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Let us look at the Super Mario example to grab the key concepts:

Agent: an intelligent program or a real robot

Environment: the (simulated/real) “world”
where the agent interacts

State: a function of the past sequence of
observations, actions, and rewards.

Policy: a probability distribution over actions

Reward R ¢ Action At the agent can take given a state
I I Action: a transition step the agent takes to
move within the environment
—— .
I mario.exe R 4 the vl ded by th
Environment eward: the value responded by the
States St environment to the agent’s action
The interaction within an episode leads to a trajectory T = (So, ag,T0,S1,A1,T1, """ , ST)

Image Credit: [8]



Reinforcement Learning (RL)

As a learning paradigm, RL is different from supervised/unsupervised learning:

* Supervision is scarce, e.g., reward 1S
often a scalar

* Supervision is often delayed, e.g., an
agent gets the reward after a sequence
of actions
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Markov Decision Process

Almost all RL problems can be formalized as Markov decision processes (MDPs).

A Markov decision process (MDP) is a tuple (S, A, P, R, ) Markov Property: The future is
independent of the past given the present!
« S is a finite set of states
A 1is a finite set of actions
P is a state transition probability matrix =~ P2, = P(S;11 = §'|S; = s, Ay = a)
« R is arewgrd fgnc‘uon R = E [Rys1|S: = s, A =
v € 10,1] is a discount factor

MDP describes an environment where all states are Markov and can be extended to:

* countably infinite states and or action spaces

* continuous state and or action spaces

* continuous time (requires partial differentiable equations)
* partially observable (POMDPs)
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Why discount? Mathematically

convenient, avoid infinite returns,

Return: the total discounted reward from time t o
— e o o b— k:
Gi = Rpp1 + 72+ = Z Y Rtk uncertainty about the future......
k=0

Policy: the distribution over actions given states
m(als) = P(A; = a|S; = s) We assume stationary policies

Value (a.k.a., State-Value) function: the expected return starting from state s and then following policy 7

Vi(s) = E; [G|St = 5]
Optimal value function Vi(s) = maxE, [G¢|S; = s]

O (a.k.a. Action-Value) function: the expected return starting from state s, taking action a, and then

following policy 7
Qr(s,a) =E;[G:|S; = s, Ay = a]

Optimal Q function Q+(s,a) = maxE, |G¢|S; = s, A; = a]
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Recall the optimal Q function is Q«(s,a) = max Er [Gt|St = 5, Ay = a]

The optimal policy T« 1s thus the one that maximizes the expected return, which can be found as

1 a=a.(s) =argmax Q.(s,a)
T« (als) = a
0 otherwise

The optimal Bellman equation gives a recursive formula for the optimal Q function:
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= max R% + v Z m(a'|s" )Pl Qr (s, a)

s’ a’

= R% + v max Z m(a'|s" )Y PLQr (s, a)

s',a’

=R+ 7Y PliQu(s au(s"))

— Rg —|— ,YZP‘?S, H;E}XQ*(S/7CL/)

S



Outline

* Reinforcement Learning
* Overview & Applications
* Key Concepts
* Markov Decision Process (MDP) and its Extensions
e Bellman Equation and its Optimality
 RL Taxonomy
* Deep Reinforcement Learning
* Q-learning & Deep Q-learning
* Policy Gradient Methods



RL Taxonomy

REINFORCEMENT LEARNING
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Off Policy
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Value Iteration V(s) Critic
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Dynamic programming .
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Deep RL
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Q Learning

Recall the Optimal Bellman Equation: Q«(s,a) =R%+~ Z Pgs max Q. (s',a")

Given sampled trajectories, we can define the Bellman Error (of one time step) as:

Risi +ymax Q(st+1,a) — Q(st, ar)

The 1dea of O Learning [10] is to learn a Q function that minimizes the Bellman Error. In particular, we can
use the fix point iteration to update the Q function iteratively:

Qstr )  Qse,ar) +n [Ra +ymax Qss1,a) — Qs )]
If this update converges, the Bellman error should reach 0!
Exploration-exploitation tradeoff. Q learning only learns from the state-action pairs it visits. One often

needs some strategy to improve the exploration, e.g., e-greedy policy [11] (choose optimal action based on
Q with probability € and choose a random action with probability 1- €).

For small state and action spaces, we can represent Q function as a table and learn it. However, for large or
infinite spaces, we need to represent it as a parametric function, e.g., a deep neural network!



Deep Q Learning

Approximating Q function with a neural net is a decades-old i1dea, but DeepMind got it to work really well
on Atari games in 2013 (“deep Q-learning™) [12].
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Approximating Q function with a neural net is a decades-old i1dea, but DeepMind got it to work really well
on Atari games in 2013 (“deep Q-learning™) [12].

» Take actions following e-greedy policy
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Deep Q Learning

Approximating Q function with a neural net is a decades-old i1dea, but DeepMind got it to work really well
on Atari games in 2013 (“deep Q-learning™) [12].

» Take actions following e-greedy policy
 Store (St, ¢, Te4+1, St+1) in replay buffer and sample random mini-batch of tuples from the buffer
* Compute Q-targets w.r.t. old and fixed parameters §
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Policy Gradient Methods

In deep Q learning, we parameterize the Q function as a neural network and learn it to minimize Bellman
error. A policy is then obtained from Q function, e.g., via e-greedy strategy.
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In deep Q learning, we parameterize the Q function as a neural network and learn it to minimize Bellman
error. A policy is then obtained from Q function, e.g., via e-greedy strategy.

m Value Based
m Learnt Value Function
m Implicit policy
(e.g. e-greedy)
m Policy Based ‘
m No Value Function Value-Based Actor
m Learnt Policy
m Actor-Critic

m Learnt Value Function
m Learnt Policy

Value Function Policy

Policy-Based

Critic

Image Credit: [14]



Policy Gradient Methods

In policy based methods, we directly parameterize the policy and learn it to maximize some reward.
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In policy based methods, we directly parameterize the policy and learn it to maximize some reward.

Advantages:
* Better convergence properties
» Effective in high-dimensional or continuous action spaces
* (Can learn stochastic policies
Disadvantages:
* Often converge to local rather than global optimum

» Evaluating a policy is typically inefficient and high variance
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In policy based methods, we directly parameterize the policy and learn it to maximize some reward.

Given a trajectory T, let us consider the simple expected reward:

J(0)=E, [R(T)] = /IP’g(T)R(T)dT
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Policy Gradient Methods

In policy based methods, we directly parameterize the policy and learn it to maximize some reward.
Given a trajectory 7, let us consider the simple expected reward:

J(O)=E,[R(T)] = | Po(7)R(T)dT

—

Z Rt(At, St)

t=1

= Bpo (9) T, mo (401800 B(S141150,40)

Log derivative trick:

_ / Py(7)V log Py () R(T)dT
=E, [VglogPy(T)R(T)]



Policy Gradient Methods

T T
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Policy Gradient Methods

Let us substitute

We have

Vo J(0)

VoJ(0
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transition probability of the

) ] No dependence on starting and
environment, thus being model-free!

Z Vi log my at |3t ) (Z rg“) Monte Carlo Approximation!

REINFORCE algorithm [15]

Reward-to-go version: my action today
can not change rewards in the past!



Policy Gradient Methods
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One often uses control variate method to reduce the high variance of policy gradients.



Demo

(an advanced policy gradient method) and graph

[16]

]:

Simulated Continuous Control in Mujoco using PPO
17

neural networks [




References

[1] https://coolinventor.com/wiki/index.php?title=Beginner%?27s Guide to Deep Reinforcement Learning
[2] https://gym.openai.com/envs/Walker2d-v1/

[3] https://www.deepmind.com/blog/alphastar-mastering-the-real-time-strategy-game-starcraft-ii

[4] https://medium.com/zerone-magazine/the-single-instance-where-man-triumphed-over-ai-the-google-deepmind-challenge-match-
1d6af01005a

[5] https://ai.googleblog.com/2021/04/multi-task-robotic-reinforcement.html
[6] https://ai.googleblog.com/2021/01/google-research-looking-back-at-2020.html

[7] https://engineering.princeton.edu/news/2020/11/17/machine-learning-guarantees-robots-performance-unknown-territory
[8] https://siegel.work/blog/RLModelBased/

[9] Murphy, K.P., 2023. Probabilistic machine learning: Advanced topics. MIT Press.

[10] Watkins, C.J. and Dayan, P., 1992. Q-learning. Machine learning, 8, pp.279-292.

[11] Sutton, R.S. and Barto, A.G., 1998. Reinforcement Learning: An Introduction.

[12] Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D. and Riedmiller, M., 2013. Playing atari with deep
reinforcement learning. arXiv preprint arXiv:1312.5602.

[13] https://www.davidsilver.uk/wp-content/uploads/2020/03/FA.pdf



https://coolinventor.com/wiki/index.php?title=Beginner%27s_Guide_to_Deep_Reinforcement_Learning
https://gym.openai.com/envs/Walker2d-v1/
https://www.deepmind.com/blog/alphastar-mastering-the-real-time-strategy-game-starcraft-ii
https://gym.openai.com/envs/Walker2d-v1/
https://gym.openai.com/envs/Walker2d-v1/
https://ai.googleblog.com/2021/04/multi-task-robotic-reinforcement.html
https://ai.googleblog.com/2021/01/google-research-looking-back-at-2020.html
https://engineering.princeton.edu/news/2020/11/17/machine-learning-guarantees-robots-performance-unknown-territory
https://siegel.work/blog/RLModelBased/
https://www.davidsilver.uk/wp-content/uploads/2020/03/FA.pdf

References

[14] https://www.davidsilver.uk/wp-content/uploads/2020/03/pg.pdf

[15] Williams, R.J., 1992. Simple statistical gradient-following algorithms for connectionist reinforcement learning. Reinforcement
learning, pp.5-32.

[16] Schulman, J., Wolski, F., Dhariwal, P., Radford, A. and Klimov, O., 2017. Proximal policy optimization algorithms. arXiv preprint
arXiv:1707.06347.

[17] Wang, T., Liao, R., Ba, J. and Fidler, S., 2018. Nervenet: Learning structured policy with graph neural networks. In Proceedings of
the International Conference on Learning Representations, Vancouver, BC, Canada (Vol. 30).


https://www.davidsilver.uk/wp-content/uploads/2020/03/pg.pdf

Questions?



