CPEN 400D Guest Lecture:

Recurrent Neural Networks

Xiaoxiao Li, Ph.D.

xiaoxiao.li@ece.ubc.ca
Department of Electrical and Computer Engineering
University of British Columbia

UBC

—i‘|ii~

Outline

* Part 1. Background

 Part 2. RNN basis

» Part 3. Long Short-Term Memory Networks

ELEC 400M

Outline

* Part 1. Background

ELEC 400M

Why should you listen to this
lecture?

https://ai.googleblog.com/2021/07/high-fidelity-image-generation-using.html ELEC 400M

Convolutional Neural Networks (CNN)

Image Maps

Input

Convolutions Fully Connected

Subsampling

lllustration of LeCun et al. 1998 from CS231n 2017 Lecture 1

UBCI ELEC 400M

))
A
q
1

CNN inputs and outputs

one to one

AN

e.g. Image classification
Image -> Label

ELEC 400M

Sequential Data

« Sometimes the sequence of data matters.
 Text generation
 Stock price prediction
« Weather prediction
 EEG analysis

r'\‘
IN‘ v WM; A /
g™ - DA W — 4 — e s M Al M N
k Y ¥ N MM A WIS ™ ¥ ¥ W TN X
w N
L L] k. el eocn s ARG s — o
e Sin Iple solution — FCN or CNN

 Fixed input/output [

UBC| FELEC400M

Sequential data with various length

« How to take a variable length sequence as input?
« How to predict a variable length sequence as output?

Seed sequence of words Predicted word
Step 1: [the ’ man ’ ‘ is walking ’ m
Seed sequence of words Predicted word
step2 | the [man || is | | walking | | down]“
Seed sequence of words Predicted word
Step 3: the ’ man ’ ‘ is walking ’ H down ‘ the]
Seed sequence of words Predicted word

Step 4: ’ the H man ‘ is [walking down H the ’ street]-

UBC| ELEC 400M

—i-'-ia

Transformer

ENCODER #2

ENCODER #1

C(

]
]
.
POSITIONAL
ENCODING

--
.

(Feed Forward) (Feed Forward)
""""""" Add & Normalize IR
: t —
(e)
T AddanNormalze }

. I

Thinking

x [

Machines

Add & Normalize }

(Softmax
3
(Linear
7y
------- > DECODER #2
3 3
,*(Add & Normalize)
:‘Tt []
o
a (Feed Forward) (Feed Forward)
§
(@] ."(. Add & Normalize .)
) ""':"(Encoder-Decoder Attention)
AP — ’ ’
."(: Add & Normalize .)
E (Self-Attention)

C
o
(@)

|

—iv'-i-

ELEC 400M

Evolution

shutterstock.com « 1022560147

This lecture: Your last lecture: This week:
Recurrent Neural Network (RNN) Transformer GTP 4

UBCI ELEC 400M

Industrial Revolution - production of
fabrics

R it o

My r ey
it
it
||i£l.
(1
e
R,
1'- . -
e I A,
|
A
S e
e o

In 1768, Hargreaves
received a patent for the
invention of the Jenny
spinning machine.

In 1773, John Kaye invented the
flying shuttle for weaving cloth

Engels said: the first invention that turned the situation of
British workers upside down.

UBC| FELEC400M

|
—i-'-ia

Why do we still need to learn RNN?

It is on our syllabus.

* RNNs can still be useful in certain applications where the input data is
inherently sequential or when computational resources are limited.

* The choice between RNNs and Transformers largely depends on the
specific problem, dataset, and computational constraints.

UBC| FELEC400M

—i"'i.

Advantages of RNN and TF

Transformer Advantages: RNN Advantages:

* Long-range dependencies: self-attention e Sequential processing: natural
captures relationships between distant fit for time series, speech
tokens. recognition, language

* Parallelization: processes input tokens modeling.
simultaneously, faster training and * Parameter efficiency: shared
inference. weights across time steps.

e Scalability: state-of-the-art results in various
NLP tasks, e.g., BERT, GPT, T5.

While Transformers have generally outperformed RNNs in many NLP tasks

UBCI ELEC 400M

-

' W.

When shall we use RNN?

* Handling short sequences: RNNs can be more suitable for short sequences
where long-range dependencies are less critical.

 Limited resources: RNNs have fewer parameters, making them more
computationally efficient and easier to train on limited hardware.

e Real-time processing: RNNs are better suited for real-time or online
processing, where the input sequence is generated incrementally.

* Inherently sequential data: Some tasks, like speech recognition or time
series prediction, naturally benefit from RNNs' sequential processing.

UBCI ELEC 400M

-

' W.

Example Inputs of Outputs on
Sequential Data Analysis

Inputs & Outputs of RNN

one to one one to many many to one many to many many to many
! 0 ! t 11 Pt 1
! f tto Pt [i

CNN —
\ e.g. Image Captioning
Image -> sequence of words

UBCI ELEC 400M

-

4
€
U

Source: Stanford CS231n

Captioning Model

A cat sitting on the road

@ ProjectPro

Inputs & Outputs of RNN

one to one one to many many to one many to many many to many
i L0 d ! Tl ol o T
i f Pt Pttt i o
CNN

\ e.g. Sentiment Classification
sequence of words -> sentiment

UBCI ELEC 400M

-

4
€
U

Source: Stanford CS231n

"I love this movie.
['ve seen it many times
and it's still awesome."

"This movie is bad.
I don't like it it all.
It's terrible.”

Inputs & Outputs of RNN

one to one one to many many to one many to many many to many
! Pt 1 ! 1 3 A
! ! tt 1 it B il
CNN

\ e.g. Machine Translation
seq of words -> seq of words

C
(@)

UBC| FELEC400M

€
Q
g

Source: Stanford CS231n

Chinese - detected v | & English v

B B (B)ER, & X The bright moon
RA L, shines among the
Mingyue song Jian zhao, pines, and the clear
qingquan shi shangliu. .
spring stones flow
upwards.
® P

LD [D

Open in Google Translate + Feedback

Inputs & Outputs of RNN

one to one one to many many to one many to many many to many
! . ! O [l
f ! Pt | ol

CNN /

e.g. Video classification on frame level

(@)

UBCI ELEC 400M

))
A
q
1

Source: Stanford CS231n

Output

Sequence
Learning

Visual
Features

Input

W B W N R R e e
.
---------l

https://imerit.net/blog/using-neural-networks-for-video-classification-blog-all-pbm/

Outline

 Part 2. RNN basis

ELEC 400M

RNN Formulation

RNN Cell Unit

» Feedforward network: a neural network with no loops
 RNNSs store information about previous data in the “state”
* Recurrently feeds output of activation function to itself

@ Outputs
h

t States

é Inputs

Cc
o
(@)

ELEC 400M

€

Formula of RNN

Recurrent neural networks (RNNs) are networks with loops,
allowing information to persist [Rumelhart et al., 1986].

hi|=|fw (|ht—1a wt)

new state old state input vector at
some time step

some function
with parameters W

L

®
I

t

6

Notice: the same function
and the same set of
parameters are used at
every time step.

UBC| FELEC400M

—i"'i.

RNN hidden state update

Recurrent neural networks (RNNs) are networks with loops, State variable

allowing information to persist [Rumelhart et al., 1986].
 Have memory that keeps

track of information observed

hi|=|fw (Iht—1|7 C'31:) Cfb ot

new state / old state input vector at L « Maps from t.he entire history
// some time S’[ep t of previous |npUtS to each
some function output
with parameters W

UBC| FELEC400M

if

RNN output generation

We can process a sequence of vectors x by
applying a recurrence formula at every time step:

yt fWhy(ht)

output / new state

&—7—®

another function
with parameters W

UBCI ELEC 400M

€5

Formula of RNN (Vanilla)

W
I

L,

h; = fW(ht_l, mt) * x; is the input at time t. éD

J * h; is the hidden state (memory) at time t.

(also bias term)

hy = tanh(Wpyphe 1 + Wopxy)

* vy, is the output at time t.

* Whn, Why, Wy, are distinct weights.

Yt = Whyht

» weights are the same at all time steps.

UBCI ELEC 400M

—i".i.

RNN Computational Graph

with shared (tied) weights

(hlayl) = F(hOamla
(h27y2) — F(h17m27

W)
W)

h_ 0

h_2

ELEC 400M

Parameter sharing

 RNNs can be thought of as multiple copies of the same network,
each passing a message to a successor.

® 4 »W ® @
;] T 16, 10y 19, 10y
> = ho =» hi1 —» h; » h,

h,
éew 95 éﬁf 6593; éﬁm

* The same function and the same set of parameters are used at
every time step.

ELEC 400M

RNN Computational Graph

(x_1, x_2) comprises a
length-2 sequence

h_ 0

out 1

x93

h_1

out 2

h_2

ELEC 400M

RNN Computational Graph

* Many-to-one

X1

X2

UBC

I
|

))
A
q
1

ELEC 400M

RNN Computational Graph

* One-to-man

yi

Y2

X1

UBC

I
|

))
A
q
1

ELEC 400M

Y1

Y2

X1

X2

RNN Computational Graph

* Many-to-many

UBC

I
|

))
A
q
1

ELEC 400M

RNN Computational Graph

* Many-to-Many: Many-to-One + One-to-Many

Y2

d d
1 2

&

X]

(5 (3
1
X2

LEC 400M

Optimizing RNN

» Using the generalized back-propagation algorithm one can obtain

the so-called Back-Propagation Through Time algorithm.

N Hooen st
Error o, — — S
Cirmdine OEs s g, f'tr ‘1
T b Gradern! poth (ih' 1 l","“ Iv)h_‘.l
& Foodtormand Propogat o
Output v A\ \ 4

T - h.! = ,?.f —p h.f+] —p n .
« < « <
Recurrentr(' Tiiatwork Ohy_, Ohy sy Megsn
Connection. »\ State Ohy_a ha_, ih, T
l’h‘“ 1 (].‘“ (.r'hp,'
? T lv.'.l" 1 5 (.A'.l‘v - ‘:J}.‘. 1
Input .r(_ 1 £y Lo
(a) Recurrent Neural Network (b) Unrolled Recurrent Neural Network

Current Opinion in Neurobiclogy

UBC

€

ELEC 400M

Examples

Character-level Language Model

Vocabulary:

[h,e,l,0]

Example training 1 0 0 0

sequence: input layer | 9 : : ;

“hello” : : ° :
“e” &l I

input chars: “h”

UBCI ELEC 400M

))
A
q
1

Character-level Language Model

hi = tanh(Whphi—1 + Wanat)

VocabUIary: hidden layer
[h,e,l,0]
Example training
Sequence: input layer
“hello”

input chars:

0.3
-0.1
0.9

1
0
0
0
“h?

\J

\J

0.1

-0.5
-0.3

W_hh| -

- |loaoo

Cc
o
(@)

|

if

ELEC 400M

Character-level Language Model

Vocabulary:
[h,e,l,0]

Example training
sequence:
“hello”

target chars:

output layer

hidden layer

input layer

input chars: “

1.0
2.2

-3.0

4.1

0.3

-0.1

0.9

= [[Srerer==

\J

-

-~ 200
SR T~ IS B

\J

0.1

-0.5
-0.3

- |loaoo

W_hh| -

Cc
o
(@)

|

if

ELEC 400M

Character-level Language Model

Vocabulary:
[h,e,l,0]

At test-time sample
characters one at a time, feed

back to model

Sample

Softmax

output layer

hidden layer

input layer

input chars:

114 e:\
!

/|

i

t t
03 25 M
84 20 A7
.00 50 68
A3 .05 .03
f I }
1.0 05 0.1
2.2 0.3 05
-3.0 -1.0 1.9
4.1 1.2 14
N
03 1.0 0.1 |w
0.1 | 03 -+ 05—
0.9 0.1 0.3
1 0 0
0 1 0
0 0 1
0 0 0
llh“ lle“

hh(=

ELEC 400M

Outline

» Part 3. Long Short-Term Memory Networks

ELEC 400M

The Problem of Long-term
Dependencies

* In RNNs, during the gradient back propagation phase, the gradient signal
can end up being multiplied many times.

8Et Z 8Et 8yt Bht Bhk
oy oh; ohy 00

« If the gradients are large
« Exploding gradients, learning diverges
 Solution: clip the gradients to a certain max value.

* If the gradients are small
* Vanishing gradients, learning very slow or stops
 Solution: introducing memory via LSTM, GRU, etc.

(@)

UBC| FELEC400M

i

The Problem of Long-term
Dependencies

* In RNNSs, during the gradient back propagation phase, the gradient
signal can end up being multiplied many times.

8Et Z 8Et 8yt 8ht 8hk
oy oh, ohy 00

h, = 0¢(h;_,) + 0,x,

(@)

UBC| FELEC400M

if

Long Short-Term Memory Networks

* Long Short-Term Memory (LSTM) networks are RNNs capable of
learning long-term dependencies

& D, &

A
G T\ - D @ T\
ee————r> >
A Lebefll] A
\)_'Clr /_> U)_’

&)) &)

UBCI ELEC 400M

))
A
q
1

Vanilla RNN vs LSTM

~ T\
1

(a) RNN (b) LSTM

ELEC 400M

€

The Core Idea - Cell State

* The cell state is like a conveyor belt. It runs straight down the entire chain,
with only some minor linear interactions.

e Gates are a way to optionally let information through. They are composed
out of a sigmoid neural net layer and a pointwise multiplication operation.

)
|

- ——

UBCI ELEC 400M

-

4
€
U

Step-by-Step LSTM Walk Through

* Forget gate layer:

i fi=0W;-lhi—1,2¢] + by)

Output: 0/1

UBCI ELEC 400M

))
A
q
1

Step-by-Step LSTM Walk Through

* Input gate layer + tanh layer:

it =0 (Wi-[hi—1,2¢] + b;)
ét Ztanh(WC-[ht_l,a:t] + bc)

UBCI ELEC 400M

))
A
q
1

Step-by-Step LSTM Walk Through

* Update Cell States:

ftT Ztr-b()% Cy = fo * Cy1 + iy * C

UBCI ELEC 400M

))
A
q
1

Step-by-Step LSTM Walk Through

* Output:

op =0 (W, [hi—1,2¢] + bo)
ht — Ot * tanh (Ct>

(@)

UBCI ELEC 400M

))
A
q
1

LSTM

Allows “peeping into the memory” ; (Wt [Cynh | 4oby)
t =0 frlbt—1yt—1, Tt f
it = 0 (Wi |Cez1,he—1,2¢] + bi)
g — C or =0 (Wy-|C¢, hi—1,2¢] + bo)

A memory cell using logistic and linear units with multiplicative interactions:
« Information gets into the cell whenever its input gate is on.

» Information is thrown away from the cell whenever its forget gate is off.

« Information can be read from the cell by turning on its output gate.

UBC| FELEC400M

if

