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Learning Algorithm

 Learning algorithms are just optimization algorithms and are about credit assignment!
Adjust parameters based on loss < Assign credits based on contribution

» The most successful learning algorithm in machine learning so far is gradient based learning!

Stochastic gradient descent (SGD) [1], introduced in 1951 by Herbert Robbins and Sutton Monro

» Back-propagation (BP) = an efficient SGD in the context of deep learning

o BP has been independently discovered many times (see the history of deep learning in the 1st lecture)

o BP was first shown to successfully train neural networks and learn useful representations in 1986 [2] by David
Rumelhart, Geoffrey Hinton, and Ronald Williams

o BP is the most successful learning algorithm so far for training feedforward neural networks
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Feedforward Neural Networks

Consider a MLP as follows. Recall what we do in the forward pass:

Input Sample
h; = o (Wix)
h2 =0 (Wghl)

hM = O'(WMhM_1>
y = Wyihy
Loss: L =/{(y,y)

Mini-batch version:

1 B
L=— Uy, yi
B; (yi,¥i)
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Before we introduce backpropagation, let us review several concepts in vector calculus.

Chain Rule: the derivative of the composition of two differentiable functions in terms of the derivatives of individual functions

« Scalar-valued & single variable  f: R — R g:R—R
df (9(x)) _ df(g(x)) dg(x)
dx dg(x) dz
= Vf(g(z))Vg(z)

« Scalar-valued & multiple variables f : R™ — R  ¢g:R" — R™

df (g(x))

9L = 3,(2) "V H(g())

We can derive it from the single variable case!
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Before we introduce backpropagation, let us review several concepts in vector calculus

Chain Rule: the derivative of the composition of two differentiable functions in terms of the derivatives of individual functions
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Consider all possible paths from I to 2!
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Backpropagation

During the backward pass:

Loss: L=1{y,y)

oL

Gradient of loss w.r.t. y : @

Gradient of loss w.r.t. Wy, q:

Ideally, chain rule should be something like

oL 0L dy
oW1 Oy OWariq

oy
OWnri1

derivative of a vector w.r.t. a matrix, shapes do
not work out!

But this is wrong, since is the
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During the backward pass:
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During the backward pass: Loss: L=1y,y)
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Recall hy, = o (W5h;)

Denoting Z2 = Wahy

We have
ahQ . (9h2 8Z2 T /

The Jacobian of element-wise nonlinearity is a
diagonal matrix!
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During the backward pass:
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Since the nonlinearity is element-wise, we have
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Backpropagation

During the backward pass: Loss: L=1y,y)
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Recall hy, = o (W5h,)
zo = Wahy
------ Since the nonlinearity is element-wise, we have
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Why?

Again, the Jacobian of element-wise
nonlinearity is a diagonal matrix!
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Similarly as before, we have
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During the backward pass:
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During the backward pass:

000000

In summary:

z; = Wih;_,

J; = diag(o’(z;))W;

OL
oh;

O (o o PG
aWz _ (U (Z'L) © 8h7,) hi—l

- 0L

-
:Ji+1...JM@

We can cache these tensors in the
forward pass to avoid duplicated
computation in the backward pass!
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Forward vs. Backward

000000

Computation in Forward Pass:

h2 =0 (W2h1)
Computation in Backward Pass:

oL — JTa_L
oh; "~ ? Ohy

oL oL
_ / el hT
oW, (" (22) © ahQ) !

zo = Wshy (cached)

Backward pass is roughly twice as
computationally expensive as Forward pass!
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Initialization

How should we initialize the neural network?

A lot of criterions for good initialization exist, e.g., be close to some local optima, have a higher chance to reach a global optima.

But most of them are not easily computable before training the neural networks!

One computable criterion is:

We want to start with some stable initial
neural network!

There are also many stability notions. Let us
look at the variance of the activations and
gradients.
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Let us recap some basic facts about variance
V[z] = E [(z — E[z])*] = E[2°] - (E[z])’
For two independent random variables, we have

V[z +y] = E[(z + y)*] — E[z + y]?
=E[z” +y° + 2zy] — (E[z] + E[y])?
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Let us recap some basic facts about variance
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Initialization

Let us recap some basic facts about variance

Vlz] =E [(z — E[z])*] = E[2"] — (E[z])”

For two independent random variables, we have

Vizy] = E[z*y?] — (Elzy])?
= E[z%y*] — E[z]°E[y]?
= E[2*|E[y*] — E[z]*E[y*] + E[z]*E[y*] — E[z]*E[y]*
= (E[z®] — E[z]*)E[y’] + E[z]*(E[y*] — E[y]*)
2|E[y*] + E[z]*V[y]
= V[z](Vly] + E[y]*) + E[z]*V[y]
2] V]y] + Ely]*V[z] + E[z]*V[y]

Ely] =0, then V]zy] = V[z]V[y]



Initialization

Let us recap some basic facts about variance
V[z] = E [(z — E[2])*] = E[z*] - (E[z])’

In summary, for two independent random variables, we have

Viz +y| = V]z] + V[y]
Vizy] = V{z]V[y] + E[y]*V]z] + E[z]*V[y]

If E[z] =E[y] =0 then V]zy] = V]z|V[y]



Initialization: Forward Analysis

Recall hz =0 (Wghl)

€
If we assume Tanh activation o(z) = —

€T
= and we are in the linear reqi




Initialization: Forward Analysis

Recall hz =0 (Wghl)

€
If we assume Tanh activation o(z) = —

€T
= and we are in the linear reqi




Initialization: Forward Analysis
éa —
Recall hz =0 (Wghl)
T —x — <
If we assume Tanh activation o(x) = em — e_m and we are in the linear regime
et te Then we have

hyi] = o(Z Wali, j]hy [5]) ~ Z%[i,ﬂhﬂﬂ




Initialization: Forward Analysis
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Recall hz =0 (Wghl)
T —x — <
If we assume Tanh activation o(x) = ew — e_m and we are in the linear regime
et te Then we have

mmdeN%hmmmeZmemm

We further assume i.i.d. and zero mean
with same variance for all activations h [/]
and all weights W[, j] at all layers, then

...... V [hefi]] =~ V Z Wo [i,j]hl[j]]
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Initialization: Forward Analysis
éa —
Recall hz =0 (Wghl)
If we assume Tanh activation o(x) = em — e_m and we are in the linear regime
et te Then we have
Ny N,
hyy hs[i] = oY Wali, jTh[j]) & Y Wali, j]ha [f]
j j=1
...... We further assume i.i.d. and zero mean

with same variance for all activations h [/]
and all weights W[, j] at all layers, then

...... V [hefi]] =~ V Z Wo [i,j]hl[j]]
:ZWmmmMJ

Nats1 =2 VWAl ]V Il

= N1V [Wali, 4]] V [hy [5]]

Ny This relation holds for all layers given the assumptions!



Initialization: Forward Analysis _ EEEN

Recall hz =0 (Wghl)

. J

x

et —e”
~ — and weare in the linear regime
et te Then unroll the recursion, we have

If we assume Tanh activation 0(96) =

z
Vi) ~ V[x[]) ][ Ne—1V [Weli, 5]
k=1

Note i and j here are arbitrary since we
assume all activations have the same
variance and all weights have the same
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Initialization: Forward Analysis
a —
Recall hz =0 (Wghl)
x —x = <
If we assume Tanh activation o(x) = % and we are in the linear regime
et te Then unroll the recursion, we have

z
Vi) ~ V[x[]) ][ Ne—1V [Weli, 5]
k=1

Note i and j here are arbitrary since we
assume all activations have the same
variance and all weights have the same
variance as well!

To preserve the variance of activations
through forward pass, i.e.,

Vb [i]] = V [x[j]]
we can simply set:

V[Wili, j]] = —

Ni—1




Initialization: Backward Analysis

et —e %

et +e %

N1 Nl
Assuming Tanh activation o(z) = and we are in the linear regime holi] = o () Wali, jlha[j]) ~ Y Wali, j]h[f]
j j=1

Let us look at the gradient w.r.t. activations
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j j=1
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Let us look at the gradient w.r.t. activations oL _ OL Oholi] S oL Wi, ]
ohy [ Zi:l Fhali] by [j] 2= Bhsli]




Initialization: Backward Analysis

et —e %

et +e %

N1 Nl
Assuming Tanh activation o(z) = and we are in the linear regime holi] = o () Wali, jlha[j]) ~ Y Wali, j]h[f]
j j=1

N>

oL OL Ohli] <A 0L o
Oh [7] a ; dhy[i] hy [] ~ ; aTQ[Z.]W2[Z,]]

Let us again assume i.i.d. and zero mean with

Let us look at the gradient w.r.t. activations

same variance for all Wali, 7], and ha 1]

at all layers, then
N>

Vo) = 2 gy V0Vl

1=1

Ohali]’

N [aﬁ—ﬁ] Y [Wali, ]

v [ﬁﬂ] IL NV [Wili, 4]




Initialization: Backward Analysis

et _ X N1 N1
Assuming Tanh activation o(x) = prp— and we are in the linear regime hy[i] = O’(Z Wsli, jlhi[j]) =~ Z Wsli, 71y [f]
j j=1
No . N.
Let us look at the gradient w.r.t. activations oL _ S OL Oholi] S OL Wi, ]
Oh [7] P Ohs[i] Ohy [7] — Ohs 1] ’

Let us again assume i.i.d. and zero mean with

: L - :
same variance for all , Wali, 7], and ha 4]

at all layers, then Iha i
...... Vo] = 3 [ vt
= V¥ | | 2l )
e Mf NI ]
...... Setting V 17, i, ]| = Nik reserves the

variance of gradients w.r.t. activations!



Initialization: Backward Analysis

e’ —e 7 N M
Assuming Tanh activation o(x) = ppp— and we are in the linear regime hy[i] = O’(Z Wsli, jlhi[j]) =~ Z Wsli, 71y [f]
j j=1
Ny . Ny
Let us look at the gradient w.r.t. activations oL _ S OL Oholi] S oL Wi, ]
Oh [7] — Ohs[i] Ohy [7] — Ohs 1]

What about the gradients w.r.t. weights?




Initialization: Backward Analysis

e’ —e 7 N M
Assuming Tanh activation o(x) = ppp— and we are in the linear regime hy[i] = O’(Z Wsli, jlhi[j]) =~ Z Wsli, 71y [f]
j j=1
Ny . Ny
Let us look at the gradient w.r.t. activations oL _ S OL Oholi] S oL Wi, ]
Oh [7] — Ohs[i] Ohy [7] — Ohs 1]

ha, What about the gradients w.r.t. weights?
oL 0L 0Ohyli] 0L
OWsli,j]  Oholi] OWs[i,j]  Ohyli]

hy [j]




Initialization: Backward Analysis

x —x N1 N1
e — €
Assuming Tanh activation o(x) = ppp— and we are in the linear regime hy[i] = O’(Z Wsli, jlhi[j]) =~ Z Wsli, 71y [f]
j j=1
N2 . N.
Let us look at the gradient w.r.t. activations oL _ S oL 5112[?] ~Y oL Wi, ]
Ohy[j] = Ohyli] Ohy[j] = Ohyli]
What about the gradients w.r.t. weights?
oL 9L Ohgli]  OL hy[j]
°°°°°° OWsli,j] ~ Ohali] OWali,j] ~ Ohofi] g
OL oL _
! [GWQ[MJ =Y [ahm] Vil
oL 1 )
...... ) (V [W] 11 ~ev [Wk[z,;n>
(V X[ ] NeaV [m[m]])
1 M+1
= %) <kH1 NV [Wk[z',jﬂ) <ng, NV [Wk[z',jﬂ) v [%J v [x[1]]
Ny oL
- 57 [y | Vol




Initialization: Backward Analysis

et _ X N1 N1
Assuming Tanh activation o(x) = prp— and we are in the linear regime hy[i] = O’(Z Wsli, jlhi[j]) =~ Z Wsli, 71y [f]
j j=1
N2 . N.
Let us look at the gradient w.r.t. activations oL _ S OL Oholi] S oL . i, ]
Ohy[j] = Ohyli] Ohy[j] = Ohyli] 7
What about the gradients w.r.t. weights?
oL 9L Ohgli]  OL hy[j]
°°°°°° OWsli,j] ~ Ohali] OWali,j] ~ Ohofi] g
OL oL _
¥ |arat) = ama] Yt
M+1
...... - (V | TT v [Wk[i,j]]>
(V X[ ] NeaV [m[m]])
1 M+1
= %) <kH1 NV [Wk[z',jﬂ) <ng, NV [Wk[z',jﬂ) v [%J V [x[;]
- [ von

- 1
Setting V [Wkli, j]] = N, Makes the variance
of gradients w.r.t. weights behave reasonably
(e.g., no exploding or vanishing)!




Initialization

: - . 1
In summary, to preserve the variance of activations, we set V [Wili, j]] =
k—1
. . - . 1
to preserve the variance of gradients w.r.t. activations, we set V [Wkli, 7]] = A
k

h

WM—l—l y




Initialization

In summary, to preserve the variance of activations, we set

to preserve the variance of gradients w.r.t. activations, we set

VWl 5 = 5 —
1
V[Wk[lvj]] — Fk

To compromise between two goals, we can take the
mean of the denominators:

1 2
VIWkli, 5]l = wgmy =
% N + Ni_1




Initialization

: - . 1
In summary, to preserve the variance of activations, we set V [Wili, j]] =
k—1
. . - . 1
to preserve the variance of gradients w.r.t. activations, we set V [Wkli, 7]] = A
k

To compromise between two goals, we can take the
mean of the denominators:

1 2
VIWeli,jll = Fm =
et skel o Ng A+ Niy

This is the so-called “Xavier Initialization” [3]!




Initialization

: - . 1
In summary, to preserve the variance of activations, we set V [Wili, j]] =
k—1
. . - . 1
to preserve the variance of gradients w.r.t. activations, we set V [Wkli, 7]] = A
k

To compromise between two goals, we can take the
mean of the denominators:

1 2
VIWeli,jll = Fm =
et skel o Ng A+ Niy

This is the so-called “Xavier Initialization” [3]!

By considering the effect of ReLU, we can similarly
derive “Kaiming Initialization” [4]!
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