

Xiaoxiao Li, Ph.D.

xiaoxiao.li@ece.ubc.ca

Department of Electrical and Computer Engineering
University of British Columbia

Outline

Part 1. Background

Part 2. RNN basis

Part 3. Long Short-Term Memory Networks

Outline

Part 1. Background

Part 2. RNN basis

Part 3. Long Short-Term Memory Networks

Why should you listen to this lecture?

Image Data

Convolutional Neural Networks (CNN)

CNN inputs and outputs

Sequential Data

- Sometimes the sequence of data matters.
 - Text generation
 - Stock price prediction
 - Weather prediction
 - EEG analysis
- Simple solution FCN or CNN
 - Fixed input/output

Sequential data (like sentence) has various length

Sequential data with various length

- How to take a variable length sequence as input?
- How to predict a variable length sequence as output?

Transformer

Evolution

This lecture:
Recurrent Neural Network (RNN)

Your last lecture: Transformer

This week: GTP 4

Industrial Revolution – production of fabrics

In 1773, John Kaye invented the flying shuttle for weaving cloth

In 1768, Hargreaves received a patent for the invention of the Jenny spinning machine.

Engels said: the first invention that turned the situation of British workers upside down.

Why do we still need to learn RNN?

It is on our syllabus.

- RNNs can still be useful in certain applications where the input data is inherently sequential or when computational resources are limited.
- The choice between RNNs and Transformers largely depends on the specific problem, dataset, and computational constraints.

Advantages of RNN and TF

Transformer Advantages:

- Long-range dependencies: self-attention captures relationships between distant tokens.
- <u>Parallelization</u>: processes input tokens simultaneously, faster training and inference.
- <u>Scalability</u>: state-of-the-art results in various NLP tasks, e.g., BERT, GPT, T5.

RNN Advantages:

- <u>Sequential processing</u>: natural fit for time series, speech recognition, language modeling.
- <u>Parameter efficiency</u>: shared weights across time steps.

While Transformers have generally outperformed RNNs in many NLP tasks

When shall we use RNN?

- Handling short sequences: RNNs can be more suitable for short sequences where long-range dependencies are less critical.
- Limited resources: RNNs have fewer parameters, making them more computationally efficient and easier to train on limited hardware.
- Real-time processing: RNNs are better suited for real-time or online processing, where the input sequence is generated incrementally.
- Inherently sequential data: Some tasks, like speech recognition or time series prediction, naturally benefit from RNNs' sequential processing.

Example Inputs of Outputs on Sequential Data Analysis

Inputs & Outputs of RNN

ELEC 400M

Source: Stanford CS231n

Captioning Model

A cat sitting on the road

Inputs & Outputs of RNN

ELEC 400M

"I love this movie.
I've seen it many times and it's still awesome."

"This movie is bad. I don't like it it all. It's terrible."

Inputs & Outputs of RNN

ELEC 400M

×

English

明月松间照,清 泉石上流。

Míngyuè sōng jiān zhào, qīngquán shí shàngliú.

The bright moon shines among the pines, and the clear spring stones flow upwards.

Inputs & Outputs of RNN

ELEC 400M

https://imerit.net/blog/using-neural-networks-for-video-classification-blog-all-pbm/

Outline

Part 1. Background

Part 2. RNN basis

Part 3. Long Short-Term Memory Networks

RNN Formulation

RNN Cell Unit

- Feedforward network: a neural network with no loops
- RNNs store information about previous data in the "state"
- Recurrently feeds output of activation function to itself

Formula of RNN

Recurrent neural networks (RNNs) are networks with loops, allowing information to persist [Rumelhart et al., 1986].

Notice: the same function and the same set of parameters are used at every time step.

RNN hidden state update

Recurrent neural networks (RNNs) are networks with loops, allowing information to persist [Rumelhart et al., 1986].

State variable

- Have memory that keeps track of information observed so far
- Maps from the entire history of previous inputs to each output

RNN output generation

We can process a sequence of vectors **x** by applying a **recurrence formula** at every time step:

Formula of RNN (Vanilla)

$$h_t = f_W(h_{t-1}, x_t)$$
 (also bias term) $h_t = anh(W_{hh}h_{t-1} + W_{xh}x_t)$ $y_t = W_{hy}h_t$

- x_t is the input at time t.
- h_t is the hidden state (memory) at time t.
- y_t is the output at time t.
- W_{hh} , W_{hx} , W_{hy} are distinct weights.
 - weights are the same at all time steps.

with shared (tied) weights

$$(h_1,y_1)=F(h_0,x_1,W) \ (h_2,y_2)=F(h_1,x_2,W)$$

Parameter sharing

 RNNs can be thought of as multiple copies of the same network, each passing a message to a successor.

• The same function and the same set of parameters are used at every time step.

(x_1, x_2) comprises a length-2 sequence

RNN Computational Graph

Many-to-many

RNN Computational Graph

Many-to-Many: Many-to-One + One-to-Many

LEC 400M

Optimizing RNN

 Using the generalized back-propagation algorithm one can obtain the so-called Back-Propagation Through Time algorithm.

Examples

Vocabulary: [h,e,l,o]

Example training sequence: "hello"

$$h_t = anh(W_{hh}h_{t-1} + W_{xh}x_t)$$

Vocabulary: [h,e,l,o]

Example training sequence: "hello"

Vocabulary: [h,e,l,o]

Example training sequence: "hello"

Vocabulary: [h,e,l,o]

At test-time sample characters one at a time, feed back to model

Outline

- Part 1. Background
- Part 2. RNN basis
- Part 3. Long Short-Term Memory Networks
- Part 4. Guest lecture Self-supervised learning

The Problem of Long-term Dependencies

 In RNNs, during the gradient back propagation phase, the gradient <u>signal</u> can end up being multiplied many times.

$$\frac{\partial E_t}{\partial \theta} = \sum_{k=1}^t \frac{\partial E_t}{\partial \mathbf{y}_t} \frac{\partial \mathbf{y}_t}{\partial \mathbf{h}_t} \frac{\partial \mathbf{h}_t}{\partial \mathbf{h}_k} \frac{\partial \mathbf{h}_k}{\partial \theta}$$

- If the gradients are large
 - Exploding gradients, learning diverges
 - Solution: clip the gradients to a certain max value.
- If the gradients are small
 - Vanishing gradients, learning very slow or stops
 - Solution: introducing memory via LSTM, GRU, etc.

The Problem of Long-term Dependencies

• In RNNs, during the gradient back propagation phase, the gradient signal can end up being multiplied many times.

$$\frac{\partial E_t}{\partial \theta} = \sum_{k=1}^t \frac{\partial E_t}{\partial \mathbf{y}_t} \frac{\partial \mathbf{y}_t}{\partial \mathbf{h}_t} \frac{\partial \mathbf{h}_t}{\partial \mathbf{h}_k} \frac{\partial \mathbf{h}_k}{\partial \theta}$$

$$\mathbf{h}_t = \theta \phi(\mathbf{h}_{t-1}) + \theta_x \mathbf{x}_t$$

Long Short-Term Memory Networks

 Long Short-Term Memory (LSTM) networks are RNNs capable of learning long-term dependencies

Vanilla RNN vs LSTM

The Core Idea - Cell State

- The cell state is like a conveyor belt. It runs straight down the entire chain, with only some minor linear interactions.
- Gates are a way to optionally let information through. They are composed out of a sigmoid neural net layer and a pointwise multiplication operation.

Forget gate layer:

$$f_t = \sigma\left(W_f \cdot [h_{t-1}, x_t] + b_f\right)$$

Output: 0/1

Input gate layer + tanh layer:

$$i_t = \sigma \left(W_i \cdot [h_{t-1}, x_t] + b_i \right)$$

$$\tilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C)$$

Update Cell States:

$$C_t = f_t * C_{t-1} + i_t * \tilde{C}_t$$

• Output:

$$o_t = \sigma (W_o [h_{t-1}, x_t] + b_o)$$
$$h_t = o_t * \tanh (C_t)$$

LSTM

Allows "peeping into the memory"

$$f_{t} = \sigma \left(W_{f} \cdot [\boldsymbol{C_{t-1}}, h_{t-1}, x_{t}] + b_{f} \right)$$

$$i_{t} = \sigma \left(W_{i} \cdot [\boldsymbol{C_{t-1}}, h_{t-1}, x_{t}] + b_{i} \right)$$

$$o_{t} = \sigma \left(W_{o} \cdot [\boldsymbol{C_{t}}, h_{t-1}, x_{t}] + b_{o} \right)$$

A memory cell using logistic and linear units with multiplicative interactions:

- Information gets into the cell whenever its input gate is on.
- Information is thrown away from the cell whenever its forget gate is off.
- Information can be read from the cell by turning on its output gate.