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Invariance & Equivariance

* Invariance:

A mathematical object (or a class of mathematical objects) remains unchanged after operations or
transformations of a certain type are applied to the objects

f(X) = f(g(X))



Invariance & Equivariance

* Invariance:

A mathematical object (or a class of mathematical objects) remains unchanged after operations or
transformations of a certain type are applied to the objects

f(X) = flg(X))
* Equivariance:

Applying a transformation and then computing the function produces the same result as computing the
function and then applying the transformation

g9(f(X)) = f(g(X))

Convolution 1s Translation Equivariant! We will see why shortly.
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1D (Discrete) Convolutions

Let us see what 1D (Discrete) Convolution looks like
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1D (Discrete) Convolutions

m
Formally, we denote 1D convolution as Yy = h xx and y[z] = E h jLi45—1 WEZIZe(Ziu:);htehZXfizizl'on
n j=1 '
1
[ \
Input X 1 4 0 2 1 3
*
m
A
[ \
Filter f 2 0 -1
Output Y 2 6 -1 1

15



1D (Discrete) Convolutions

What if we hope the output to have the same shape as input?
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What if we hope the output to have the same shape as input?
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1D (Discrete) Convolutions

What if we hope the output to have the same shape as input? Padding!
r T T
Input & 0|1 2 0 |
- ——_l
\
Filter h, -1
Output Y -4 -1
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1D (Discrete) Convolutions

What if we hope the output to have a much smaller size compared to input?

n
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1D (Discrete) Convolutions

What if we hope the output to have a much smaller size compared to input? Stride!
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1D (Discrete) Convolutions

Stride = 2!

What if we hope the output to have a much smaller size compared to input?
n
A
[ \
~—-
Input X : 0 1 4 0 2
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Filter f 2 0 -1

Output Y -4
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1D (Discrete) Convolutions

What if we hope the output to have a much smaller size compared to input? Stride = 2!
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1D (Discrete) Convolutions

What if we hope the output to have a much smaller size compared to input? Stride = 2!
n
A
f \
r o T
Input I :01402130:
———— —
*
m
1
f \
Filter f 2 0 -1
Output Y -4 6 1

{n + 2p — mJ 11 Stride: S Padding: p
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Matrix Multiplication View I

1D Convolution (Discrete) <> Matrix Multiplication Filter => Toeplitz matrix (diagonal-constant)



Matrix Multiplication View I

1D Convolution (Discrete) <> Matrix Multiplication Filter => Toeplitz matrix (diagonal-constant)

_hLm/2J+1 Rimj2|+2 - B, 0 0 i

hm2)  Plmjajsr o hme1 B 0 0 o

B B hy R T N 0 .

y=hxr= 0 hy P 0 .

: : : : : : SR : e
0 0 0 hi hy - hpma)ie
0 0 Cee e 0 hi - hpmai1l




Matrix Multiplication View I

1D Convolution (Discrete) <> Matrix Multiplication Filter => Toeplitz matrix (diagonal-constant)

_hLm/2J+1 Rimj2|+2 - B, 0 0 i

hm2)  Plmjajsr o hme1 B 0 0 o

B B hy ho T A R 0 s

y=hxz= 0 hy P 0

: : : : : : SR : e
0 0 0 hi ha oo Rimjajio
0 0 Cee e 0 hi - Rlmaji1l

r_______ ______ I

Input X : 0 X1 S (] BT Xn [ 0 i

- ¥ ¥y o ¥ 1 _ __L___

Fllter h hl “ee h\_m/2]+1 see hm




Matrix Multiplication View I

1D Convolution (Discrete) <> Matrix Multiplication Filter => Toeplitz matrix (diagonal-constant)
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Matrix Multiplication View I

1D Convolution (Discrete) <> Matrix Multiplication

Filter => Toeplitz matrix (diagonal-constant)

Rim/oie1 Rimyojas o0 B 0 0
Rimyal  Pigmyoier o hame1 hapy 0 0 }
. . 1
: : : 2
R hy B 0 0 s
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Matrix Multiplication View I

1D Convolution (Discrete) <> Matrix Multiplication Filter => Toeplitz matrix (diagonal-constant)

It could be very sparse (e.g., when n >>m)!

Nmy2i41 Rymyoje2 oo B 0 0
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Matrix Multiplication View Il

1D Convolution (Discrete) <> Matrix Multiplication Data => Toeplitz matrix (diagonal-constant)



Matrix Multiplication View Il

1D Convolution (Discrete) <> Matrix Multiplication

Input T

Filter f

Data => Toeplitz matrix (diagonal-constant)

Tm—|m/2] Lm—|m/2]+1 Tm Tm+1
: ; Tm—1 Tm
hs hy hi]| 2 fmt
0 I
: 0
| 0 0 I Io
————r———
I
10 X1 m—|m/2] Xn
S B
hl h\_m/2]+1 ves hm

0 0 i
Tn 0
Tn—1 Tn
Tn—\m/2|+1 Ln—|m/2]]
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Matrix Multiplication View Il

1D Convolution (Discrete) <> Matrix Multiplication

Data => Toeplitz matrix (diagonal-constant)
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Matrix Multiplication View Il

1D Convolution (Discrete) <> Matrix Multiplication

Data => Toeplitz matrix (diagonal-constant)
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Matrix Multiplication View Il

1D Convolution (Discrete) <> Matrix Multiplication

Lm

( \ ...
—Lm/2) [Tm—[m/2]+1

x1

Zo

I

)

Data => Toeplitz matrix (diagonal-constant)

It could be dense (e.g., when n >>m)!

Tm—1 Tm
Tm—1 T, 0
Tn—1 Tn
T1 T2 0 Tp—|m/2|+1 Tn—|m/2]]
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Filter f hq
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Matrix Multiplication View Il

1D Convolution (Discrete) <> Matrix Multiplication Data => Toeplitz matrix (diagonal-constant)

It could be dense (e.g., when n >>m)!

; ; Tm—1 Tm : :
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Matrix Multiplication View Il

1D Convolution (Discrete) <> Matrix Multiplication Data => Toeplitz matrix (diagonal-constant)

This equivalence holds for 2D and other higher-order convolutions! It could be dense (e.g., when n >> m)!
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1D (Discrete) Convolutions

Matrix multiplication view (Filter => Toeplitz matrix) of 1D convolution:

Consider a special Toeplitz matrix: circulant matrix (must be square!)

Convolution with padding

WX L ITTTTTTTTTTIrTrd

<< LT T T T TITTTI
M
N\
S
| —

Image Credit: [1]
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Translation/Shift Operator

Image Credit: [1]



Translation/Shift Operator

Image Credit: [1]

Shift operator is also a circulant matrix!

.

ST




Translation/Shift Equivariance

Matrix multiplication is non-commutative. But not for circulant matrices!

C(w) ST ST
shift operator shift operator

Image Credit: [1]

C(w)
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Translation/Shift Equivariance

Matrix multiplication is non-commutative. But not for circulant matrices!

C(w) ST ST
shift operator shift operator
Convolution is translation equivariant, i.e., Conv(Shift(X)) = Shift(Conv(X))!

This equivariance holds for 2D and higher-order convolutions!

Image Credit: [1]

C(w)
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2D (Daiscrete) Convolution

Let us see what convolution 1s in 2D

Input X



2D (Daiscrete) Convolution

Let us see what convolution 1s in 2D

Convolutional Filter
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2D (Daiscrete) Convolution

Let us see what convolution 1s in 2D

Input X

Convolutional Filter

WERKXK

Sliding Window




2D (Daiscrete) Convolution

K K
Let us see what convolution is in 2D L W
Yi,j = mnXi+m—[K/2],j+n—[K/2]

m=1n=1

Convolutional Filter

WERKXK

Input X Output y



2D (Daiscrete) Convolution

2D Convolution with Stride = 1

Image Credit: [2]
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2D (Daiscrete) Convolution

2D Convolution with Stride = 1, Half Padding

Image Credit: [2]
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2D (Daiscrete) Convolution

2D Convolution with Stride = 2, Half Padding

Image Credit: [2]
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2D (Daiscrete) Convolution

2D Convolution with multiple input channels

Image Credit: [3]

Input

Kernel
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2D (Daiscrete) Convolution

2D Convolution with multiple input channels

Image Credit: [3]

Input

Kernel

Output
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2D (Daiscrete) Convolution

2D Convolution with multiple input channels

Image Credit: [3]

Input

Kernel

Output
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2D (Daiscrete) Convolution

2D Convolution with multiple input channels

Image Credit: [3]

Input

Kernel

Output
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2D (Daiscrete) Convolution

2D Convolution with multiple input channels

Image Credit: [3]
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2D (Daiscrete) Convolution

2D Convolution with multiple input channels

Image Credit: [3]

Input

Kernel

Output
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2D (Daiscrete) Convolution

2D Convolution with multiple input channels

Image Credit: [3]

Input

Kernel

H—-h+1

|—l$|

Output
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2D (Daiscrete) Convolution

2D Convolution with multiple input channels and multiple filters

Image Credit: [3]

Input

Kernels

W—-—w-+1

Output

H—-—h+1
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2D (Daiscrete) Convolution

Let us see the effect of 2D convolution:
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Image Credit: [3]



2D (Daiscrete) Convolution
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Let us see the effect of 2D convolution:
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2D (Daiscrete) Convolution

Let us see the effect of 2D convolution:

Image Credit: [3]
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2D (Daiscrete) Convolution

Let us see the effect of 2D convolution:

Image Credit: [3]
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2D (Daiscrete) Convolution

Let us see the effect of 2D convolution:

Image Credit: [3]
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