CPEN 400D: Deep Learning

Lecture 10: Deep Reinforcement Learning

Renjie Liao

University of British Columbia
Winter, Term 2, 2022

Outline

* Reinforcement Learning
* Overview & Applications
* Key Concepts
* Markov Decision Process (MDP) and its Extensions
e Bellman Equation and its Optimality
* RL Taxonomy
* Deep Reinforcement Learning
* Q-learning & Deep Q-learning
* Policy Gradient Methods

Reinforcement Learning (RL)

RL is about learning to take actions that can maximize total future reward!

Reinforcement Learning (RL)

RL is about learning to take actions that can maximize total future reward!

Image Credit: [1]

Reinforcement Learning (RL)

RL is about learning to take actions that can maximize total future reward!

Image Credit: [2]

Reinforcement Learning (RL)

RL is about learning to take actions that can maximize total future reward!

. o

Outcome Prediction

'\J-A,/"" h‘t—-.... oafama |

e R eyt Considered Location
Neural Network Activations r/vf w;’ W‘Ng\%’\q«‘a'*‘ﬂ
o r- r""vv\‘{‘

£ S e
w { 3 Considered Build/Train

B
-

Image Credit: [3]

Reinforcement Learning (RL)

RL is about learning to take actions that can maximize total future reward!

EEESEDOIE |
00:06:16 ' T God’s move: AlphaGo
UL \ Sw W Move 78 thought this move happens

with 0.007% probability in
\ human players!

This may be the last time a
human go player beats Al!

(" ALPHAGO

01:14:41

Image Credit: [4]

Reinforcement Learning (RL)

RL is about learning to take actions that can maximize total future reward!

Image Credit: [5]

Reinforcement Learning (RL)

RL is about learning to take actions that can maximize total future reward!

ey
- e

After 3 Episodes After 12 Episodes

Image Credit: [6]

After 36 Episodes

Reinforcement Learning (RL)

RL is about learning to take actions that can maximize total future reward!

)
[EE et

P

Liaqety

PR

Image Credit: [7]

Outline

* Reinforcement Learning
* Overview & Applications
* Key Concepts
* Markov Decision Process (MDP) and its Extensions
e Bellman Equation and its Optimality
* RL Taxonomy
* Deep Reinforcement Learning
* Q-learning & Deep Q-learning
* Policy Gradient Methods

Reinforcement Learning (RL)

Let us look at the Super Mario example to grab the key concepts:

—— & _

Y,

Agent

@ EDr
Y,

Reward R, Action A,
e mar;gxe
States s, Environment

Agent: an intelligent program or a real robot

Image Credit: [8]

Reinforcement Learning (RL)

Let us look at the Super Mario example to grab the key concepts:
Agent: an intelligent program or a real robot

Environment: the (simulated/real) “world”
where the agent interacts

Reward R, Action A,

| — mar;gxe
States s, Environment

Image Credit: [8]

Reinforcement Learning (RL)

Let us look at the Super Mario example to grab the key concepts:

Image Credit: [8]

States s,

Reward R, Action A,
& .
| e mario.exe

Environment

Agent: an intelligent program or a real robot

Environment: the (simulated/real) “world”
where the agent interacts

State: a function of the past sequence of
observations, actions, and rewards.

Reinforcement Learning (RL)

Let us look at the Super Mario example to grab the key concepts:
Agent: an intelligent program or a real robot

Environment: the (simulated/real) “world”

_I where the agent interacts

State: a function of the past sequence of
observations, actions, and rewards.

Policy: a probability distribution over actions

Reward Rt Action At the agent can take given a state

| — mar;gxe
States s, Environment

Image Credit: [8]

Reinforcement Learning (RL)

Let us look at the Super Mario example to grab the key concepts:
Agent: an intelligent program or a real robot

Environment: the (simulated/real) “world”

_I where the agent interacts

State: a function of the past sequence of
observations, actions, and rewards.

Policy: a probability distribution over actions

Reward Rt Action At the agent can take given a state
I I Action: a transition step the agent takes to
move within the environment
—— g
I mario.exe
States s, Environment

Image Credit: [8]

Reinforcement Learning (RL)

Let us look at the Super Mario example to grab the key concepts:

Reward R, Action A,

| — mar;gxe
States s, Environment

Image Credit: [8]

Agent: an intelligent program or a real robot

Environment: the (simulated/real) “world”
where the agent interacts

State: a function of the past sequence of
observations, actions, and rewards.

Policy: a probability distribution over actions
the agent can take given a state

Action: a transition step the agent takes to
move within the environment

Reward: the value responded by the
environment to the agent’s action

Reinforcement Learning (RL)

Let us look at the Super Mario example to grab the key concepts:

Agent: an intelligent program or a real robot

Environment: the (simulated/real) “world”
where the agent interacts

State: a function of the past sequence of
observations, actions, and rewards.

Policy: a probability distribution over actions

Reward R ¢ Action At the agent can take given a state
I I Action: a transition step the agent takes to
move within the environment
—— .
I mario.exe R 4 the vl ded by th
Environment eward: the value responded by the
States St environment to the agent’s action
The interaction within an episode leads to a trajectory T = (So, ag,T0,S1,A1,T1, """ , ST)

Image Credit: [8]

Reinforcement Learning (RL)

As a learning paradigm, RL is different from supervised/unsupervised learning:

* Supervision is scarce, e.g., reward 1S
often a scalar

* Supervision is often delayed, e.g., an
agent gets the reward after a sequence
of actions

Reward R, Action A,

* Sequential data is often non-iid, e.g., an

I g <_I agent’s current decision would affect
the future data distribution

| — mario.exe

States s, Environment

Image Credit: [8]

Outline

* Reinforcement Learning
* Overview & Applications
* Key Concepts
* Markov Decision Process (MDP) and its Extensions
e Bellman Equation and its Optimality
* RL Taxonomy
* Deep Reinforcement Learning
* Q-learning & Deep Q-learning
* Policy Gradient Methods

Markov Decision Process

Almost all RL problems can be formalized as Markov decision processes (MDPs).

Markov Decision Process

Almost all RL problems can be formalized as Markov decision processes (MDPs).

Markov Property: The future is
independent of the past given the present!

Markov Decision Process

Almost all RL problems can be formalized as Markov decision processes (MDPs).

A Markov decision process (MDP) is a tuple (S, A, P, R,) Markov Property: The future is
independent of the past given the present!

« S is a finite set of states

A is a finite set of actions

P is a state transition probability matrix =~ P2, = P(S;11 = §'|S; = s, Ay = a)
« R is arewgrd fgnc‘uon R = E [Rys1|S: = s, A =

v € 10,1] is a discount factor

Markov Decision Process

Almost all RL problems can be formalized as Markov decision processes (MDPs).

A Markov decision process (MDP) is a tuple (S, A, P, R,) Markov Property: The future is
independent of the past given the present!
« S is a finite set of states
A 1is a finite set of actions
P is a state transition probability matrix =~ P2, = P(S;11 = §'|S; = s, Ay = a)
« R is arewgrd fgnc‘uon R = E [Rys1|S: = s, A =
v € 10,1] is a discount factor

MDP describes an environment where all states are Markov and can be extended to:

* countably infinite states and or action spaces

* continuous state and or action spaces

* continuous time (requires partial differentiable equations)
* partially observable (POMDPs)

Markov Decision Process

Return: the total discounted reward from time t o
Gt = Rip1 +YRiyo + - = Z'Yth+k+1
k=0

Markov Decision Process

Return: the total discounted reward from time t Why discount? Mathematically

B B K convenient, avoid infinite returns,
Ge=Rep1 7Rz + - = Z Y Rtk uncertainty about the future......
k=0

Markov Decision Process

Return: the total discounted reward from time t - Why discount? Mathematically
B B k convenient, avoid infinite returns,
Gt =Ry +7Reyz + - = Z Y Rtk uncertainty about the future......
k=0

Policy: the distribution over actions given states

m(als) = P(A; = a|S; = s)

Markov Decision Process

Return: the total discounted reward from time t - Why discount? Mathematically
B B k convenient, avoid infinite returns,
Gt =Ry +7Reyz + - = Z Y Rtk uncertainty about the future......
k=0

Policy: the distribution over actions given states

m(als) = P(A; = a|S; = s) We assume stationary policies

Markov Decision Process

Return: the total discounted reward from time t - Why discount? Mathematically
B B k convenient, avoid infinite returns,
Gt =Ry +7Reyz + - = Z Y Rtk uncertainty about the future......
k=0

Policy: the distribution over actions given states

m(als) = P(A; = a|S; = s) We assume stationary policies

Value (a.k.a., State-Value) function: the expected return starting from state s and then following policy 7
Vi(s) = E; [G¢| Sy = s]

Markov Decision Process

Return: the total discounted reward from time t - Why discount? Mathematically
B B k convenient, avoid infinite returns,
Gt =Ry +7Reyz + - = Z Y Rtk uncertainty about the future......
k=0

Policy: the distribution over actions given states

m(als) = P(A; = a|S; = s) We assume stationary policies

Value (a.k.a., State-Value) function: the expected return starting from state s and then following policy 7

Vi(s) = E; [G¢| Sy = s]

Optimal value function Vi(s) = maxE, [G¢|S; = s]

Markov Decision Process

Why discount? Mathematically

convenient, avoid infinite returns,

Return: the total discounted reward from time t o
— e o o b— k:
Gi = Rpp1 + 72+ = Z Y Rtk uncertainty about the future......
k=0

Policy: the distribution over actions given states
m(als) = P(A; = a|S; = s) We assume stationary policies

Value (a.k.a., State-Value) function: the expected return starting from state s and then following policy 7
Vi(s) = E; [G¢| Sy = s]
Optimal value function Vi(s) = maxE, [G¢|S; = s]

O (a.k.a. Action-Value) function: the expected return starting from state s, taking action a, and then

following policy 7
Qr(s,a) =E;[G:|S; = s, Ay = a]

Markov Decision Process

Why discount? Mathematically

convenient, avoid infinite returns,

Return: the total discounted reward from time t o
— e o o b— k:
Gi = Rpp1 + 72+ = Z Y Rtk uncertainty about the future......
k=0

Policy: the distribution over actions given states
m(als) = P(A; = a|S; = s) We assume stationary policies

Value (a.k.a., State-Value) function: the expected return starting from state s and then following policy 7

Vi(s) = E; [G|St = 5]
Optimal value function Vi(s) = maxE, [G¢|S; = s]

O (a.k.a. Action-Value) function: the expected return starting from state s, taking action a, and then

following policy 7
Qr(s,a) =E;[G:|S; = s, Ay = a]

Optimal Q function Q+(s,a) = maxE, |G¢|S; = s, A; = a]

Outline

* Reinforcement Learning
* Overview & Applications
* Key Concepts
* Markov Decision Process (MDP) and its Extensions
* Bellman Equation and its Optimality
* RL Taxonomy
* Deep Reinforcement Learning
* Q-learning & Deep Q-learning
* Policy Gradient Methods

Bellman Equation

Most RL algorithms are based on Bellman Equation, which is a recursive formula and has many variations.
In particular, for Q-function, we have:

Qﬂ(s,a) =Ex [Gt|St =35, A4 = Cl] = Ex Z’YthJrkH\St =s,4;=a
k=0

Bellman Equation

Most RL algorithms are based on Bellman Equation, which is a recursive formula and has many variations.
In particular, for Q-function, we have:

O
Z’YthJrkH\St =s,4;=a
k—0

Qr(s,a) =E, [G¢|S: = s, A = a] = E;

=Er | Ri41 + ZVth+k+1‘St =54 =a
k=1

Bellman Equation

Most RL algorithms are based on Bellman Equation, which is a recursive formula and has many variations.
In particular, for Q-function, we have:

O
Z’YthJrkH\St =s,4;=a
k—0

Qr(s,a) =E, [G¢|S: = s, A = a] = E;

=Er | Ri41 + ZVth+k+1‘St =54 =a
k=1

oo

k—1
E YT Rikt1|St =5, Ar = a
k=1

=K, [Rt—l—l‘St = S, At = CL] -+ ’}/Eﬂ-

Bellman Equation

Most RL algorithms are based on Bellman Equation, which is a recursive formula and has many variations.
In particular, for Q-function, we have:

O
Z’YthJrkH\St =s,4;=a
k—0

Qr(s,a) =E, [G¢|S: = s, A = a] = E;

Ry + ZVth+k+1\St =54 =a
k=1

=K,

= Ex [Re41]S: = 5, Ar = a] + VEx Z’Yk_lRt—i-k—i-l‘St =s,A4r=a

k=1
=E [Rt_|_1’St = S,At = CI,] -+
v > <Z 7k13t+k+1> P(St+1, At1, Reyr, -+ [Se = 5, Ay = a)
St+17At+1aRt+17"' k=1

Bellman Equation

Most RL algorithms are based on Bellman Equation, which is a recursive formula and has many variations.
In particular, for Q-function, we have:

O
Z’YthJrkH\St =s,4;=a
k—0

Qr(s,a) =E, [G¢|S: = s, A = a] = E;

Ry + ZVth+k+1\St =54 =a
k=1

=K,

= Ex [Re41]S: = 5, Ar = a] + VEx Z’Yk_lRt—i-k—i-l‘St =s,A4r=a

k=1
:E[Rt+1’StZS,At:ax]+ RZ:E[Rt+1|St:S,At:a]
Y Z <Z ’YklRt-|-k:-|-1> P(Si41, Atr1, Rig1, - |St = 5, A = a)
St+1,A¢41,Re41, \k=1

Bellman Equation

Most RL algorithms are based on Bellman Equation, which is a recursive formula and has many variations.
In particular, for Q-function, we have:

(. ©]

Z’YthJrkH\St =s5,A=a
k=0

Qr(s,a) =E, [G¢|S: = s, A = a] = E;

=Er [Rip1 + ZVth+k+1‘St =54 =a

k=1

= Ex [Re41]S: = 5, Ar = a] + VEx Z’Yk_lRt—i-k—i-l‘St =s,A4r=a

k=1
:E[Rt+1’StZS,At:ax]+ RZ:E[Rt+1|St:S,At:a]
v . <Z 7k13t+k+1> P(St41, Ats1, Re1, -+ [Se = 5,44 = a)
St+1;At+1aRt+1a"' k=1
=Rs+7 Z (Z ’YklRt+k+1> P(Sit2, Atya, Rig2, -+ [St41 = s, Apy1 = a')
St+1,At41,Re41,+ \k=1

P(At_|_1 = a/|St+1 = S/)P(St+1 = Sl|St =S, At = (J,)

Bellman Equation

Most RL algorithms are based on Bellman Equation, which is a recursive formula and has many variations.
In particular, for Q-function, we have:

O
Z’YthJrkH\St =s,4;=a
k—0

Qr(s,a) =E, [G¢|S: = s, A = a] = E;

Ry + Z'Vth-l—k:-l—l‘St =54 =a
k=1

=K,

= Ex [Re41]S: = 5, Ar = a] + VEx Z’Yk_lRt—i-k—i-l‘St =s,A4r=a

k=1
:E[Rt+1’StZS,At:a/]+ RZ:E[Rt+1|St:S,At:a]
Y Z <Z ’YklRt-|-k:-|-1> P(Si41, Atr1, Rig1, - |St = 5, A = a)
St+1,A¢41,Re41, \k=1

m(als) = P(As = alSy = s)
=Rs+7 Z (Z WklRt+k+1> P(Siy2, Atr2, Rivo, -+ |Si1 =8, Ay =d’) PL, =P(Si11 = 8|S = 5,4, =a)
k=1

St41,A41,Req1,

P(At_|_1 = a/|St+1 = S/)P(St+1 = Sl|St =S, At = a)

Bellman Equation

Most RL algorithms are based on Bellman Equation, which is a recursive formula and has many variations.
In particular, for Q-function, we have:

(. ©]

Z’YthJrkH\St =s5,A=a
k=0

Qr(s,a) =E, [G¢|S: = s, A = a] = E;

=Er [Rip1 + Z’Vth+k+1‘St =54 =a

k=1

= Ex [Re41]S: = 5, Ar = a] + VEx Z’Yk_lRt—i-k—i-l‘St =s,A4r=a

k=1
:E[Rt+1’StZS,At:a/]+ RZ:E[Rt+1|St:S,At:a]
Y Z <Z ’YklRt-|-k:-|-1> P(Si41, Atr1, Rig1, - |St = 5, A = a)
St+1,A¢41,Re41, \k=1

m(als) = P(As = alSy = s)
=Rs+7 Z (Z WklRt+k+1> P(Siy2, Atr2, Rivo, -+ |Si1 =8, Ay =d’) PL, =P(Si11 = 8|S = 5,4, =a)
k=1

St41,A41,Req1,

P(At_|_1 = a/|St+1 = S/)P(St+1 = Sl|St =S, At = a)

b Rg + Y Z W(a/‘S/)PgS/Eﬂ-

s’ a’

o0
k / /
Z’Y Rt+k:+2|St+1 =S aAt-l-l = CL]
k=0

Bellman Equation

Most RL algorithms are based on Bellman Equation, which is a recursive formula and has many variations.
In particular, for Q-function, we have:

(. ©]

Z’YthJrkH\St =s5,A=a
k=0

Qr(s,a) =E, [G¢|S: = s, A = a] = E;

=Er [Rip1 + Z’Vth+k+1‘St =54 =a

k=1

= Ex [Re41]S: = 5, Ar = a] + VEx Z’Yk_lRt—i-k—i-l‘St =s,A4r=a

k=1
:E[Rt+1’StZS,At:a/]+ RZ:E[Rt+1|St:S,At:a]
Y Z <Z ’YklRt-|-k:-|-1> P(Si41, Atr1, Rig1, - |St = 5, A = a)
St+1,A¢41,Re41, \k=1

m(als) = P(As = alSy = s)
=Rs+7 Z (Z WklRt+k+1> P(Siy2, Atr2, Rivo, -+ |Si1 =8, Ay =d’) PL, =P(Si11 = 8|S = 5,4, =a)
k=1

St41,A41,Req1,

P(At_|_1 = a/|St+1 = S/)P(St+1 = Sl|St =S, At = a)

b Rg + Y Z W(a/‘S/)PgS/Eﬂ-

s’ a’

o0
k / /
Z’Y Rt+k:+2|St+1 =S aAt-l-l = CL]
k=0

= RE 47 3 7(@]5) Pl Qels')

s’,a’

Bellman Equation

Most RL algorithms are based on Bellman Equation, which is a recursive formula and has many variations.
In particular, for Q-function, we have:

(. ©]

Z’YthJrkH\St =s5,A=a
k—0

Qr(s,a) =E, [G¢|S: = s, A = a] = E;

=Er [Rip1 + Z’Vth+k+1‘St =54 =a

k=1

= Ex [Re41]S: = 5, Ar = a] + VEx Z’Yk_lRt—i-k—i-l‘St =s,A4r=a

k=1
= E[Ri41|S: = 5, Ay = a] + Re =E[Ri11|S: = s, A = a]
Y Z <Z ’VklRt-q-k:-q-l) P(Si41, Atr1, Rig1, - |St = 5, A = a)
St+1,A¢41,Re41, \k=1

m(als) = P(As = alSy = s)
=Rs+7 Z (Z 'VklRt+k+1> P(Siy2, Atr2, Rivo, -+ |Si1 =8, Ay =d’) PL, =P(Si11 = 8|S = 5,4, =a)
k=1

St41,Ae41,Req1,

]P)(At+1 = a/|St+1 = S/)]P<St_|_1 = Sl|St =S, At = Cl,)

7

=R+~ Z m(a'|s") PIAE

o0
Z Y Rigpqa|Sip1 =8, A1 = G/D Proof by induction using stationary

k=0 policies and homogeneous Markov chains!

s’,a’
=R% 4+~ Z m(a'|s")PLAQ (s, a")
s’,a’

Optimal Bellman Equation

Recall the optimal Q function is Q«(s,a) = max Er [Gt|St = 5, Ay = a]

Optimal Bellman Equation

Recall the optimal Q function is Q«(s,a) = max Er [Gt|St = 5, Ay = a]

The optimal policy T« 1s thus the one that maximizes the expected return, which can be found as

1 a=a.(s) =argmax Q.(s,a)
T« (als) = a
0 otherwise

Optimal Bellman Equation

Recall the optimal Q function is Q«(s,a) = max Er [Gt|St = 5, Ay = a]

The optimal policy T« 1s thus the one that maximizes the expected return, which can be found as

1 a=a.(s) =argmax Q.(s,a)
T« (als) = a
0 otherwise

The optimal Bellman equation gives a recursive formula for the optimal Q function:

Q+(s,a) = maxE; [G4]S; = s, Ay =

= max R% + v Z m(a'|s")Pl Qr (s, a)

s’ a’

= R% + v max Z m(a'|s")Y PLQr (s, a)

s',a’

=R+ 7Y PliQu(s au(s"))

— Rg —|— ,YZP‘?S, H;E}XQ*(S/7CL/)

S

Outline

* Reinforcement Learning
* Overview & Applications
* Key Concepts
* Markov Decision Process (MDP) and its Extensions
e Bellman Equation and its Optimality
 RL Taxonomy
* Deep Reinforcement Learning
* Q-learning & Deep Q-learning
* Policy Gradient Methods

RL Taxonomy

REINFORCEMENT LEARNING

Model-based RL Model-free RL
Markov Decision Process ~ P(s’, s, a) Gradient Free
Off Policy
Policy Iteration TTo (S, a) Actor TD(O)
Value Iteration V(s) Critic
DQN 'Q(S’ a) TD(OO) =MC
. . TD-A
Dynamic programming .
& Bellman optimality U —
Nonlinear Dynamics Gradient Based
Dee Deep
Lx = f(x@),u(®),dt | | wpc Policy 0" = 6°“ + aVyRyy
Network
Optimal Control & HJB Policy Gradient Optimization
Deep RL

Image Credit: [9]

Outline

* Reinforcement Learning
* Overview & Applications
* Key Concepts
* Markov Decision Process (MDP) and its Extensions
e Bellman Equation and its Optimality
* RL Taxonomy
* Deep Reinforcement Learning
* Q-learning and Deep Q-learning
* Policy Gradient Methods

Q Learning

Recall the Optimal Bellman Equation: Q«(s,a) =R%+~ Z Pgs max Q. (s',a")

S/

Q Learning

Recall the Optimal Bellman Equation: Q«(s,a) =R%+~ Z Pgs max Q. (s',a")

Given sampled trajectories, we can define the Bellman Error (of one time step) as:

Risi +ymax Q(st+1,a) — Q(st, ar)

Q Learning

Recall the Optimal Bellman Equation: Q«(s,a) =R%+~ Z Pgs max Q. (s',a")

Given sampled trajectories, we can define the Bellman Error (of one time step) as:

R + Y max Q(st41,a) — Q(st, ar)

The 1dea of O Learning [10] is to learn a Q function that minimizes the Bellman Error. In particular, we can
use the fix point iteration to update the Q function iteratively:

Q(st,a:) < Q(st,at) + 1 [Rf;; + 7y max Q(st11,a) — Q(s¢, at)]

If this update converges, the Bellman error should reach 0!

Q Learning

Recall the Optimal Bellman Equation: Q«(s,a) =R%+~ Z Pgs max Q. (s',a")

Given sampled trajectories, we can define the Bellman Error (of one time step) as:

Risi +ymax Q(st+1,a) — Q(st, ar)

The 1dea of O Learning [10] is to learn a Q function that minimizes the Bellman Error. In particular, we can
use the fix point iteration to update the Q function iteratively:

Qstr) Qse,ar) +n [Ra +ymax Qss1,a) — Qs)]
If this update converges, the Bellman error should reach 0!
Exploration-exploitation tradeoff. Q learning only learns from the state-action pairs it visits. One often

needs some strategy to improve the exploration, e.g., e-greedy policy [11] (choose optimal action based on
Q with probability € and choose a random action with probability 1- €).

Q Learning

Recall the Optimal Bellman Equation: Q«(s,a) =R%+~ Z Pgs max Q. (s',a")

Given sampled trajectories, we can define the Bellman Error (of one time step) as:

Risi +ymax Q(st+1,a) — Q(st, ar)

The 1dea of O Learning [10] is to learn a Q function that minimizes the Bellman Error. In particular, we can
use the fix point iteration to update the Q function iteratively:

Qstr) Qse,ar) +n [Ra +ymax Qss1,a) — Qs)]
If this update converges, the Bellman error should reach 0!
Exploration-exploitation tradeoff. Q learning only learns from the state-action pairs it visits. One often

needs some strategy to improve the exploration, e.g., e-greedy policy [11] (choose optimal action based on
Q with probability € and choose a random action with probability 1- €).

For small state and action spaces, we can represent Q function as a table and learn it. However, for large or
infinite spaces, we need to represent it as a parametric function, e.g., a deep neural network!

Deep Q Learning

Approximating Q function with a neural net is a decades-old i1dea, but DeepMind got it to work really well
on Atari games in 2013 (“deep Q-learning™) [12].

32 4x4 filters Y] T T — Fully-connected linear
output layer

|6 8x8 filters
4x84x84
-
Stack of 4 previous . Fully-connected layer
frames Convolutional layer Convolutional layer of rectified linear units
of rectified linear units of rectified linear units

Image Credit: [13]

Deep Q Learning

Approximating Q function with a neural net is a decades-old i1dea, but DeepMind got it to work really well
on Atari games in 2013 (“deep Q-learning™) [12].

» Take actions following e-greedy policy

32 4x4 filters 256 hidden units Fully-connected linear
output layer
|6 8x8 filters
4x84x84
-
Stack of 4 previous . Fully-connected layer
frames Convolutional layer Convolutional layer of rectified linear units
of rectified linear units of rectified linear units

Image Credit: [13]

Deep Q Learning

Approximating Q function with a neural net is a decades-old i1dea, but DeepMind got it to work really well
on Atari games in 2013 (“deep Q-learning™) [12].

» Take actions following e-greedy policy
 Store (St, ¢, Te4+1, St+1) in replay buffer and sample random mini-batch of tuples from the buffer

32 4x4 filters 256 hidden units Fully-connected linear
output layer
|6 8x8 filters
4x84x84
-
Stack of 4 previous . Fully-connected layer
frames Convolutional layer Convolutional layer of rectified linear units
of rectified linear units of rectified linear units

Image Credit: [13]

Deep Q Learning

Approximating Q function with a neural net is a decades-old i1dea, but DeepMind got it to work really well
on Atari games in 2013 (“deep Q-learning™) [12].

» Take actions following e-greedy policy
 Store (St, ¢, Te4+1, St+1) in replay buffer and sample random mini-batch of tuples from the buffer
* Compute Q-targets w.r.t. old and fixed parameters §

OQp, (st, ar)]

et—i-l < et + nESt,at,St—l—l [(Rg: + 7y max Qé(st‘f‘l? CL) - Qet (St? a’t)) BT
a t

32 4x4 filters 256 hidden units Fully-connected linear

output layer
|6 8x8 filters
4x84x84

-

Stack of 4 previous . Fully-connected layer
frames Convolutional layer Convolutional layer of rectified linear units
of rectified linear units of rectified linear units

Image Credit: [13]

Outline

* Reinforcement Learning
* Overview & Applications
* Key Concepts
* Markov Decision Process (MDP) and its Extensions
e Bellman Equation and its Optimality
* RL Taxonomy
* Deep Reinforcement Learning
* Q-learning and Deep Q-learning
* Policy Gradient Methods

Policy Gradient Methods

In deep Q learning, we parameterize the Q function as a neural network and learn it to minimize Bellman
error. A policy is then obtained from Q function, e.g., via e-greedy strategy.

Policy Gradient Methods

In deep Q learning, we parameterize the Q function as a neural network and learn it to minimize Bellman
error. A policy is then obtained from Q function, e.g., via e-greedy strategy.

m Value Based
m Learnt Value Function
m Implicit policy
(e.g. e-greedy)
m Policy Based ‘
m No Value Function Value-Based Actor
m Learnt Policy
m Actor-Critic

m Learnt Value Function
m Learnt Policy

Value Function Policy

Policy-Based

Critic

Image Credit: [14]

Policy Gradient Methods

In policy based methods, we directly parameterize the policy and learn it to maximize some reward.

Policy Gradient Methods

In policy based methods, we directly parameterize the policy and learn it to maximize some reward.

Advantages:
* Better convergence properties
» Effective in high-dimensional or continuous action spaces

* (Can learn stochastic policies

Policy Gradient Methods

In policy based methods, we directly parameterize the policy and learn it to maximize some reward.

Advantages:
* Better convergence properties
» Effective in high-dimensional or continuous action spaces
* (Can learn stochastic policies
Disadvantages:
* Often converge to local rather than global optimum

» Evaluating a policy is typically inefficient and high variance

Policy Gradient Methods

In policy based methods, we directly parameterize the policy and learn it to maximize some reward.

Given a trajectory T, let us consider the simple expected reward:

J(0)=E, [R(T)] = /IP’g(T)R(T)dT

Policy Gradient Methods

In policy based methods, we directly parameterize the policy and learn it to maximize some reward.

Given a trajectory T, let us consider the simple expected reward:

Py(T)R(T)dT

=~
=

I

=

sl
=
2

—

T IP)O Ht 1 7T9(At|St)P(St_|_1|St At

ZRt ZRt Atast)

t=1

Policy Gradient Methods

In policy based methods, we directly parameterize the policy and learn it to maximize some reward.
Given a trajectory 7, let us consider the simple expected reward:

J(O)=E,[R(T)] = | Po(7)R(T)dT

—

Z Rt(At, St)

t=1

= Bpo (9) T, mo (401800 B(S141150,40)

Log derivative trick:

_ / Py(7)V log Py () R(T)dT
=E, [VglogPy(T)R(T)]

Policy Gradient Methods

T T
Let us substitute Po(T) = Po(.5) H 7o (Ae|St)P(Si4+1|St, Ar) R(T) = Z R (A¢, St)
t=1

R(T)]

Vo log <IP>O(S) H 7o (A¢|Se)P(Se11]St, At)) (Z Ry (Ay, St)>]

t
We have VoJ(0) = E, [VglogPy(T

—E.

Policy Gradient Methods

T T
Let us substitute Py(T) = Po(S) | [mo (ALl Se)P(Si41]Se, Ar) R(t) =) Ri(A:,)
t=1 =

We have VoJ(0) = E; [VglogPo(T)R(T)]

=K, |Vglog <IP’0 H (A¢]Se)P (St—|—1St7At)> <ZRt(AtaSt)>]

=E, | Vg <log Po(S) + Zlog mo(A¢|St) + ZlogIP’(StH\St, At)) (Z Ry(As, St))

t=1 t=1

No dependence on starting and

=)= (Z Vi logmg(A¢|St)) <Z R:(As, St)] transition probability of the

t=1 environment, thus being model-free!

Policy Gradient Methods

T T
Let us substitute Py(T) = Po(S) | [mo (ALl Se)P(Si41]Se, Ar) R(T) = > Ri(A: S)
t=1

We have VoJ(0) = E; [VglogPo(T)R(T)]

=E, |Vglog <IP>0 H (A¢|Sy)P (St+1]St,At)> (Z Rt(At,St)>]
0 <log Po(S) + Zlog o (A¢|Se) + Zlog P(S¢1]St, At)> (Z R (A, St)>

t=1 t=1

t=1 environment, thus being model-free!

T
% Z (Z Vo log mo(al?|s!) <Z Tﬁ”) Monte Carlo Approximation!
t=1 t=1

i—1 REINFORCE algorithm [15]

\Y4
T No dependence on starting and
=)= (Z Vi logmg(A¢|St)) <Z R:(As, St)] transition probability of the
N

Policy Gradient Methods

T T
Let us substitute Py(T) = Po(S) | [mo (ALl Se)P(Si41]Se, Ar) R(T) = > Ri(A: S)
t=1

We have VoJ(0) = E; [VglogPo(T)R(T)]

=E, |Vglog <IP>0 H (A¢|Sy)P (St+1]St,At)> (Z Rt(At,St)>]
0 <log Po(S) + Zlog o (A¢|Se) + Zlog P(S¢1]St, At)> (Z R (A, St)>

t=1 t=1

t=1 environment, thus being model-free!

T
% Z (Z Vo log mo(al?|s!) <Z Tﬁ”) Monte Carlo Approximation!
t=1 t=1

i—1 REINFORCE algorithm [15]

\Y4
T No dependence on starting and
=)= (Z Vi logmg(A¢|St)) <Z R:(As, St)] transition probability of the
N

Policy Gradient Methods

Let us substitute

We have

Vo J(0)

VoJ(0

Py() = Po(S) | [7o(AelS)P(Se1]St, Ar) R(t) =) Ri(A;,S)

=Er [VglogPy(7T)R(7)]

ZlH

2.

=1

\Y
N
N

=1

0 <log Py (

T T
ZV@ 10g7'('9 At|St) <2Rt(At,St)
t=1

t

(
(

1
T

t

t=

1

T T
ZZwWewwz#w

Juy

Vi log <P0 H (A¢]Sy)P (5t+1’5t714t)> <Z Rt(At,St)>]
S) + Zlog mo(A¢|St) + Zlog P(S¢1]St, At)> (Z R (A, St)>

t=1 t=1

transition probability of the

)] No dependence on starting and
environment, thus being model-free!

Z Vi log my at |3t) (Z rg“) Monte Carlo Approximation!

REINFORCE algorithm [15]

Reward-to-go version: my action today
can not change rewards in the past!

Policy Gradient Methods

T T
Let us substitute Po(T) = Po(.5) H 7o (Ae|St)P(Si4+1|St, Ar) R(T) = Z R (A¢, St)
t=1

We have VoJ(0) = E; [VglogPo(T)R(T)]

=K, |Vglog <IP’0 H (A¢]Se)P (St—|—1|StaAt)> <Z Rt(AtaSt)>]
—E. |V, <log Po(S) + Zlog mo(A¢|St) + Zlog P(St41S, At)) (Z Ry (A, St))

t=1 t=1

T
VQ 10g7'('9 At|St) <ZR7§ At,St
t=1
T T
(Z Vo log my at |3 :) (Z Ty ¢ > Monte Carlo Approximation!

—1 REINFORCE algorithm [15]

<

transition probability of the

I

=

-l
—

)] No dependence on starting and

environment, thus being model-free!

~
Y

==
M=

=1

VoJ(0

2|H
-

T
(Z Vo log mo(al? 5! (Z ri@)) Reward-to-go version: my action today

|
=t 11 can not change rewards in the past!

One often uses control variate method to reduce the high variance of policy gradients.

Demo

(an advanced policy gradient method) and graph

[16]

]:

Simulated Continuous Control in Mujoco using PPO
17

neural networks [

References

[1] https://coolinventor.com/wiki/index.php?title=Beginner%?27s Guide to Deep Reinforcement Learning
[2] https://gym.openai.com/envs/Walker2d-v1/

[3] https://www.deepmind.com/blog/alphastar-mastering-the-real-time-strategy-game-starcraft-ii

[4] https://medium.com/zerone-magazine/the-single-instance-where-man-triumphed-over-ai-the-google-deepmind-challenge-match-
1d6af01005a

[5] https://ai.googleblog.com/2021/04/multi-task-robotic-reinforcement.html
[6] https://ai.googleblog.com/2021/01/google-research-looking-back-at-2020.html

[7] https://engineering.princeton.edu/news/2020/11/17/machine-learning-guarantees-robots-performance-unknown-territory
[8] https://siegel.work/blog/RLModelBased/

[9] Murphy, K.P., 2023. Probabilistic machine learning: Advanced topics. MIT Press.

[10] Watkins, C.J. and Dayan, P., 1992. Q-learning. Machine learning, 8, pp.279-292.

[11] Sutton, R.S. and Barto, A.G., 1998. Reinforcement Learning: An Introduction.

[12] Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D. and Riedmiller, M., 2013. Playing atari with deep
reinforcement learning. arXiv preprint arXiv:1312.5602.

[13] https://www.davidsilver.uk/wp-content/uploads/2020/03/FA.pdf

https://coolinventor.com/wiki/index.php?title=Beginner%27s_Guide_to_Deep_Reinforcement_Learning
https://gym.openai.com/envs/Walker2d-v1/
https://www.deepmind.com/blog/alphastar-mastering-the-real-time-strategy-game-starcraft-ii
https://gym.openai.com/envs/Walker2d-v1/
https://gym.openai.com/envs/Walker2d-v1/
https://ai.googleblog.com/2021/04/multi-task-robotic-reinforcement.html
https://ai.googleblog.com/2021/01/google-research-looking-back-at-2020.html
https://engineering.princeton.edu/news/2020/11/17/machine-learning-guarantees-robots-performance-unknown-territory
https://siegel.work/blog/RLModelBased/
https://www.davidsilver.uk/wp-content/uploads/2020/03/FA.pdf

References

[14] https://www.davidsilver.uk/wp-content/uploads/2020/03/pg.pdf

[15] Williams, R.J., 1992. Simple statistical gradient-following algorithms for connectionist reinforcement learning. Reinforcement
learning, pp.5-32.

[16] Schulman, J., Wolski, F., Dhariwal, P., Radford, A. and Klimov, O., 2017. Proximal policy optimization algorithms. arXiv preprint
arXiv:1707.06347.

[17] Wang, T., Liao, R., Ba, J. and Fidler, S., 2018. Nervenet: Learning structured policy with graph neural networks. In Proceedings of
the International Conference on Learning Representations, Vancouver, BC, Canada (Vol. 30).

https://www.davidsilver.uk/wp-content/uploads/2020/03/pg.pdf

Questions?

