CPEN 455: Deep Learning

Lecture 4: Backpropagation |

Renjie Liao

University of British Columbia
Winter, Term 2, 2024

Outline

« Learning Algorithm for Feedforward Neural Networks:
» Backpropagation
» Weight Initialization
» Learning Rate & Momentum & Adam
» Weight Decay & Early Stopping

Learning Algorithm

 Learning algorithms are just optimization algorithms and are about credit assignment!

Adjust parameters based on loss < Assign credits based on contribution

Learning Algorithm

 Learning algorithms are just optimization algorithms and are about credit assignment!
Adjust parameters based on loss < Assign credits based on contribution

» The most successful learning algorithm in machine learning so far is gradient based learning!

Stochastic gradient descent (SGD) [1], introduced in 1951 by Herbert Robbins and Sutton Monro

Learning Algorithm

 Learning algorithms are just optimization algorithms and are about credit assignment!
Adjust parameters based on loss < Assign credits based on contribution

» The most successful learning algorithm in machine learning so far is gradient based learning!

Stochastic gradient descent (SGD) [1], introduced in 1951 by Herbert Robbins and Sutton Monro

» Back-propagation (BP) = an efficient SGD in the context of deep learning

o BP has been independently discovered many times (see the history of deep learning in the 1st lecture)

o BP was first shown to successfully train neural networks and learn useful representations in 1986 [2] by David
Rumelhart, Geoffrey Hinton, and Ronald Williams

o BP is the most successful learning algorithm so far for training feedforward neural networks

Outline

« Learning Algorithm for Feedforward Neural Networks:
» Backpropagation
» Weight Initialization
» Learning Rate & Momentum & Adam
» Weight Decay & Early Stopping

Feedforward Neural Networks

Consider a MLP as follows. Recall what we do in the forward pass:

Input Sample

Feedforward Neural Networks

Consider a MLP as follows. Recall what we do in the forward pass:

Input Sample

h; = o (Wix)

Feedforward Neural Networks

Consider a MLP as follows. Recall what we do in the forward pass:

Input Sample
h; = o (W1x)
h2 =0 (Wghl)

Feedforward Neural Networks

Consider a MLP as follows. Recall what we do in the forward pass:

Input Sample
h; = o (W1x)
h2 =0 (Wghl)

hM =0 (WMhM—l)

Feedforward Neural Networks

Consider a MLP as follows. Recall what we do in the forward pass:

Input Sample
h; = o (W1x)
h2 =0 (Wghl)

hM =0 (WMhM_1>

y = Wniihpy

Feedforward Neural Networks

Consider a MLP as follows. Recall what we do in the forward pass:

Input Sample
h; = o (W1x)
h2 =0 (Wghl)

hM =0 (WMhM_1>
y = Wariihy

Loss: L =/{(y,y)

Feedforward Neural Networks

Consider a MLP as follows. Recall what we do in the forward pass:

Input Sample
h; = o (Wix)
h2 =0 (Wghl)

hM = O'(WMhM_1>
y = Wyihy
Loss: L =/{(y,y)

Mini-batch version:

1 B
L=— Uy, yi
B; (yi,¥i)

Backpropagation

Before we introduce backpropagation, let us review several concepts in vector calculus.

Gradient: for a scalar-valued differentiable function f : R™ — R of multiple variables, the gradient V f : R — R"

evaluated at P — [Pl, P2, ... 7pn]—|— IS

Vip) =

Backpropagation

Before we introduce backpropagation, let us review several concepts in vector calculus.

Gradient: for a scalar-valued differentiable function f : R™ — R of multiple variables, the gradient V f : R — R"

evaluated at P = [P1, P2, - - - ,Pn]T IS
S (p)
Vip)=|
2L (p)
Jacobian: for a vector-valued differentiable function f : R™ — R" of multiple variables, the Jacobian matrix
evaluated at P = [P1,P2,-- - Pn] ' is
- Of1 df1 i
VT fi(p) 8—331(1)) o oz, (p)
Jr(p) = : = E - :
Vil Sy D
_ 011 no

Backpropagation

Before we introduce backpropagation, let us review several concepts in vector calculus.

Chain Rule: the derivative of the composition of two differentiable functions in terms of the derivatives of individual functions
« Scalar-valued & single variable f: R — R g:R—R

Backpropagation

Before we introduce backpropagation, let us review several concepts in vector calculus.

Chain Rule: the derivative of the composition of two differentiable functions in terms of the derivatives of individual functions
« Scalar-valued & single variable f: R — R g:R—R

df (9(x)) _ df(g(x)) dg(x)
dx dg(x) dz

Backpropagation

Before we introduce backpropagation, let us review several concepts in vector calculus.

Chain Rule: the derivative of the composition of two differentiable functions in terms of the derivatives of individual functions

« Scalar-valued & single variable f: R — R g:R—R
df(g(z)) _ df(g(x)) dg(=)
de dg(z) dx

= Vf(g9(x))Vg(z)

Backpropagation

Before we introduce backpropagation, let us review several concepts in vector calculus.

Chain Rule: the derivative of the composition of two differentiable functions in terms of the derivatives of individual functions

« Scalar-valued & single variable f: R — R g:R—R
df (9(x)) _ df(g(x)) dg(x)
dx dg(x) dz
= Vf(g(z))Vg(z)

« Scalar-valued & multiple variables f : R™ — R ¢g:R" — R™

df (g(x))

9L = 3,(2) "V H(g())

Backpropagation

Before we introduce backpropagation, let us review several concepts in vector calculus.

Chain Rule: the derivative of the composition of two differentiable functions in terms of the derivatives of individual functions

« Scalar-valued & single variable f: R — R g:R—R
df (9(x)) _ df(g(x)) dg(x)
dx dg(x) dz
= Vf(g(z))Vg(z)

« Scalar-valued & multiple variables f : R™ — R ¢g:R" — R™

df (g(x))

9L = 3,(2) "V H(g())

We can derive it from the single variable case!

Backpropagation

Before we introduce backpropagation, let us review several concepts in vector calculus.

Chain Rule: the derivative of the composition of two differentiable functions in terms of the derivatives of individual functions
- Scalar-valued & multiple variables f : R™ — R ¢g:R™ — R™

df (g(z))

9L = 3,() T (g(x)

Backpropagation

Before we introduce backpropagation, let us review several concepts in vector calculus.

Chain Rule: the derivative of the composition of two differentiable functions in terms of the derivatives of individual functions
- Scalar-valued & multiple variables f : R™ — R ¢g:R™ — R™

df (g())
dx

_dz

= 3,() V gla)) = 5

Backpropagation

Before we introduce backpropagation, let us review several concepts in vector calculus

Chain Rule: the derivative of the composition of two differentiable functions in terms of the derivatives of individual functions

- Scalar-valued & multiple variables f : R™ — R ¢g:R™ — R™
df (9(z)) T dz
DI g el
98 = 3,(2) Y (gle)) =
9y1
8331
ﬁ Zazayl_[az 8z] .
1 Oy; 0wy LoV 777 Oum a;

Backpropagation

Before we introduce backpropagation, let us review several concepts in vector calculus

Chain Rule: the derivative of the composition of two differentiable functions in terms of the derivatives of individual functions
- Scalar-valued & multiple variables f : R™ — R ¢g:R™ — R™

Hlo() - g
T = J4(@) Vf(g(z)) =
Oy1
8331
Zazayz:[ﬁz.nﬁz] :
01;1 (9yz 6161 O OYm 32;m
6331

Consider all possible paths from I to 2!

Backpropagation

Before we introduce backpropagation, let us review several concepts in vector calculus.

Chain Rule: the derivative of the composition of two differentiable functions in terms of the derivatives of individual functions

- Scalar-valued & multiple variables f : R™ — R ¢g:R™ — R™
df (9(z)) T dz
RAACANV R _ =
98 = 3,(2) Y (gle)) =

az:iaza%:[az ey

Oy """ Oym

_dz | 02 9z
== yr " Dy

OYm

8111

8:62

Backpropagation

During the backward pass:

Backpropagation

During the backward pass: Loss: L=1y,y)

- OL
Gradient of loss w.r.t. y : @

Backpropagation

During the backward pass: Loss: L=1y,y)

- OL
Gradient of loss w.r.t. y : @

Gradient of lossw.rt. hpy:

Backpropagation

During the backward pass: Loss: L=1y,y)

- OL
Gradient of loss w.r.t. y : @

Gradient of lossw.rt. hpy:

Apply the chain rule we learned before:

oL (Oy)TaL

ohy \ohy) Oy

Backpropagation

During the backward pass: Loss: L=1y,y)

oL

Gradient of loss w.r.t. y : @

Gradient of lossw.rt. hpy:

Apply the chain rule we learned before:

...... OL (dy \ 0oL
8hM B 8hM ay
Recall y = Wyiihy
0
We have Y Wirs1

ohy,

Backpropagation

During the backward pass: Loss: L=1y,y)

- OL
Gradient of loss w.r.t. y : @

Gradient of loss w.r.t. Wy, 4 :

Backpropagation

During the backward pass:

Loss: L=1{y,y)

Gradient of | t oL

radient of lossw.rt. y: -
y Dy

Gradient of loss w.r.t. Wy, q:

Ideally, chain rule should be something like

oL 0L dy
OWprrg1 Oy OWpr4

Backpropagation

During the backward pass:

Loss: L=1{y,y)

oL

Gradient of loss w.r.t. y : @

Gradient of loss w.r.t. Wy, q:

Ideally, chain rule should be something like

oL 0L dy
oW1 Oy OWariq

oy
OWnri1

derivative of a vector w.r.t. a matrix, shapes do
not work out!

But this is wrong, since is the

Backpropagation

During the backward pass:

Loss: L=1{y,y)

Gradient of | t oL

radient of lossw.rt. y: -
y Dy

Gradient of loss w.r.t. Wy, q:

Note y[¢] only depends on Wasy1][i,]

does not depend on Wiy 1[4,:] Vj # i
yli] =Y Whargali, jTh[j]
J

Backpropagation

During the backward pass:

Loss: L=1{y,y)

Gradient of loss w.r.t. y : g—L
y
Gradient of loss w.r.t. Wy, 4 :
Note y|[i] only depends on Ws41[i, :]
does not depend on Wiy 1[4,:] Vj # i
yli] = Wargali, jTh[j]
J

dy|i]

OWariali g] h{j]

Backpropagation

During the backward pass:

Loss: L=1{y,y)

Gradient of loss w.r.t. y : g—L
y
Gradient of loss w.r.t. Wy, q:
Note y|[i] only depends on Ws41[i, :]
does not depend on Wiy 1[4,:] Vj # i
yli] = Wargali, jTh[j]
J

dy|i]
OW 411, J]
We have
oL oL Jy|i] 0L

= h{j]

hj]

OWnrs1li-g] Oyli] OWnrialing] Oyl

Backpropagation

During the backward pass:

Loss: L=1{y,y)

Gradient of loss w.r.t. y : g—L
y
Gradient of loss w.r.t. Wy, 4 :
Note y|[i] only depends on Ws41[i, :]
does not depend on Wiy 1[4,:] Vj # i
yli] = Wargali, jTh[j]
J

dy|i]

OW 411, J] J
We have
OL 0L oyl _ oL
OWnri1li, 3] Oyli) OWarqali,] Oyli] g
oL 9L

OWnrs1 Oy

Backpropagation

During the backward pass: Loss: L=1y,y)

- OL
Gradient of loss w.r.t. y : @

Gradient of loss w.r.t. hy :

Backpropagation

During the backward pass:

Loss: L = g(y7 }—,)

- OL
Gradient of loss w.r.t. y : @

Backpropagation

During the backward pass:

Loss: L=1{y,y)

- OL
Gradient of loss w.r.t. y : @

Gradient of loss w.r.t. hy :

We know
OL ([dy \ 0oL
8hM - (9hM 8y

OL [dhy \ ' OL
8hM_1 - 8hM_1 ahM

Backpropagation

During the backward pass:

OL

ohy

Loss: L=1{y,y)

- OL
Gradient of loss w.r.t. y : @

Gradient of loss w.r.t. hy :

We know
OL ([dy \ 0oL
8hM - (9hM 8y
OL [dhy \ ' OL
8hM_1 - 8hM_1 ahM

ohg\ ' (b \'(oy \' oL
8hQ 8hM_1 8hM 8}’

Backpropagation

During the backward pass:

Loss: L=1{y,y)

- OL
Gradient of loss w.r.t. y : @

Gradient of loss w.r.t. hy :

We know
OL ([dy \ 0oL
8hM - (9hM 8y
OL [dhy \ ' OL
8hM_1 - 8hM_1 ahM

OL _ (9hg\' (Ohy \'(9y \ oL

8h2 - 8h2 8hM_1 8hM 8y
General form:

_ Ohip

STL:JZTH---JLZ—L where "t T o,
v Y hyi1 =y

Backpropagation

During the backward pass: Loss: L=1y,y)

- OL
Gradient of loss w.r.t. y : @

...... I
What is Jo = 2,

Oh;

Backpropagation

During the backward pass:

Loss: L = g(y7 }—,)

- OL
Gradient of loss w.r.t. y : @

oh
What is Jo = 3_h2 ?
1

Recall hy = o (W3hy)
Denoting Z2 = Wah,

We have
8h2 L 0h2 8Z2

oh; Ozy Oh;

Backpropagation

During the backward pass: Loss: L=1y,y)

oL

Gradient of loss w.r.t. y : @

h
Whatis Jo = %?
1

Recall hy, = o (W5h;)

Denoting Z2 = Wahy

We have
ahQ . (9h2 8Z2 T /

The Jacobian of element-wise nonlinearity is a
diagonal matrix!

Backpropagation

During the backward pass: Loss: L=1y,y)

- OL
Gradient of loss w.r.t. y : @

Gradient of lossw.rt. Ws

Backpropagation

During the backward pass:

Loss: L=1{y,y)

- OL
Gradient of loss w.r.t. y : @

Gradient of loss w.rt. Ws
Recall h2 =0 (Wghl)
zo = Wahy

Since the nonlinearity is element-wise, we have

0L (0hy\' OL
8Z2 - (922 8h2

Backpropagation

During the backward pass:

Loss: L=1{y,y)

- OL
Gradient of loss w.r.t. y : @

Gradient of loss w.rt. Ws
Recall hy = o (W5hy)
Zo — Wth
Since the nonlinearity is element-wise, we have

oL ohy\ ' AL (29) & oL
i — el
8Z2 (922 8h2 ’ 8h2

Why?

Backpropagation

During the backward pass: Loss: L=1y,y)

oL

Gradient of loss w.r.t. y : @

Gradient of lossw.rt. Ws

000000

Recall hy, = o (W5h,)
zo = Wahy
------ Since the nonlinearity is element-wise, we have
oL oh,\ ' oL oL
9L _ = 0'(23) ® ——
8Z2 8Z2 8h2 8h2
Why?

Again, the Jacobian of element-wise
nonlinearity is a diagonal matrix!

Backpropagation

During the backward pass: Loss: L=1y,y)

- OL
Gradient of loss w.r.t. y : @

Gradient of lossw.rt. Ws

...... Recall h2 =0 (Wghl)
zo = Woh,

8_L_ Oh,) = o'(z)@8_1’
822 N 8z2 8h2 N 2 8h2

Backpropagation

During the backward pass: Loss: L=1y,y)

- OL
Gradient of loss w.r.t. y : @

Gradient of lossw.rt. Ws

Recall h2 =0 (Wghl)
zo = Wahy
...... a—L_ 8h2 TaL_U,(Z)Qﬁ_L
822 N 8z2 8h2 N 2 8h2

Note 2Z2[i] = Z Wali, jlhq (4]

Backpropagation

During the backward pass:

Loss: L=1{y,y)

- OL
Gradient of loss w.r.t. y : @

Gradient of lossw.rt. Ws

Recall h2 =0 (Wghl)

zo = Wahy
8_L_ Oh, TaL_U/(Z)Qﬁ_L
822 N 8z2 8h2 N 2 8h2

Note 2Z2[i] = Z Wali, jlhq (4]

Similarly as before, we have
oL 0L O0zyi] oL

OWali,j] Ozali] OWai,j] Ozsli] h, [j]

Backpropagation

During the backward pass:

Loss: L=1{y,y)
Gradient of lo r.t oL
ent o Ly 4o
radi swrt y:o 5o
Gradient of loss w.rt. Ws
Recall h2 =0 (Wghl)
zo = Wahy
oL oh,\ ' oL oL
822 8z2 8h2 8h2

Note Z2[i] = Z Wali, jlhy [j]
J
Similarly as before, we have
oL 0L 0zfi] = OL
OWsli,j] Ozoli] OWs[i,j] Ozsli]

oWs (U (22) © é?h2> By

h, [5]

Backpropagation

During the backward pass:

Backpropagation

During the backward pass:

000000

In summary:

z; = Wih;_,

J; = diag(o’(z;))W;

OL
oh;

O (o o PG
aWz _ (U (Z'L) © 8h7,) hi—l

- 0L

-
:Ji+1...JM@

We can cache these tensors in the
forward pass to avoid duplicated
computation in the backward pass!

Forward vs. Backward

Computation in Forward Pass:

h2 =0 (W2h1)

Forward vs. Backward

Computation in Forward Pass:

h2 =0 (Wghl)

Computation in Backward Pass:

oL — JTa_L

oh; 2 Oh,

OL (o 9L
oW, (0(2) © ahQ) h
zo = Wshy (cached)

Forward vs. Backward

000000

Computation in Forward Pass:

h2 =0 (W2h1)
Computation in Backward Pass:

oL — JTa_L
oh; "~ ? Ohy

oL oL
_ / el hT
oW, (" (22) © ahQ) !

zo = Wshy (cached)

Backward pass is roughly twice as
computationally expensive as Forward pass!

Outline

« Learning Algorithm for Feedforward Neural Networks:
» Backpropagation
» Weight Initialization
» Learning Rate & Momentum & Adam
» Weight Decay & Early Stopping

Initialization

How should we initialize the neural network?

Initialization

How should we initialize the neural network?

A lot of criterions for good initialization exist, e.g., be close to some local optima, have a higher chance to reach a global optima.

Initialization

How should we initialize the neural network?

A lot of criterions for good initialization exist, e.g., be close to some local optima, have a higher chance to reach a global optima.

But most of them are not easily computable before training the neural networks!

Initialization

How should we initialize the neural network?

A lot of criterions for good initialization exist, e.g., be close to some local optima, have a higher chance to reach a global optima.

But most of them are not easily computable before training the neural networks!

One computable criterion is:

We want to start with some stable initial
neural network!

Initialization

How should we initialize the neural network?

A lot of criterions for good initialization exist, e.g., be close to some local optima, have a higher chance to reach a global optima.

But most of them are not easily computable before training the neural networks!

One computable criterion is:

We want to start with some stable initial
neural network!

There are also many stability notions. Let us
look at the variance of the activations and
gradients.

Initialization

Let us recap some basic facts about expectation

Linearity Elz + y| = E[z] + E[y]

Initialization

Let us recap some basic facts about expectation
Linearity Elz +y] = E|z] + E[y]

For two independent random variables

Initialization

Let us recap some basic facts about variance

Vlz] =E [(z — E[z])*] = E[2"] — (E[z])”

Initialization

Let us recap some basic facts about variance
V[z] = E [(z — E[z])*] = E[2°] - (E[z])’
For two independent random variables, we have
Viz +y] = E[(z +)% — E[z +y)?
= E[z? +y* + 22y] — (E[z] 4+ E[y])?
= E[2%] + E[y’] + 2E[zy] — E[z]* — E[y]* — 2E[z]E[y]

= V]z] + V]y] 4+ 2(E[zy] — E[x]E|y])
= V[z] + V[y] + 2Cov(z, y)

Initialization

Let us recap some basic facts about variance
V[z] = E [(z — E[z])*] = E[2°] - (E[z])’
For two independent random variables, we have
Viz +y] = E[(z +)% — E[z +y)?
= E[z? +y* + 22y] — (E[z] 4+ E[y])?
= E[2%] + E[y’] + 2E[zy] — E[z]* — E[y]* — 2E[z]E[y]

= Viz] + V[y] + 2(E[zy] — E[z]E[y])
= V[z] + V[y] + 2Cov(z, y) Elry| = E[z|Ely]

Initialization

Let us recap some basic facts about variance
V[z] = E [(z — E[z])*] = E[2°] - (E[z])’
For two independent random variables, we have

V[z +y] = E[(z + y)*] — E[z + y]?
=E[z” +y° + 2zy] — (E[z] + E[y])?
= E[z*] + E[y°] + 2E[zy] — E[z]* — E[y]* — 2E[z]E[y]
Viz] + V]y] + 2(Elzy| — E[z]E[y])
Viz] + V]y] + 2Cov(z, y)
Viz] + Vl]y]

Initialization

Let us recap some basic facts about variance
V[z] = E [(z — E[2])*] = E[z*] - (E[z])’

For two independent random variables, we have
V[zy] = E[z*y*] — (E[zy])”
= E[z°y"] - E[2]°E[y]”
= E[2”|E[y°] - E[z]°E[y°] + E[z]°E[y’] — E[z]*E[y]”
= (E[z”] - E[2]*)E[y"] + E[z]*(E[y’] - E[y]")
2]E[y°] + E[z]*V[y]
= V[z](Vly] + E[y]*) + E[2]*V[y]
2]V[y] + E[y]*V[z] + E[z]*V[y]

Initialization

Let us recap some basic facts about variance

Vlz] =E [(z — E[z])*] = E[2"] — (E[z])”

For two independent random variables, we have

Vizy] = E[z*y?] — (Elzy])?
= E[z%y*] — E[z]°E[y]?
= E[2*|E[y*] — E[z]*E[y*] + E[z]*E[y*] — E[z]*E[y]*
= (E[z®] — E[z]*)E[y’] + E[z]*(E[y*] — E[y]*)
2|E[y*] + E[z]*V[y]
= V[z](Vly] + E[y]*) + E[z]*V[y]
2] V]y] + Ely]*V[z] + E[z]*V[y]

Ely] =0, then V]zy] = V[z]V[y]

Initialization

Let us recap some basic facts about variance
V[z] = E [(z — E[2])*] = E[z*] - (E[z])’

In summary, for two independent random variables, we have

Viz +y| = V]z] + V[y]
Vizy] = V{z]V[y] + E[y]*V]z] + E[z]*V[y]

If E[z] =E[y] =0 then V]zy] = V]z|V[y]

Initialization: Forward Analysis

Recall hz =0 (Wghl)

€
If we assume Tanh activation o(z) = —

€T
= and we are in the linear reqi

Initialization: Forward Analysis

Recall hz =0 (Wghl)

€
If we assume Tanh activation o(z) = —

€T
= and we are in the linear reqi

Initialization: Forward Analysis
éa —
Recall hz =0 (Wghl)
T —x — <
If we assume Tanh activation o(x) = em — e_m and we are in the linear regime
et te Then we have

hyi] = o(Z Wali, j]hy [5]) ~ Z%[i,ﬂhﬂﬂ

Initialization: Forward Analysis
éa —
Recall hz =0 (Wghl)
T —x — <
If we assume Tanh activation o(x) = ew — e_m and we are in the linear regime
et te Then we have

mmdeN%hmmmeZmemm

We further assume i.i.d. and zero mean
with same variance for all activations h [/]
and all weights W[, j] at all layers, then

...... V [hefi]] =~ V Z Wo [i,j]hl[j]]
:ZWmmmMJ

_ ZV [Wali, 4] V [hy[4]]

= N1V [Wali, 4]] V [hy [5]]

Initialization: Forward Analysis
éa —
Recall hz =0 (Wghl)
If we assume Tanh activation o(x) = em — e_m and we are in the linear regime
et te Then we have
Ny N,
hyy hs[i] = oY Wali, jTh[j]) & Y Wali, j]ha [f]
j j=1
...... We further assume i.i.d. and zero mean

with same variance for all activations h [/]
and all weights W[, j] at all layers, then

...... V [hefi]] =~ V Z Wo [i,j]hl[j]]
:ZWmmmMJ

Nats1 =2 VWAl]V Il

= N1V [Wali, 4]] V [hy [5]]

Ny This relation holds for all layers given the assumptions!

Initialization: Forward Analysis _ EEEN

Recall hz =0 (Wghl)

. J

x

et —e”
~ — and weare in the linear regime
et te Then unroll the recursion, we have

If we assume Tanh activation 0(96) =

z
Vi) ~ V[x[])][Ne—1V [Weli, 5]
k=1

Note i and j here are arbitrary since we
assume all activations have the same
variance and all weights have the same
variance as well!

Initialization: Forward Analysis
a —
Recall hz =0 (Wghl)
x —x = <
If we assume Tanh activation o(x) = % and we are in the linear regime
et te Then unroll the recursion, we have

z
Vi) ~ V[x[])][Ne—1V [Weli, 5]
k=1

Note i and j here are arbitrary since we
assume all activations have the same
variance and all weights have the same
variance as well!

To preserve the variance of activations
through forward pass, i.e.,

V [h[i)] =V [x[j]]

Initialization: Forward Analysis
a —
Recall hz =0 (Wghl)
x —x = <
If we assume Tanh activation o(x) = % and we are in the linear regime
et te Then unroll the recursion, we have

z
Vi) ~ V[x[])][Ne—1V [Weli, 5]
k=1

Note i and j here are arbitrary since we
assume all activations have the same
variance and all weights have the same
variance as well!

To preserve the variance of activations
through forward pass, i.e.,

Vb [i]] = V [x[j]]
we can simply set:

V[Wili, j]] = —

Ni—1

Initialization: Backward Analysis

et —e %

et +e %

N1 Nl
Assuming Tanh activation o(z) = and we are in the linear regime holi] = o () Wali, jlha[j]) ~ Y Wali, j]h[f]
j j=1

Let us look at the gradient w.r.t. activations

Initialization: Backward Analysis

et —e %

N1 Nl
Assuming Tanh activation o(z) = and we are in the linear regime holi] = o () Wali, jlha[j]) ~ Y Wali, j]h[f]
j j=1

No . No
Let us look at the gradient w.r.t. activations oL _ OL Oholi] S oL Wi,]
ohy [Zi:l Fhali] by [j] 2= Bhsli]

Initialization: Backward Analysis

et —e %

et +e %

N1 Nl
Assuming Tanh activation o(z) = and we are in the linear regime holi] = o () Wali, jlha[j]) ~ Y Wali, j]h[f]
j j=1

N>

oL OL Ohli] <A 0L o
Oh [7] a ; dhy[i] hy [] ~ ; aTQ[Z.]W2[Z,]]

Let us again assume i.i.d. and zero mean with

Let us look at the gradient w.r.t. activations

same variance for all Wali, 7], and ha 1]

at all layers, then
N>

Vo) = 2 gy V0Vl

1=1

Ohali]’

N [aﬁ—ﬁ] Y [Wali,]

v [ﬁﬂ] IL NV [Wili, 4]

Initialization: Backward Analysis

et _ X N1 N1
Assuming Tanh activation o(x) = prp— and we are in the linear regime hy[i] = O’(Z Wsli, jlhi[j]) =~ Z Wsli, 71y [f]
j j=1
No . N.
Let us look at the gradient w.r.t. activations oL _ S OL Oholi] S OL Wi,]
Oh [7] P Ohs[i] Ohy [7] — Ohs 1] ’

Let us again assume i.i.d. and zero mean with

: L - :
same variance for all , Wali, 7], and ha 4]

at all layers, then Iha i
...... Vo] = 3 [vt
= V¥ | | 2l)
e Mf NI]
...... Setting V 17, i,]| = Nik reserves the

variance of gradients w.r.t. activations!

Initialization: Backward Analysis

e’ —e 7 N M
Assuming Tanh activation o(x) = ppp— and we are in the linear regime hy[i] = O’(Z Wsli, jlhi[j]) =~ Z Wsli, 71y [f]
j j=1
Ny . Ny
Let us look at the gradient w.r.t. activations oL _ S OL Oholi] S oL Wi,]
Oh [7] — Ohs[i] Ohy [7] — Ohs 1]

What about the gradients w.r.t. weights?

Initialization: Backward Analysis

e’ —e 7 N M
Assuming Tanh activation o(x) = ppp— and we are in the linear regime hy[i] = O’(Z Wsli, jlhi[j]) =~ Z Wsli, 71y [f]
j j=1
Ny . Ny
Let us look at the gradient w.r.t. activations oL _ S OL Oholi] S oL Wi,]
Oh [7] — Ohs[i] Ohy [7] — Ohs 1]

ha, What about the gradients w.r.t. weights?
oL 0L 0Ohyli] 0L
OWsli,j] Oholi] OWs[i,j] Ohyli]

hy [j]

Initialization: Backward Analysis

x —x N1 N1
e — €
Assuming Tanh activation o(x) = ppp— and we are in the linear regime hy[i] = O’(Z Wsli, jlhi[j]) =~ Z Wsli, 71y [f]
j j=1
N2 . N.
Let us look at the gradient w.r.t. activations oL _ S oL 5112[?] ~Y oL Wi,]
Ohy[j] = Ohyli] Ohy[j] = Ohyli]
What about the gradients w.r.t. weights?
oL 9L Ohgli] OL hy[j]
°°°°°° OWsli,j] ~ Ohali] OWali,j] ~ Ohofi] g
OL oL _
! [GWQ[MJ =Y [ahm] Vil
oL 1)
......) (V [W] 11 ~ev [Wk[z,;n>
(V X[] NeaV [m[m]])
1 M+1
= %) <kH1 NV [Wk[z',jﬂ) <ng, NV [Wk[z',jﬂ) v [%J v [x[1]]
Ny oL
- 57 [y | Vol

Initialization: Backward Analysis

et _ X N1 N1
Assuming Tanh activation o(x) = prp— and we are in the linear regime hy[i] = O’(Z Wsli, jlhi[j]) =~ Z Wsli, 71y [f]
j j=1
N2 . N.
Let us look at the gradient w.r.t. activations oL _ S OL Oholi] S oL . i,]
Ohy[j] = Ohyli] Ohy[j] = Ohyli] 7
What about the gradients w.r.t. weights?
oL 9L Ohgli] OL hy[j]
°°°°°° OWsli,j] ~ Ohali] OWali,j] ~ Ohofi] g
OL oL _
¥ |arat) = ama] Yt
M+1
...... - (V | TT v [Wk[i,j]]>
(V X[] NeaV [m[m]])
1 M+1
= %) <kH1 NV [Wk[z',jﬂ) <ng, NV [Wk[z',jﬂ) v [%J V [x[;]
- [von

- 1
Setting V [Wkli, j]] = N, Makes the variance
of gradients w.r.t. weights behave reasonably
(e.g., no exploding or vanishing)!

Initialization

: - . 1
In summary, to preserve the variance of activations, we set V [Wili, j]] =
k—1
. . - . 1
to preserve the variance of gradients w.r.t. activations, we set V [Wkli, 7]] = A
k

h

WM—l—l y

Initialization

In summary, to preserve the variance of activations, we set

to preserve the variance of gradients w.r.t. activations, we set

VWl 5 = 5 —
1
V[Wk[lvj]] — Fk

To compromise between two goals, we can take the
mean of the denominators:

1 2
VIWkli, 5]l = wgmy =
% N + Ni_1

Initialization

: - . 1
In summary, to preserve the variance of activations, we set V [Wili, j]] =
k—1
. . - . 1
to preserve the variance of gradients w.r.t. activations, we set V [Wkli, 7]] = A
k

To compromise between two goals, we can take the
mean of the denominators:

1 2
VIWeli,jll = Fm =
et skel o Ng A+ Niy

This is the so-called “Xavier Initialization” [3]!

Initialization

: - . 1
In summary, to preserve the variance of activations, we set V [Wili, j]] =
k—1
. . - . 1
to preserve the variance of gradients w.r.t. activations, we set V [Wkli, 7]] = A
k

To compromise between two goals, we can take the
mean of the denominators:

1 2
VIWeli,jll = Fm =
et skel o Ng A+ Niy

This is the so-called “Xavier Initialization” [3]!

By considering the effect of ReLU, we can similarly
derive “Kaiming Initialization” [4]!

References

[1] Robbins, H., & Monro, S. (1951). A stochastic approximation method. The annals of mathematical statistics, 400-407.

[2] Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by back-propagating errors. nature, 323(6088),
533-536.

[3] Glorot, X., & Bengio, Y. (2010). Understanding the difficulty of training deep feedforward neural networks. In Proceedings of the
thirteenth international conference on artificial intelligence and statistics (pp. 249-256).

[4] He, K., Zhang, X., Ren, S., & Sun, J. (2015). Delving deep into rectifiers: Surpassing human-level performance on imagenet
classification. In Proceedings of the IEEE international conference on computer vision (pp. 1026-1034).

Questions?

	Slide 1: CPEN 455: Deep Learning Lecture 4: Backpropagation I
	Slide 2: Outline
	Slide 3: Learning Algorithm
	Slide 4: Learning Algorithm
	Slide 5: Learning Algorithm
	Slide 6: Outline
	Slide 7: Feedforward Neural Networks
	Slide 8: Feedforward Neural Networks
	Slide 9: Feedforward Neural Networks
	Slide 10: Feedforward Neural Networks
	Slide 11: Feedforward Neural Networks
	Slide 12: Feedforward Neural Networks
	Slide 13: Feedforward Neural Networks
	Slide 14: Backpropagation
	Slide 15: Backpropagation
	Slide 16: Backpropagation
	Slide 17: Backpropagation
	Slide 18: Backpropagation
	Slide 19: Backpropagation
	Slide 20: Backpropagation
	Slide 21: Backpropagation
	Slide 22: Backpropagation
	Slide 23: Backpropagation
	Slide 24: Backpropagation
	Slide 25: Backpropagation
	Slide 26: Backpropagation
	Slide 27: Backpropagation
	Slide 28: Backpropagation
	Slide 29: Backpropagation
	Slide 30: Backpropagation
	Slide 31: Backpropagation
	Slide 32: Backpropagation
	Slide 33: Backpropagation
	Slide 34: Backpropagation
	Slide 35: Backpropagation
	Slide 36: Backpropagation
	Slide 37: Backpropagation
	Slide 38: Backpropagation
	Slide 39: Backpropagation
	Slide 40: Backpropagation
	Slide 41: Backpropagation
	Slide 42: Backpropagation
	Slide 43: Backpropagation
	Slide 44: Backpropagation
	Slide 45: Backpropagation
	Slide 46: Backpropagation
	Slide 47: Backpropagation
	Slide 48: Backpropagation
	Slide 49: Backpropagation
	Slide 50: Backpropagation
	Slide 51: Backpropagation
	Slide 52: Backpropagation
	Slide 53: Backpropagation
	Slide 54: Backpropagation
	Slide 55: Backpropagation
	Slide 56: Forward vs. Backward
	Slide 57: Forward vs. Backward
	Slide 58: Forward vs. Backward
	Slide 59: Outline
	Slide 60: Initialization
	Slide 61: Initialization
	Slide 62: Initialization
	Slide 63: Initialization
	Slide 64: Initialization
	Slide 65: Initialization
	Slide 66: Initialization
	Slide 67: Initialization
	Slide 68: Initialization
	Slide 69: Initialization
	Slide 70: Initialization
	Slide 71: Initialization
	Slide 72: Initialization
	Slide 73: Initialization
	Slide 74: Initialization: Forward Analysis
	Slide 75: Initialization: Forward Analysis
	Slide 76: Initialization: Forward Analysis
	Slide 77: Initialization: Forward Analysis
	Slide 78: Initialization: Forward Analysis
	Slide 79: Initialization: Forward Analysis
	Slide 80: Initialization: Forward Analysis
	Slide 81: Initialization: Forward Analysis
	Slide 82: Initialization: Backward Analysis
	Slide 83: Initialization: Backward Analysis
	Slide 84: Initialization: Backward Analysis
	Slide 85: Initialization: Backward Analysis
	Slide 86: Initialization: Backward Analysis
	Slide 87: Initialization: Backward Analysis
	Slide 88: Initialization: Backward Analysis
	Slide 89: Initialization: Backward Analysis
	Slide 90: Initialization
	Slide 91: Initialization
	Slide 92: Initialization
	Slide 93: Initialization
	Slide 94: References
	Slide 95: Questions?

