CPEN 400D: Deep Learning

Lecture 4.1: Convolutional Neural Networks

Renjie Liao

University of British Columbia Winter, Term 2, 2022

Outline

- Invariance & Equivariance
- Convolution
 - 1D Convolution
 - Matrix Multiplication Views
 - Translation Equivariance
 - 2D Convolution
- Convolution Variants
 - Transposed Convolution
 - Dilated Convolution
 - Grouped Convolution
 - Separable Convolution
- Pooling
- Example Architectures

Outline

- Invariance & Equivariance
- Convolution
 - 1D Convolution
 - Matrix Multiplication Views
 - Translation Equivariance
 - 2D Convolution
- Convolution Variants
 - Transposed Convolution
 - Dilated Convolution
 - Grouped Convolution
 - Separable Convolution
- Pooling
- Example Architectures

Invariance & Equivariance

• Invariance:

A mathematical object (or a class of mathematical objects) remains unchanged after operations or transformations of a certain type are applied to the objects

$$f(X) = f(g(X))$$

Invariance & Equivariance

• Invariance:

A mathematical object (or a class of mathematical objects) remains unchanged after operations or transformations of a certain type are applied to the objects

$$f(X) = f(g(X))$$

• Equivariance:

Applying a transformation and then computing the function produces the same result as computing the function and then applying the transformation

$$g(f(X)) = f(g(X))$$

Convolution is Translation Equivariant! We will see why shortly.

Outline

- Invariance & Equivariance
- Convolution
 - 1D Convolution
 - Matrix Multiplication Views
 - Translation Equivariance
 - 2D Convolution
- Convolution Variants
 - Transposed Convolution
 - Dilated Convolution
 - Grouped Convolution
 - Separable Convolution
- Pooling
- Example Architectures

Let us see what 1D (Discrete) Convolution looks like

Input x 1 4 0 2 1 3

What if we hope the output to have the same shape as input?

What if we hope the output to have a much smaller size compared to input?

What if we hope the output to have a much smaller size compared to input? Stride = 2!nInput x0 3 4 mFilter hOutput y -4

What if we hope the output to have a much smaller size compared to input? Stride = 2!nInput x0 1 4 mFilter h0 Output y-4 6 Stride: S Padding: p

Outline

- Invariance & Equivariance
- Convolution
 - 1D Convolution
 - Matrix Multiplication Views
 - Translation Equivariance
 - 2D Convolution
- Convolution Variants
 - Transposed Convolution
 - Dilated Convolution
 - Grouped Convolution
 - Separable Convolution
- Pooling
- Example Architectures

1D Convolution (Discrete) ⇔ Matrix Multiplication

1D Convolution (Discrete) ⇔ Matrix Multiplication

1D Convolution (Discrete) ⇔ Matrix Multiplication

Filter => Toeplitz matrix (diagonal-constant)

It could be very sparse (e.g., when $n \gg m$)!

1D Convolution (Discrete) ⇔ Matrix Multiplication

1D Convolution (Discrete) ⇔ Matrix Multiplication

$$y^{\top} = (h * x)^{\top} = \begin{bmatrix} h_m & h_{m-1} & \cdots & h_3 & h_2 & h_1 \end{bmatrix} \begin{bmatrix} x_{m-\lfloor m/2 \rfloor} & x_{m-\lfloor m/2 \rfloor+1} & \cdots & x_m & x_{m+1} & \cdots & 0 & 0 \\ \vdots & \vdots & \cdots & x_{m-1} & x_m & \cdots & \vdots & \vdots \\ x_1 & x_2 & \cdots & \vdots & x_{m-1} & \cdots & x_n & 0 \\ 0 & x_1 & \cdots & \vdots & \vdots & \cdots & x_{n-1} & x_n \\ \vdots & 0 & \cdots & \vdots & \vdots & \cdots & \vdots & \vdots \\ 0 & 0 & \cdots & x_1 & x_2 & \cdots & x_{n-\lfloor m/2 \rfloor+1} & x_{n-\lfloor m/2 \rfloor} \end{bmatrix}$$

1D Convolution (Discrete) ⇔ Matrix Multiplication

$$y^{\top} = (h * x)^{\top} = \begin{bmatrix} h_m & h_{m-1} & \cdots & h_3 & h_2 & h_1 \end{bmatrix} \begin{bmatrix} x_{m-\lfloor m/2 \rfloor} & x_{m-\lfloor m/2 \rfloor+1} & \cdots & x_m & x_{m+1} & \cdots & 0 & 0 \\ \vdots & \vdots & \cdots & x_{m-1} & x_m & \cdots & \vdots & \vdots \\ x_1 & x_2 & \cdots & \vdots & x_{m-1} & \cdots & x_n & 0 \\ 0 & x_1 & \cdots & \vdots & \vdots & \cdots & x_{n-1} & x_n \\ \vdots & 0 & \cdots & \vdots & \vdots & \cdots & \vdots & \vdots \\ 0 & 0 & \cdots & x_1 & x_2 & \cdots & x_{n-\lfloor m/2 \rfloor+1} & x_{n-\lfloor m/2 \rfloor} \end{bmatrix}$$

1D Convolution (Discrete) ⇔ Matrix Multiplication

$$y^{\top} = (h * x)^{\top} = \begin{bmatrix} h_m & h_{m-1} & \cdots & h_3 & h_2 & h_1 \end{bmatrix} \begin{bmatrix} x_{m-\lfloor m/2 \rfloor} & x_{m-\lfloor m/2 \rfloor+1} & \cdots & x_m & x_{m+1} & \cdots & 0 & 0 \\ \vdots & \vdots & & \ddots & x_{m-1} & x_m & \cdots & \vdots & \vdots \\ x_1 & & x_2 & \cdots & \vdots & x_{m-1} & \cdots & x_n & 0 \\ 0 & & x_1 & & \cdots & \vdots & \vdots & \cdots & x_{n-1} & x_n \\ \vdots & & & & & \ddots & \vdots & \vdots & \cdots & \vdots & \vdots \\ 0 & & & & & \ddots & \vdots & \vdots & \cdots & \vdots & \vdots \\ 0 & & & & & \ddots & \vdots & \vdots & \cdots & \vdots & \vdots \\ 0 & & & & & \ddots & \vdots & \vdots & \cdots & x_{n-\lfloor m/2 \rfloor+1} & x_{n-\lfloor m/2 \rfloor} \end{bmatrix}$$

1D Convolution (Discrete) ⇔ Matrix Multiplication

Data => Toeplitz matrix (diagonal-constant)

It could be dense (e.g., when $n \gg m$)!

$$y^{\top} = (h * x)^{\top} = \begin{bmatrix} h_m & h_{m-1} & \cdots & h_3 & h_2 & h_1 \end{bmatrix} \begin{bmatrix} x_{m-\lfloor m/2 \rfloor} & x_{m-\lfloor m/2 \rfloor+1} & \cdots & x_m & x_{m+1} & \cdots & 0 & 0 \\ \vdots & \vdots & \cdots & x_{m-1} & x_m & \cdots & \vdots & \vdots \\ x_1 & x_2 & \cdots & \vdots & x_{m-1} & \cdots & x_n & 0 \\ 0 & x_1 & \cdots & \vdots & \vdots & \cdots & x_{n-1} & x_n \\ \vdots & 0 & \cdots & \vdots & \vdots & \cdots & \vdots & \vdots \\ 0 & 0 & \cdots & x_1 & x_2 & \cdots & x_{n-\lfloor m/2 \rfloor+1} & x_{n-\lfloor m/2 \rfloor} \end{bmatrix}$$

Matrix Multiplication View II

1D Convolution (Discrete) ⇔ Matrix Multiplication

Data => Toeplitz matrix (diagonal-constant)

It could be dense (e.g., when $n \gg m$)!

$$y^{\top} = (h * x)^{\top} = \begin{bmatrix} h_m & h_{m-1} & \cdots & h_3 & h_2 & h_1 \end{bmatrix} \begin{bmatrix} x_{m-\lfloor m/2 \rfloor} & x_{m-\lfloor m/2 \rfloor+1} & \cdots & x_m & x_{m+1} & \cdots & 0 & 0 \\ \vdots & \vdots & \cdots & x_{m-1} & x_m & \cdots & \vdots & \vdots \\ x_1 & x_2 & \cdots & \vdots & x_{m-1} & \cdots & x_n & 0 \\ 0 & x_1 & \cdots & \vdots & \vdots & \cdots & x_{n-1} & x_n \\ \vdots & 0 & \cdots & \vdots & \vdots & \cdots & \vdots & \vdots \\ 0 & 0 & \cdots & x_1 & x_2 & \cdots & x_{n-\lfloor m/2 \rfloor+1} & x_{n-\lfloor m/2 \rfloor} \end{bmatrix}$$

 $h_{\lfloor m/2 \rfloor + 1}$

Filter h

This version is typically implemented on GPUs!

Matrix Multiplication View II

1D Convolution (Discrete) ⇔ Matrix Multiplication

This equivalence holds for 2D and other higher-order convolutions!

Data => Toeplitz matrix (diagonal-constant)

It could be dense (e.g., when $n \gg m$)!

$$y^{\top} = (h * x)^{\top} = \begin{bmatrix} h_m & h_{m-1} & \cdots & h_3 & h_2 & h_1 \end{bmatrix} \begin{bmatrix} x_{m-\lfloor m/2 \rfloor} & x_{m-\lfloor m/2 \rfloor+1} & \cdots & x_m & x_{m+1} & \cdots & 0 & 0 \\ \vdots & \vdots & \cdots & x_{m-1} & x_m & \cdots & \vdots & \vdots \\ x_1 & x_2 & \cdots & \vdots & x_{m-1} & \cdots & x_n & 0 \\ 0 & x_1 & \cdots & \vdots & \vdots & \cdots & x_{n-1} & x_n \\ \vdots & 0 & 0 & \cdots & \vdots & \vdots & \cdots & \vdots & \vdots \\ 0 & 0 & \cdots & x_1 & x_2 & \cdots & x_{n-\lfloor m/2 \rfloor+1} & x_{n-\lfloor m/2 \rfloor} \end{bmatrix}$$

Filter h

This version is typically implemented on GPUs!

Outline

- Invariance & Equivariance
- Convolution
 - 1D Convolution
 - Matrix Multiplication Views
 - Translation Equivariance
 - 2D Convolution
- Convolution Variants
 - Transposed Convolution
 - Dilated Convolution
 - Grouped Convolution
 - Separable Convolution
- Pooling
- Example Architectures

Matrix multiplication view (Filter => Toeplitz matrix) of 1D convolution:

Consider a special Toeplitz matrix: circulant matrix (must be square!)

Convolution with padding

y

C(w)

X

40

Translation/Shift Operator

Translation/Shift Operator

Shift operator is also a circulant matrix!

Translation/Shift Equivariance

Matrix multiplication is non-commutative. But not for circulant matrices!

Translation/Shift Equivariance

Matrix multiplication is non-commutative. But not for circulant matrices!

Convolution is translation equivariant, i.e., Conv(Shift(X)) = Shift(Conv(X))!

This equivariance holds for 2D and higher-order convolutions!

Outline

- Invariance & Equivariance
- Convolution
 - 1D Convolution
 - Matrix Multiplication Views
 - Translation Equivariance
 - 2D Convolution
- Convolution Variants
 - Transposed Convolution
 - Dilated Convolution
 - Grouped Convolution
 - Separable Convolution
- Pooling
- Example Architectures

Let us see what convolution is in 2D

Input **X**

Let us see what convolution is in 2D

Input X

Convolutional Filter

$$W \in \mathbb{R}^{K \times K}$$

Let us see what convolution is in 2D

Input X

Convolutional Filter $W \in \mathbb{R}^{K \times K}$

Sliding Window

Let us see what convolution is in 2D

$$\mathbf{y}_{i,j} = \sum_{m=1}^{K} \sum_{n=1}^{K} W_{m,n} \mathbf{x}_{i+m-\lceil K/2 \rceil, j+n-\lceil K/2 \rceil}$$

Input X

Convolutional Filter $W \in \mathbb{R}^{K \times K}$

Output **y**

2D Convolution with Stride = 1

2D Convolution with Stride = 1, Half Padding

2D Convolution with Stride = 2, Half Padding

2D Convolution with multiple input channels and multiple filters

References

- $[1] \, \underline{https://towardsdatascience.com/deriving-convolution-from-first-principles-4ff124888028}$
- [2] https://github.com/vdumoulin/conv_arithmetic/blob/master/README.md
- [3] https://fleuret.org/dlc/materials/dlc-slides-4-4-convolutions.pdf

Questions?