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• Weight Decay & Early Stopping
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Backpropagation (BP)

Now we know how to compute gradients, let us see how to perform gradient-based learning (e.g., SGD)
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Backpropagation (BP)

SGD has trouble navigating ravines, i.e. areas where the surface curves much more steeply in one dimension than in another [1, 2].
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BP + Momentum

SGD has trouble navigating ravines, i.e. areas where the surface curves much more steeply in one dimension than in another [1, 2].

[3]: Gradient descent is a man walking down a hill. He follows the steepest path downwards; his progress is slow, but steady. 

Momentum is a heavy ball rolling down the same hill. The added inertia acts both as a smoother and an accelerator, dampening 

oscillations and causing us to barrel through narrow valleys, small humps and local minima.

Image Credit: [1]
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BP + Momentum

SGD has trouble navigating ravines, i.e. areas where the surface curves much more steeply in one dimension than in another [1, 2].

[3]: Gradient descent is a man walking down a hill. He follows the steepest path downwards; his progress is slow, but steady. 

Momentum is a heavy ball rolling down the same hill. The added inertia acts both as a smoother and an accelerator, dampening 

oscillations and causing us to barrel through narrow valleys, small humps and local minima.

Alternative form (so-called Nesterov momentum) in 

the literature, see, e.g., [4]
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BP + Momentum

Image Credit: [1]
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SGD has trouble navigating ravines, i.e. areas where the surface curves much more steeply in one dimension than in another [1, 2].

[3]: Gradient descent is a man walking down a hill. He follows the steepest path downwards; his progress is slow, but steady. 

Momentum is a heavy ball rolling down the same hill. The added inertia acts both as a smoother and an accelerator, dampening 

oscillations and causing us to barrel through narrow valleys, small humps and local minima.

Demo: https://distill.pub/2017/momentum/

BP + Momentum
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Denoting                                             , recall in GD/SGD, we have the following update rule:

How can we tune the learning rate?

BP + Adaptive Learning Rate
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In practice, we only need to compute 

diagonal terms

18



AdaGrad (Adaptive Gradient) [5] proposes to assign larger learning rates to infrequently updated weights and smaller ones to 

frequently updated weights:

Since we accumulate (squared) gradients from the beginning, our learning rate is always decaying and could vanish before we 

converge. 

BP + Adaptive Learning Rate
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AdaGrad (Adaptive Gradient) [5] proposes to assign larger learning rates to infrequently updated weights and smaller ones to 

frequently updated weights:

Since we accumulate (squared) gradients from the beginning, our learning rate is always decaying and could vanish before we 

converge. To deal with this, RMSProp [6] proposes to use exponential moving average (EMA) of past squared gradients:

Adadelta [7] leverages the same EMA trick (denominator) and additional weighting (numerator) based on parameter updates.

BP + Adaptive Learning Rate
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Comparison Again

Image Credit: [1]
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Image Credit: [1]
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Now that we can tune the learning rate adaptively, how can we incorporate momentum?

BP + Adaptive Learning Rate + Momentum (Adam)
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Now that we can tune the learning rate adaptively, how can we incorporate momentum?

Based on RMSProp, Adam (Adaptive Momentum) [8] proposes to keep another EMA of past gradients:

BP + Adaptive Learning Rate + Momentum (Adam)

These are powers of scalars (abuse of superscript)
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In practice, we only need to compute 

diagonal terms



Now that we can tune the learning rate adaptively, how can we incorporate momentum?

Based on RMSProp, Adam (Adaptive Momentum) [8] proposes to keep another EMA of past gradients:

When              , Adam is almost the same as RMSProp besides the correction term (red box)
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We ignore this term due to the zero initialization and 

assume gradients at each time step are stationary!
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Now that we can tune the learning rate adaptively, how can we incorporate momentum?

Based on RMSProp, Adam (Adaptive Momentum) [8] proposes to keep another EMA of past gradients:

Where does this bias-correction term (red box) come from?

Similar reasoning applies to      . We have

BP + Adaptive Learning Rate + Momentum (Adam)
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ignore epsilon
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denoted as

A crude assumption (Jensen’s inequality is tight) on
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Substitute with above results



Now that we can tune the learning rate adaptively, how can we incorporate momentum?

Based on RMSProp, Adam (Adaptive Momentum) [8] proposes to keep another EMA of past gradients:

Where does this bias-correction term (red box) come from?

Similar reasoning applies to      . We have

Check the update (blue box) element-wise:

BP + Adaptive Learning Rate + Momentum (Adam)
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denoted as

Jensen’s Inequality



In summary, Adam is shown in below

BP + Adaptive Learning Rate + Momentum (Adam)
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In summary, Adam is shown in below

BP + Adaptive Learning Rate + Momentum (Adam)

43

Adam [8] has been cited by 165,000+ times since its publication in 2015! It is by far the most popular optimizer in deep learning!
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• Learning Algorithm for Feedforward Neural Networks: 

• Backpropagation

• Weight Initialization

• Learning Rate & Momentum & Adam

• Weight Decay & Early Stopping
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Suppose we observe overfitting and want to regularize the complexity of our neural networks to reduce it. We can penalize the weights 

so that they are not far from 0, thus restricting the set of models we are considering.

Weight Decay
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Suppose we observe overfitting and want to regularize the complexity of our neural networks to reduce it. We can penalize the weights 

so that they are not far from 0, thus restricting the set of models we are considering.

We can control the lambda to trade-off model complexity and overfitting.

It only adds a term to the existing gradient:

For methods like SGD, SGD + Momentum, we directly add this term to the gradient and then perform gradient update

But for Adam, we have two possibilities: 1) add it to the gradient and then perform gradient update; 2) add it to the gradient update

This ordering change makes a difference in practice and 2) is called AdamW [9]!

Weight Decay
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We can it here by replacing the rex box with:

But then weight decay also goes through EMA!

Let us look at Adam again:

AdamW

49



We can add it in the final gradient update:

AdamW
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This change works significantly better 

in some cases [9]!



We do not necessarily need to run the optimization until the maximum number of iterations or until its convergence.

Early Stopping
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We do not necessarily need to run the optimization until the maximum number of iterations or until its convergence.

We can check the validation error and if it is keep increasing within a time window, then we stop the training!

If you worry that it will go down again, run until the maximum number of iterations and pick the model with the least validation error.

Early Stopping
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Image Credit: [10]

Validation Error
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