CPEN 400D: Deep Learning

Lecture 9: Generative Adversarial Networks

Renjie Liao

University of British Columbia
Winter, Term 2, 2022

Outline

e Motivation
e (GANS

Overview
Minimax Loss
Properties

Architectures
Challenges of GANs

e (GANSs Variants

Wasserstein GANSs

Progressive GANSs
Cycle GANs

Deep Generative Models

Deep generative models are the most exciting area in deep/machine learning, Al. ..

Models can even generate the reflection in the puddle!

Image Credit: Midjourney V5

Deep Generative Models

Deep generative models are the most exciting area in deep/machine learning, Al. ..

We have learned deep generative models like deep auto-regressive models (e.g., GPT
series) and variational auto-encoders (VAESs).

They are trained to maximize the log likelihood of observed data (e.g., next tokens) or
its lower bound (ELBO).

Image Credit: Midjourney V5

Deep Generative Models

Deep generative models are the most exciting area in deep/machine learning, Al. ..

We have learned deep generative models like deep auto-regressive models (e.g., GPT
series) and variational auto-encoders (VAESs).

They are trained to maximize the log likelihood of observed data (e.g., next tokens) or
its lower bound (ELBO).

Is the likelihood the only good objective in learning deep generative models?

Image Credit: Midjourney V5

Deep Generative Models

Deep generative models are the most exciting area in deep/machine learning, Al. ..

We have learned deep generative models like deep auto-regressive models (e.g., GPT
series) and variational auto-encoders (VAESs).

They are trained to maximize the log likelihood of observed data (e.g., next tokens) or
its lower bound (ELBO).

Is the likelihood the only good objective in learning deep generative models?

No, we have adversarial learning, score matching / denoising diffusion, moment
matching, and so on.

Image Credit: Midjourney V5

Deep Generative Models

Deep generative models are the most exciting area in deep/machine learning, Al. ..

We have learned deep generative models like deep auto-regressive models (e.g., GPT
series) and variational auto-encoders (VAESs).

They are trained to maximize the log likelihood of observed data (e.g., next tokens) or
its lower bound (ELBO).

Is the likelihood the only good objective in learning deep generative models?

No, we have adversarial learning, score matching / denoising diffusion, moment
matching, and so on.

The beauty of deep generative models is all models are wrong, but many are useful!

Image Credit: Midjourney V5

Outline

 Motivation
e (GANSs

Overview
Minimax Loss
Properties

Architectures
Challenges of GANs

e (GANSs Variants

Wasserstein GANSs

Progressive GANSs
Cycle GANs

Overview

Generative Adversarial Networks (GANs) [1]

Training set
Random
noise
— 9
Generator

Image Credit: [2]

/Fake image

Discriminator

— ke

Outline

 Motivation
e (GANSs

Overview
Minimax Loss
Properties

Architectures
Challenges of GANs

e (GANSs Variants

Wasserstein GANSs

Progressive GANSs
Cycle GANs

Minimax Loss

GANSs [1] : Two neural networks (generator and discriminator) contest with each other in the form of a
zero-sum game, where one agent's gain is another agent's loss.

Training set V

A7 LI

Random /7 / > EA[Fake

n ¢l

Generator _/ /Fake Image

Learning: m@in mq?x EXdiata(X) log D¢(X)] + EZNp(Z) log(1 — ch(GH(Z))]

Discriminator

Image Credit: [2]

Outline

 Motivation
e (GANSs

Overview
Minimax Loss
Properties

Architectures
Challenges of GANs

e (GANSs Variants

Wasserstein GANSs

Progressive GANSs
Cycle GANs

Properties of GANSs

Generative Adversarial Networks (GANs) [1]

1. Fix generator, the optimal discriminator is D’(X)=
o X) Pdata(X) + pa, (X)

Properties of GANSs

Generative Adversarial Networks (GANs) [1]

. . C. . Pdata (X)
1. Fix generator, the optimal discriminator is D’(X)=
o X) Pdata(X) + pa, (X)

Why?

Properties of GANSs

Generative Adversarial Networks (GANs) [1]

1. Fix generator, the optimal discriminator is D’(X)=
o X) Pdata(X) + pa, (X)

Why?

UGy, Dy) = Exmpgua(x)108 Dp(X)] + Ezopz)[log(l — Dy(Go(2))]
= E X~ paaia () 108 D (X)] + Ex pg, (x)10g(1 — Dy (X))]

— [PaatalX) 108 Dy(X) + i, (X) og(1 — Do(X))dX

Properties of GANSs

Generative Adversarial Networks (GANs) [1]

1. Fix generator, the optimal discriminator is D (X) =
$X) Pdata(X) + pa, (X)

Why?

UGo, Dy) = Expyaa(x)l0g D (X)] + Ezopz)llog(l — Dy(Go(2))] |
Law Of The Unconscious
= ExX piaea () [108 Dy (X)] + Ex pe, (x)[log(1 — D (X))] Statistician (LOTUS)

— [PaatalX) 108 Dy(X) + i, (X) og(1 — Do(X))dX

Set the gradient of loss w.r.t. D to be zero

Properties of GANSs

Generative Adversarial Networks (GANs) [1]

C(Gg) =max {(Gp,Dy)

D

— EXdiata(X)

= Expgaea(X)

log D;;(X)] + Exmpe, (X) log(1 — D;;(X)):

pdata(X>

log (
| Pdata

(X) +pG9(X)>] T Exope, (x)

PGy (X)

log (
i pdata(

X) ‘|’pG9(X>

)

Properties of GANSs

Generative Adversarial Networks (GANs) [1]

C(Gg) =max {(Gp,Dy)

D

— EXdiata(X)

= Expgaea(X)

log D;;(X)] + Exmpe, (X) log(1 — D;;(X)):

log (

pdata(X>)] 4 EX ¥
Paata(X) + pa, (X) ~PGe (X)

2. The global minimum of C'(Gy) is achieved iff. Pdata(X) = pag, (X)

Why?

log (

PGy (X)

pdata(X> + PGy (X>

)

Properties of GANSs

Generative Adversarial Networks (GANs) [1]

C(Gg) =max {(Gp,Dy)

D

— EXdiata(X)

= Expgaea(X)

log (

log D;;(X)] + Exmpe, (X) log(1 — D;;(X)):

pdata(X>)] 4 EX ¥
Paata(X) + pa, (X) ~PGe (X)

2. The global minimum of C'(Gy) is achieved iff. Pdata(X) = pag, (X)

Why? C(Go) = Expyuen(X) [log (

(Pdata(X) +pg,(X))/2
PGy (X)

log (

Pdata(X))]

PGy (X)

pdata(X> + PGy (X>

1
t Exrpe, 0 llog (<pdata<x> +re, <X>>/2>] +2los(y)
— ISD(paaea(X) 06, (X)) — log(4)

)

Properties of GANSs

Generative Adversarial Networks (GANs) [1]

2. The global minimum of C(Gp) is achieved iff. Pdata (X) = pa, (X)

C(Go) = Exrpyaa(X) [10% ((pdata(ﬁatf if;z (X))/ 2)]

PGy (X> 1
 Expe, 0 llog <<pdata<x> T re, <X>>/2>] +2los(y)
— ISD(panca(X) [pc, (X)) — log(4)

Why?

Jensen—Shannon divergence is non-negative and is zero iff. P=Q

ISD(PYQ) = SKL(P| 1

Q

) + S KL

)

Outline

 Motivation
e (GANSs

Overview
Minimax Loss
Properties

Architectures
Challenges of GANs

e (GANSs Variants

Wasserstein GANSs

Progressive GANSs
Cycle GANs

Architecture

Deep Convolutional Generative Adversarial Network (DCGANSs) [3] : using CNNs as both Generator and

Discriminator.

3

rL\
‘ \

212 Stride 2
’ 32
4
100 z =) - 1-=PRS
4 s |
. Stride 2 16 3‘2‘
Project and reshape CONV 1
transpose CONV 2 -
transpose Et:r?nl\:z)/o::e
G(2)
Generator

Image Credit: [2]

Demo of GANSs

Samples from generator during training on SVHNss (left) and MNIST (right)

Image Credit: [2]

Outline

 Motivation
e (GANSs

Overview
Minimax Loss
Properties

Architectures
Challenges of GANSs

e (GANSs Variants

Wasserstein GANs
Progressive GANs
Cycle GANs

Challenges 1n Training GANSs

Two common problems in training GANs are: training instability

" oS i e ey S
Convergence Failure: e.g., caused by imbalance
training of generator and discriminator

Image Credit: [4]

Challenges 1n Training GANSs

Two common problems in training GANSs are: training instability and mode collapse

Mode Collapse: generating samples
training of generator and discriminator that are very similar or even identical

Image Credit: [4]

Outline

 Motivation
e (GANSs

Overview
Minimax Loss
Properties

Architectures
Challenges of GANs

e (GANSs Variants

Wasserstein GANS

Progressive GANSs
Cycle GANs

Wasserstein GANS

Earth Mover Distance / Wasserstein Metric: EMD(P,., Py) = inf Z |z —yl[v(z,y) = inf E poyllz =y
yell . ~yell
vell IT is the set of all distributions
whose marginals are P,., Py
respectively.

Wasserstein GANS

Earth M Dist / Wi tein Metric: EMD(P,, Py) = inf — = inf E ~ —
a over Distance / Wasserstein Metric (P, Pp) 711211§;||x yllv(x,y) inf B,y Sz =yl

YE
vell I1 is the set of all distributions
whose marginals are P,., Py
respectively.

I'=v(z,y) D = ||z — g

Image Credit: [5]

Wasserstein GANS

Earth Mover Distance / Wasserstein Metric: EMD(P,., Py) = inf Z |z —yl[v(z,y) = inf E poyllz =y
yell . vyell ’

vell

Wasserstein distance (using Kantorovich-Rubinstein duality):

EMD(P,, Py) = sup E,.p f(x)—E.vp, f(x).

1fllL<a

Wasserstein GANS

Earth Mover Distance / Wasserstein Metric: EMD(P,., Py) = inf Z |z —yl[v(z,y) = inf E poyllz =y
yell . vyell ’

vell

Wasserstein distance (using Kantorovich-Rubinstein duality):

EMD(P,, Py) = sup E,.p f(x)—E.vp, f(x).

1fllL<a

Wasserstein-GAN [6] proposes a unified objective:

Learn Discriminator via qubaJX E X pyaea (X) [P (X)] = Eerope) [Dop (Gol(€))]

Learn Generator via meil’l IEprdm()() [ng(X)] - Eefvp(e) [qu(GH(E))]

Wasserstein GANS

Earth Mover Distance / Wasserstein Metric: EMD(P,., Py) = inf Z |z —yl[v(z,y) = inf E poyllz =y
yell . vyell ’

vell

Wasserstein distance (using Kantorovich-Rubinstein duality):

EMD(P,, Py) = sup E,.p f(x)—E.vp, f(x).

1fllL<a

Wasserstein-GAN [6] proposes a unified objective:

Learn Discriminator via qubaJX E X pyaea (X) [P (X)] = Eerope) [Dop (Gol(€))]
Learn Generator via m@in Ex pana (X) [P (X)] = Eep(e)[Do (Go(€))]

To enforce Lipschitz condition, one can clip weights [6], add gradient penalty (WGAN-GP) [7],
and use spectral normalization [8]

Wasserstein GANS

DCGAN LSGAN WGAN (clipping) WGAN-GP (ours)

Basellne (G- DCGAN - DCGAN)

Image Credit: [7]

Outline

 Motivation
e (GANSs

Overview
Minimax Loss
Properties

Architectures
Challenges of GANs

e (GANSs Variants

Wasserstein GANSs

Progressive GANs
Cycle GANs

Progressive GANs

Image Credit: [9]

Latent Latent

ﬁﬁ

4x4

HI|00
B | B S En——
II:

N
. ' Reals
v

Training progresses >

Latent
v

1024x1024 |

A 4
1024x1024 |

Figure 1: Our training starts with both the generator (G) and discriminator (D) having a low spa-
tial resolution of 4 x4 pixels. As the training advances, we incrementally add layers to G and D,
thus increasing the spatial resolution of the generated images. All existing layers remain trainable

throughout the process. Here

N x N

refers to convolutional layers operating on NV X N spatial

resolution. This allows stable synthesis in high resolutions and also speeds up training considerably.
One the right we show six example images generated using progressive growing at 1024 x 1024.

Progressive GANs

Figure 5: 1024 x 1024 images generated using the CELEBA-HQ dataset. See Appendix F for a
larger set of results, and the accompanying video for latent space interpolations.

Image Credit: [9]

Outline

 Motivation
e (GANSs

Overview
Minimax Loss
Properties

Architectures
Challenges of GANs

e (GANSs Variants

Wasserstein GANs
Progressive GANSs
Cycle GANs

Cycle GANSs

Cycle-Consistent Generative Adversarial Networks [10] learn the image-to-image translation without a
training set of aligned image pairs

Image Credit: [12]

Cycle GANSs

Cycle-Consistent Generative Adversarial Networks [10] learn the image-to-image translation without a
training set of aligned image pairs

Image Credit: [10,12]

Cycle GANSs

Cycle-Consistent Generative Adversarial Networks [10] learn the image-to-image translation without a
training set of aligned image pairs

EGAN(Fa Dx, X, Y) — Emr\/pdata(w) [lOg Dx (.CU)] + Eprdata(y) [log(l — Dx (F(y))]

Image Credit: [10,12]

Cycle GANSs

Cycle-Consistent Generative Adversarial Networks [10] learn the image-to-image translation without a
training set of aligned image pairs

EGAN(Fa Dx, X, Y) — Emwpdata(:v) [log Dx (.CU)] + Eprdata(y) [log(l — Dx (F(y))]

EGAN (G7 DY? X7 Y) —]E‘prdata(y) [log DY (y>] + Ew’\“pdata(w) [log(]‘ o DY (G(.:U))]

Image Credit: [10,12]

Cycle GANSs

Cycle-Consistent Generative Adversarial Networks [10] learn the image-to-image translation without a
training set of aligned image pairs

EGAN(Fa Dx, X, Y) — Emwpdata(:v) [log Dx (.CU)] + Eprdata(y) [log(l — Dx (F(y))]
EGAN (G7 DY? X7 Y) —]E‘prdata(y) [log DY (y>] + Ew’\“pdata(w) [log(]‘ o DY (G(.:U))]

Loye(G F) =Egpmpiia(@) IF(G(2) = 21] + Eynpaua) IGF (Y)) = yll]

Image Credit: [10,12]

Cycle GANSs

Cycle-Consistent Generative Adversarial Networks [10] learn the image-to-image translation without a
training set of aligned image pairs

EGAN(Fa Dx, X, Y) — Emwpdata(:v) [log Dx (.CU)] + Eprdata(y) [log(l — Dx (F(y))]
Laan(G, Dy, X,Y) = Eypon 108 Dy (Y)] + Epoponin (@) [log(1 — Dy (G(2))]
Leye(G, F) =Epnpgora @) 1F(G(2)) — zll1] + Eyapinea) IIG(F(Y)) — yll1]

E(Ga F7 DXaDY) :EGAN(Ga DYaXa Y) + 'CGAN(Fa DX7Y7 X) +)\Ecyc(Ga F)

Image Credit: [10,12]

Cycle GANSs

A

Discriminator A

v

Decision [0,1]

Image Credit: [9]

Start

Cyclic A

Generator
A2B ~

Generator , -~
B2A

Decision [0,1]

' 3

v

Discriminator B

Cycle GANSs

Generator
A2B
Cyclic B
Discriminator A <« Decision [0,1]
= Generator N
Decision [0,1] B2A o oo - Discriminator B

Start

Image Credit: [9]

Cycle GANSs

Monet Z_ Photos

photo —>Monet

Phtograph

Image Credit: [12]

N
@
o
=y
o
=0
O [REETEtins
o
(7]
@

foree —> zebra

Summer T Winter

winter —» summer

Monet Van Gogh

References

[1] Goodfellow, 1., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A. and Bengio, Y., 2014. Generative
adversarial nets. Advances in neural information processing systems, 27.

[2] https://sthalles.github.io/intro-to-gans/

[3] Radford, A., Metz, L. and Chintala, S., 2015. Unsupervised representation learning with deep convolutional generative adversarial
networks. arXiv preprint arXiv:1511.06434.

[4] https://neptune.ai/blog/gan-failure-modes

[5] https://vincentherrmann.github.io/blog/wasserstein/

[6] Arjovsky, M., Chintala, S. and Bottou, L., 2017, July. Wasserstein generative adversarial networks. In International conference on
machine learning (pp. 214-223). PMLR.

[7] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V. and Courville, A.C., 2017. Improved training of wasserstein gans. Advances in
neural information processing systems, 30.

[8] Miyato, T., Kataoka, T., Koyama, M. and Yoshida, Y., 2018. Spectral normalization for generative adversarial networks. arXiv
preprint arXiv:1802.05957.

[9] Karras, T., Aila, T., Laine, S. and Lehtinen, J., 2017. Progressive growing of gans for improved quality, stability, and variation.
arXiv preprint arXiv:1710.10196.

[10] Zhu, J.Y., Park, T., Isola, P. and Efros, A.A., 2017. Unpaired image-to-image translation using cycle-consistent adversarial
networks. In Proceedings of the IEEE international conference on computer vision (pp. 2223-2232).

[11] https://hardikbansal.github.io/CycleGANBIlog/
[12] https://junyanz.github.10/Cycle GAN/

https://sthalles.github.io/intro-to-gans/
https://neptune.ai/blog/gan-failure-modes
https://vincentherrmann.github.io/blog/wasserstein/
https://hardikbansal.github.io/CycleGANBlog/
https://junyanz.github.io/CycleGAN/

Questions?

