_fan_out(self.weight)
bound = 1 / math.sqrt(fan_in) if fan_in > 0 else 0
init.uniform_(self.bias, -bound, bound)

forward(self, input: Tensor) -> Tensor:
return F.linear(input, self.weight, self.bias)
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Creating Models

Let us zoom in to the nn.Linear:

nn.Parameter will create tensors of
parameters which by default require
gradients

Initialization of parameters

Image Credit: [9]

def

__init__(self, in_features: int, out_features: int, bias: bool = True,
device=None, dtype=None) -> None:

factory_kwargs = {'device': device, 'dtype': dtype?}

super(Lineax, self).__init__()

self.in_features = in_features

self.out features = out features

self.weight = Parameter(torxch.empty((out_features, in_features), xxfactory_kwargs))

if bias:

self.bias = Parameter(torch.empty(out_features, »xfactory_kwargs))
else:

self.register_parameter('bias', None)

self.reset_ﬁarameters()

(def

reset_parameters(self) -> None: ‘\\
# Setting a=sqrt(5) in kaiming_uniform is the same as initializing with
# uniform(-1/sqrt(in_features), 1/sqrt(in_features)). For details, see
# https://github.com/pytorch/pytorch/issues/57109
init.kaiming_uniform_(self.weight, a=math.sqrt(5))

if self.bias is not None:

fan_in, _ = init._calculate_fan_in_and_fan_out(self.weight)
bound = 1 / math.sqrt(fan_in) if fan_in > 0 else 0
init.uniform_(self.bias, -bound, bound) A//

def

forward(self, input: Tensor) -> Tensor:
return F.linear(input, self.weight, self.bias)
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Creating Models

Let us zoom in to the nn.Linear:

nn.Parameter will create tensors of
parameters which by default require
gradients

Initialization of parameters

Computation in forward pass

Image Credit: [9]

def

__init__(self, in_features: int, out_features: int, bias: bool = True,
device=None, dtype=None) -> None:

factory_kwargs = {'device': device, 'dtype': dtype?}

super(Lineax, self).__init__()

self.in_features = in_features

self.out features = out features

self.weight = Parameter(torxch.empty((out_features, in_features), xxfactory_kwargs))

if bias:

self.bias = Parameter(torch.empty(out_features, »xfactory_kwargs))
else:

self.register_parameter('bias', None)

self.reset_parameters()

(def

reset_parameters(self) -> None: ‘\\
# Setting a=sqrt(5) in kaiming_uniform is the same as initializing with
# uniform(-1/sqrt(in_features), 1/sqrt(in_features)). For details, see

# https://github.com/pytorch/pytorch/issues/57109
init.kaiming_uniform_(self.weight, a=math.sqrt(5))

if self.bias is not None:

fan_in, _ = init._calculate_fan_in_and_fan_out(self.weight)
bound = 1 / math.sqrt(fan_in) if fan_in > 0 else 0
init.uniform_(self.bias, -bound, bound) A’/

def

forward(self, input: Tensor) -> Tensor:
return F.linear(input, self.weight, self.bias)
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Load Data & Training Models

Let us load the Fashion MNIST dataset (many public datasets are available in torchvision) and train the previous MLP:

Image Credit: [10]

import toxch

from toxch import nn

from torch.utils.data import Dataloader
from torchvision import datasets

from torchvision.transforms import ToTensor

training_data = datasets.FashionMNIST(
root="data",
train=True,
download=Tzxue,
transform=ToTensox()

test_data = datasets.FashionMNIST(
root="data",
train=False,
download=Txue,
transform=ToTensox()

train_dataloader = DatalLoader(training_data, batch_size=64)

test_dataloader = DatalLoader(test_data, batch_size=64) 20



Load Data & Training Models

Let us load the Fashion MNIST dataset (many public datasets are available in torchvision) and train the previous MLP:

Transform images (e.g., PNG) to
PyTorch tensors. You can check
torchvision.transforms for more
transformations!

Image Credit: [10]

import toxch

from toxch import nn

from torch.utils.data import Dataloader
from torchvision import datasets

from torchvision.transforms import ToTensor

training_data = datasets.FashionMNIST(
root="data",
train=True,
download=Txue,
transform=ToTensox()

test_data = datasets.FashionMNIST(
root="data",
train=False,
download=Txue,
transform=ToTensox()

train_dataloader = DatalLoader(training_data, batch_size=64)
test_dataloader = DatalLoader(test_data, batch_size=64)
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Load Data & Training Models

Let us load the Fashion MNIST dataset (many public datasets are available in torchvision) and train the previous MLP:

import toxch

from toxch import nn

from torch.utils.data import Dataloader
from torchvision import datasets

Sneaker Ankle Boot Dress

from torchvision.transforms import ToTensor

Pullover

training_data = datasets.FashionMNIST(
root="data",

train=True,
download=Tzxue,
transform=ToTensox()

test_data = datasets.FashionMNIST(
root="data",
train=False,
download=Txue,
transform=ToTensox()

Sanqﬂedirnages1T0anhshkn1DAIQIS17[14] train_dataloader = DatalLoader(training_data, batch_size=64)
test_dataloader = DatalLoader(test_data, batch_size=64)

Image Credit: [10]



Load Data & Training Models

You can also customize your dataloader:

import os
impoxrt pandas as pd
from torchvision.io import read_image

class CustomImageDataset(Dataset):
def __init__(self, annotations_file, img_dir, transform=None, target_transform=None):
self.img_labels = pd.read_csv(annotations_file)
self.img_dir = img_dir
self.transform = transform
self.target_transform = target_transform

def _len__(self):
return len(self.img_labels)

def __getitem__(self, idx):
img_path = os.path.join(self.img_dir, self.img_labels.iloc[idx, 0])
image = read_image (img_path)
label = self.img_labels.iloc[idx, 1]
if self.transform:
image = self.transform(image)
if self.target_transform:
label = self.target_transform(label)
return image, label

43
Image Credit: [10]



Load Data & Training Models

You can also customize your dataloader:

import os
impoxrt pandas as pd
from torchvision.io import read_image

class CustomImageDataset(Dataset):
def __init__(self, annotations_file, img_dir, transform=None, target_transform=None):
self.img_labels = pd.read_csv(annotations_file)
self.img_dir = img_dir
self.transform = transform
self.target_transform = target_transform

def _len__(self):
return len(self.img_labels)

(ﬁ;f __getitem__(self, idx): A‘\\

img_path = os.path.join(self.img_dir, self.img_labels.iloc[idx, 0])
image = read_image (img_path)

You can override the function label = self.img_labels.iloc[idx, 1]
__getitem__ which extracts a single if self.transform:
data example within a mini-batch! image = self.transform(image)

if self.target_transform:
label = self.target_transform(label)

\\‘7 return image, label 4//
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Load Data & Training Models

You can also customize your dataloader:

import os
impoxrt pandas as pd
from torchvision.io import read_image

class CustomImageDataset(Dataset):
jP}fforch>datah)aders(x)ﬂaie def __init__(self, annotations_file, img_dir, transform=None, target_transform=None):

individual fetched data samples into a self.img_labels = pd.read_csv(annotations_file)
mini-batch via collate_fn function SR L ELLEES 3 BT ECES

. . self.transform = transform
which can be customized as well. See
. self.target_transform = target_transform
[11,12] for more details.

def _len__(self):
return len(self.img_labels)

(ﬁ;f __getitem__(self, idx): A‘\\

img_path = os.path.join(self.img_dir, self.img_labels.iloc[idx, 0])
image = read_image (img_path)

You can override the function label = self.img_labels.iloc[idx, 1]
__getitem__ which extracts a single if self.transform:
data example within a mini-batch! image = self.transform(image)

if self.target_transform:
label = self.target_transform(label)

\\‘7 return image, label 4//
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Load Data & Training Models

Now let us see how we can load data and train models:

Image Credit: [13]

def train_loop(dataloader, model, loss_fn, optimizer):
size = len(dataloader.dataset)
for batch, (X, y) in enumerate(dataloader):
# Compute prediction and loss
pred = model (X)
loss = loss_fn(pred, y)

# Backpropagation
optimizer.zero_grad()
loss.backwaxd()
optimizer.step()

if batch % 100 == 0:
loss, current = loss.item(), batch * len(X)
print(£f"loss: floss:>7f} [Jcurrent: >5d}/fsize:>5d¢]")

loss_fn = nn.CrossEntropyLoss()

optimizer = toxch.optim.SGD(model.parameters(), lr=learning_rate)

epochs = 10

for t in range(epochs):
print(f"Epoch fA+1f\n-------------------c----- ")
train_loop(train_dataloader, model, loss_£fn, optimizer)
test_loop(test_dataloader, model, loss_£fn)

print("Done!")
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Load Data & Training Models

Now let us see how we can load data and train models:

Loop over all mini-batches within the dataset

Image Credit: [13]

def train_loop(dataloader, model, loss_fn, optimizer):
ize = len tal r.dat t)
for batch, (X, y) in enumerate(dataloader):
# Compute prediction and loss
pred = model (X)
loss = loss_fn(pred, y)

# Backpropagation
optimizer.zero_grad()
loss.backwaxd()
optimizer.step()

if batch % 100 == 0:
loss, current = loss.item(), batch * len(X)
print(£f"loss: floss:>7f} [Jcurrent: >5d}/fsize:>5d¢]")

loss_fn = nn.CrossEntropyLoss()

optimizer = toxch.optim.SGD(model.parameters(), lr=learning_rate)

epochs = 10

for t in range(epochs):
print(f"Epoch fA+1f\n-------------------c----- ")
train_loop(train_dataloader, model, loss_£fn, optimizer)
test_loop(test_dataloader, model, loss_£fn)

print("Done!")
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Load Data & Training Models

Now let us see how we can load data and train models:

Compute forward pass & loss

Image Credit: [13]

def train_loop(dataloader, model, loss_fn, optimizer):
size = len(dataloader.dataset)
for batch, (X, y) in enumerate(dataloader):
# Compute prediction and loss
pred = model (X)
loss = loss_fn(pred, y)

# Backpropagation
optimizer.zero_grad()
loss.backwaxd()
optimizer.step()

if batch % 100 == 0:
loss, current = loss.item(), batch * len(X)
print(£f"loss: floss:>7f} [Jcurrent: >5d}/fsize:>5d¢]")

loss_fn = nn.CrossEntropyLoss()

optimizer = toxch.optim.SGD(model.parameters(), lr=learning_rate)

epochs = 10

for t in range(epochs):
print(f"Epoch fA+1f\n-------------------c----- ")
train_loop(train_dataloader, model, loss_£fn, optimizer)
test_loop(test_dataloader, model, loss_£fn)

print("Done!")
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Load Data & Training Models

Now let us see how we can load data and train models:

Clean cached gradients from previous mini-batches

Image Credit: [13]

def train_loop(dataloader, model, loss_fn, optimizer):
size = len(dataloader.dataset)
for batch, (X, y) in enumerate(dataloader):
# Compute prediction and loss
pred = model (X)
loss = loss_fn(pred, y)

# Backpropagation

[ optimizer.zero_grad() l
loss.backwaxd()
optimizer.step()

if batch % 100 == 0:
loss, current = loss.item(), batch * len(X)
print(£f"loss: floss:>7f} [Jcurrent: >5d}/fsize:>5d¢]")

loss_fn = nn.CrossEntropyLoss()

optimizer = toxch.optim.SGD(model.parameters(), lr=learning_rate)

epochs = 10

for t in range(epochs):
print(f"Epoch fA+1f\n-------------------c----- ")
train_loop(train_dataloader, model, loss_£fn, optimizer)
test_loop(test_dataloader, model, loss_£fn)

print("Done!")
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Load Data & Training Models

Now let us see how we can load data and train models:

Compute gradient via backpropagation

Image Credit: [13]

def train_loop(dataloader, model, loss_fn, optimizer):
size = len(dataloader.dataset)
for batch, (X, y) in enumerate(dataloader):
# Compute prediction and loss
pred = model (X)
loss = loss_fn(pred, y)

# Backpropagation
optimizer.zero=grad()

[ loss.backwaxd() l
optimizer.step()

if batch % 100 == 0:
loss, current = loss.item(), batch * len(X)
print(£f"loss: floss:>7f} [Jcurrent: >5d}/fsize:>5d¢]")

loss_fn = nn.CrossEntropyLoss()

optimizer = toxch.optim.SGD(model.parameters(), lr=learning_rate)

epochs = 10

for t in range(epochs):
print(f"Epoch fA+1f\n-------------------c----- ")
train_loop(train_dataloader, model, loss_£fn, optimizer)
test_loop(test_dataloader, model, loss_£fn)

print("Done!")
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Load Data & Training Models

Now let us see how we can load data and train models:

Update parameters via the optimizer (e.g., SGD/Adam)

Image Credit: [13]

def train_loop(dataloader, model, loss_fn, optimizer):
size = len(dataloader.dataset)
for batch, (X, y) in enumerate(dataloader):
# Compute prediction and loss
pred = model (X)
loss = loss_fn(pred, y)

# Backpropagation
optimizer.zero_grad()
loss.backward()
[ optimizer.step() l

if batch % 100 == 0:
loss, current = loss.item(), batch * len(X)
print(£f"loss: floss:>7f} [Jcurrent: >5d}/fsize:>5d¢]")

loss_fn = nn.CrossEntropyLoss()

optimizer = toxch.optim.SGD(model.parameters(), lr=learning_rate)

epochs = 10

for t in range(epochs):
print(f"Epoch fA+1f\n-------------------c----- ")
train_loop(train_dataloader, model, loss_£fn, optimizer)
test_loop(test_dataloader, model, loss_£fn)

print("Done!")
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Load Data & Training Models

Now let us see how we can load data and train models:

def train_loop(dataloader, model, loss_fn, optimizer):
size = len(dataloader.dataset)
for batch, (X, y) in enumerate(dataloader):
# Compute prediction and loss
pred = model (X)
loss = loss_fn(pred, y)

# Backpropagation
optimizer.zero_grad()
loss.backwaxd()
optimizer.step()

if batch % 100 == 0:
loss, current = loss.item(), batch * len(X)
print(£f"loss: floss:>7f} [Jcurrent: >5d}/fsize:>5d¢]")

N

loss_fn = nn.CrossEntropyLoss()

Spe01fy loss function and optimizer optimizer = toxch.optim.SGD(model.parameters(), lr=learning_rate) J

epochs = 10

for t in range(epochs):
print(f"Epoch ft+1f\n-------------ccccccccocoo-o ")
train_loop(train_dataloader, model, loss_£fn, optimizer)
test_loop(test_dataloader, model, loss_£fn)

print("Done!")

Image Credit: [13]



Load Data & Training Models

Now let us see how we can load data and train models:

One call of train_loop amounts to training for one epoch

Image Credit: [13]

def train_loop(dataloader, model, loss_fn, optimizer):
size = len(dataloader.dataset)
for batch, (X, y) in enumerate(dataloader):
# Compute prediction and loss
pred = model (X)
loss = loss_fn(pred, y)

# Backpropagation
optimizer.zero_grad()
loss.backwaxd()
optimizer.step()

if batch % 100 == 0:
loss, current = loss.item(), batch * len(X)
print(£f"loss: floss:>7f} [Jcurrent: >5d}/fsize:>5d¢]")

loss_fn = nn.CrossEntropyLoss()
optimizer = toxch.optim.SGD(model.parameters(), lr=learning_rate)
epochs = 10
for t in range(epochs):
print(f"Epoch ft+1f\n------------------c--c--------- ")

train_loop(train_dataloader, model, loss_£fn, optimizer)
test_loop(test_dataloader, model, loss_£fn)

print("Done!")
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Load Data & Training Models

Test loop 1s similar to train loop:

Image Credit: [13]

def test_loop(dataloader, model, loss_£n):
size = len(dataloader.dataset)
num_batches = len(dataloader)
test_loss, correct = 0, 0O

with toxch.no_grad():
for X, y in dataloader:
pred = model(X)
test_loss += loss_fn(pred, y).item()
correct += (pred.argmax(l) == y).type(toxch.float).sum().item()

test_loss /= num_batches
correct /= size
print(£"Test Error: \n Accuracy: {(100xcorrect) :>0.1f/%, Avg loss: Ftest_loss:>8f}7 \n")
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Load Data & Training Models

Test loop 1s similar to train loop:

def test_loop(dataloader, model, loss_£n):
size = len(dataloader.dataset)
num_batches = len(dataloader)
test_loss, correct = 0, 0O

[ with toxch.no_grad(): ]
for X, y in dataloader:
pred = model(X)
test_loss += loss_fn(pred, y).item()
correct += (pred.argmax(l) == y).type(toxch.float).sum().item()

test_loss /= num_batches
correct /= size
print(£"Test Error: \n Accuracy: {(100xcorrect) :>0.1f/%, Avg loss: Ftest_loss:>8f}7 \n")

We do not need to create the backward part of the computational graph. Call
torch.no_grad() could save us some GPU memory!

Image Credit: [13]
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Load Data & Training Models

Test loop 1s similar to train loop:

Image Credit: [13]

def test_loop(dataloader, model, loss_£n):
size = len(dataloader.dataset)
num_batches = len(dataloader)
test_loss, correct = 0, 0O

with toxch.no_grad():
for X, y in dataloader:
pred = model(X)
test=loss += loss=fn(pred, y).item()
[correct += (pred.argmax(l) == y).type(torch.float).sum().item()]

test_loss /= num_batches
correct /= size
print(£"Test Error: \n Accuracy: {(100xcorrect) :>0.1f/%, Avg loss: Ftest_loss:>8f}7 \n")

Counting the number of correctly classified samples.
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