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Deep Generative Models

Deep generative models are the most exciting area in deep/machine learning, Al. ..

Models can even generate the reflection in the puddle!

Image Credit: Midjourney V5
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Deep Generative Models

Deep generative models are the most exciting area in deep/machine learning, Al. ..

We have learned deep generative models like deep auto-regressive models (e.g., GPT
series) and variational auto-encoders (VAESs).

They are trained to maximize the log likelihood of observed data (e.g., next tokens) or
its lower bound (ELBO).

Is the likelihood the only good objective in learning deep generative models?

No, we have adversarial learning, score matching / denoising diffusion, moment
matching, and so on.

The beauty of deep generative models is all models are wrong, but many are useful!

Image Credit: Midjourney V5
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Overview

Generative Adversarial Networks (GANs) [1]

Training set
Random
noise
— 9
Generator

Image Credit: [2]
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Minimax Loss

GANSs [1] : Two neural networks (generator and discriminator) contest with each other in the form of a
zero-sum game, where one agent's gain is another agent's loss.

Training set V

A7 LI

Random /7 / > EA[Fake

n ¢l

Generator _/ /Fake Image

Learning: m@in mq?x EXdiata(X) log D¢(X)] + EZNp(Z) log(1 — ch(GH(Z))]

Discriminator

Image Credit: [2]
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Properties of GANSs

Generative Adversarial Networks (GANs) [1]

1. Fix generator, the optimal discriminator is D’(X)=
o X) Pdata(X) + pa, (X)
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Properties of GANSs

Generative Adversarial Networks (GANs) [1]

1. Fix generator, the optimal discriminator is D (X) =
$X) Pdata(X) + pa, (X)

Why?

UGo, Dy) = Expyaa(x)l0g D (X)] + Ezopz)llog(l — Dy(Go(2))] |
Law Of The Unconscious
= ExX piaea () [108 Dy (X)] + Ex pe, (x)[log(1 — D (X))] Statistician (LOTUS)

— [ PaatalX) 108 Dy(X) + i, (X) og(1 — Do(X))dX

Set the gradient of loss w.r.t. D to be zero
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Generative Adversarial Networks (GANs) [1]
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Generative Adversarial Networks (GANs) [1]

C(Gg) =max {(Gp,Dy)
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Properties of GANSs

Generative Adversarial Networks (GANs) [1]

2. The global minimum of C(Gp) is achieved iff. Pdata (X) = pa, (X)

C(Go) = Exrpyaa(X) [10% ((pdata(ﬁatf if;z (X))/ 2)]

PGy (X> 1
 Expe, 0 llog <<pdata<x> T re, <X>>/2>] +2los(y)
— ISD(panca(X) [pc, (X)) — log(4)

Why?

Jensen—Shannon divergence is non-negative and is zero iff. P=Q

ISD(PYQ) = SKL(P| 1

Q

) + S KL

)
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Architecture

Deep Convolutional Generative Adversarial Network (DCGANSs) [3] : using CNNs as both Generator and

Discriminator.
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Image Credit: [2]



Demo of GANSs

Samples from generator during training on SVHNss (left) and MNIST (right)

Image Credit: [2]
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Challenges 1n Training GANSs

Two common problems in training GANs are: training instability

" oS i e ey S
Convergence Failure: e.g., caused by imbalance
training of generator and discriminator

Image Credit: [4]



Challenges 1n Training GANSs

Two common problems in training GANSs are: training instability and mode collapse

Mode Collapse: generating samples
training of generator and discriminator that are very similar or even identical

Image Credit: [4]



Outline

 Motivation
e (GANSs

Overview
Minimax Loss
Properties

Architectures
Challenges of GANs

e (GANSs Variants

Wasserstein GANS

Progressive GANSs
Cycle GANs



Wasserstein GANS
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Wasserstein GANS
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Wasserstein GANS

Earth Mover Distance / Wasserstein Metric:  EMD(P,., Py) = inf Z |z —yl[v(z,y) = inf E poyllz =y
yell . vyell ’

vell

Wasserstein distance (using Kantorovich-Rubinstein duality):

EMD(P,, Py) = sup E,.p f(x)—E.vp, f(x).

1fllL<a

Wasserstein-GAN [6] proposes a unified objective:

Learn Discriminator via qubaJX E X pyaea (X) [P (X)] = Eerope) [Dop (Gol(€))]
Learn Generator via m@in Ex pana (X) [P (X)] = Eep(e)[Do (Go(€))]

To enforce Lipschitz condition, one can clip weights [6], add gradient penalty (WGAN-GP) [7],
and use spectral normalization [8]



Wasserstein GANS

DCGAN LSGAN WGAN (clipping) WGAN-GP (ours)

Basellne (G- DCGAN - DCGAN)

Image Credit: [7]
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Progressive GANs

Image Credit: [9]
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Figure 1: Our training starts with both the generator (G) and discriminator (D) having a low spa-
tial resolution of 4 x4 pixels. As the training advances, we incrementally add layers to G and D,
thus increasing the spatial resolution of the generated images. All existing layers remain trainable

throughout the process. Here

N x N

refers to convolutional layers operating on NV X N spatial

resolution. This allows stable synthesis in high resolutions and also speeds up training considerably.
One the right we show six example images generated using progressive growing at 1024 x 1024.



Progressive GANs

Figure 5: 1024 x 1024 images generated using the CELEBA-HQ dataset. See Appendix F for a
larger set of results, and the accompanying video for latent space interpolations.

Image Credit: [9]
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Cycle GANSs

Cycle-Consistent Generative Adversarial Networks [10] learn the image-to-image translation without a
training set of aligned image pairs

Image Credit: [12]
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Cycle GANSs

Cycle-Consistent Generative Adversarial Networks [10] learn the image-to-image translation without a
training set of aligned image pairs
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Cycle GANSs

Cycle-Consistent Generative Adversarial Networks [10] learn the image-to-image translation without a
training set of aligned image pairs

EGAN(Fa Dx, X, Y) — Emwpdata(:v) [log Dx (.CU)] + Eprdata(y) [log(l — Dx (F(y))]
Laan(G, Dy, X,Y) = Eypon 108 Dy (Y)] + Epoponin (@) [log(1 — Dy (G(2))]
Leye(G, F) =Epnpgora @) 1F(G(2)) — zll1] + Eyapinea ) IIG(F(Y)) — yll1]

E(Ga F7 DXaDY) :EGAN(Ga DYaXa Y) + 'CGAN(Fa DX7Y7 X) + )\Ecyc(Ga F)

Image Credit: [10,12]



Cycle GANSs
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Cycle GANSs
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Image Credit: [9]



Cycle GANSs
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