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Invariance & Equivariance

• Invariance: 

 

 A mathematical object (or a class of mathematical objects) remains unchanged after operations or 
transformations of a certain type are applied to the objects 
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Invariance & Equivariance

• Invariance: 

 

 A mathematical object (or a class of mathematical objects) remains unchanged after operations or 
transformations of a certain type are applied to the objects 

 

 

• Equivariance:

 Applying a transformation and then computing the function produces the same result as computing the 
function and then applying the transformation

 

Convolution is Translation Equivariant! We will see why shortly.
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1D (Discrete) Convolutions

Let us see what 1D (Discrete) Convolution looks like

1 4 0 2 1 3Input
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1D (Discrete) Convolutions
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Formally, we denote 1D convolution as                                        and
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1D (Discrete) Convolutions
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Convolution in Deep Learning is 

actually Cross-Correlation in Math:

Convolution in Math:

They are equivalent if we reverse the 

order of the filter. In Deep Learning, 

this difference does not matter since 

the filter weights are free to learn!



1D (Discrete) Convolutions

What if we hope the output to have the same shape as input? 

1 4 0 2 1 3

2 0 -1

2 6 -1 1

Input

Filter

Output

∗

=
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1D (Discrete) Convolutions

What if we hope the output to have the same shape as input? 

1 4 0 2 1 3Input 0 0

Padding!
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1D (Discrete) Convolutions

What if we hope the output to have the same shape as input? 
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1D (Discrete) Convolutions

What if we hope the output to have a much smaller size compared to input? 

1 4 0 2 1 3

-4 2 6 -1

Input

Filter

Output

2 0 -1

∗

=

0 0

1 2
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1D (Discrete) Convolutions

What if we hope the output to have a much smaller size compared to input? Stride!
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Input
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1D (Discrete) Convolutions

What if we hope the output to have a much smaller size compared to input? 

1 4 0 2 1 3

-4

Input

Filter

Output

0 0

Stride = 2!
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=
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1D (Discrete) Convolutions

What if we hope the output to have a much smaller size compared to input? 

1 4 0 2 1 3
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1D (Discrete) Convolutions

What if we hope the output to have a much smaller size compared to input? 

1 4 0 2 1 3

-4 6 1

Input

Filter

Output

0 0

Stride = 2!

2 0 -1

∗

=

Stride:               Padding:
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Matrix Multiplication View I

1D Convolution (Discrete)  Matrix Multiplication Filter => Toeplitz matrix (diagonal-constant)
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Matrix Multiplication View I

1D Convolution (Discrete)  Matrix Multiplication Filter => Toeplitz matrix (diagonal-constant)
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Matrix Multiplication View I

1D Convolution (Discrete)  Matrix Multiplication Filter => Toeplitz matrix (diagonal-constant)

Input

Filter ℎ1 … … ℎ𝑚

… 𝑥1 … … 𝑥𝑛0 …… 0
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Matrix Multiplication View I

1D Convolution (Discrete)  Matrix Multiplication Filter => Toeplitz matrix (diagonal-constant)

Input

Filter ℎ1 … … ℎ𝑚

… 𝑥1 … … 𝑥𝑛0 …… 0
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Matrix Multiplication View I

1D Convolution (Discrete)  Matrix Multiplication

Input

Filter

Filter => Toeplitz matrix (diagonal-constant)

ℎ1 … … ℎ𝑚

… 𝑥1 … … 𝑥𝑛0 …… 0
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Matrix Multiplication View I

1D Convolution (Discrete)  Matrix Multiplication

Input

Filter ℎ1 … … ℎ𝑚

… 𝑥1 … … 𝑥𝑛0 …… 0

Filter => Toeplitz matrix (diagonal-constant)

It could be very sparse (e.g., when n >> m)!
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Matrix Multiplication View II

1D Convolution (Discrete)  Matrix Multiplication Data => Toeplitz matrix (diagonal-constant)
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Matrix Multiplication View II

1D Convolution (Discrete)  Matrix Multiplication Data => Toeplitz matrix (diagonal-constant)

Input

Filter ℎ1 … … ℎ𝑚

… 𝑥1 … … 𝑥𝑛0 …… 0
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Matrix Multiplication View II

1D Convolution (Discrete)  Matrix Multiplication Data => Toeplitz matrix (diagonal-constant)

Input

Filter ℎ1 … … ℎ𝑚

… 𝑥1 … … 𝑥𝑛0 …… 0
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Matrix Multiplication View II

1D Convolution (Discrete)  Matrix Multiplication Data => Toeplitz matrix (diagonal-constant)

Input

Filter ℎ1 … … ℎ𝑚

… 𝑥1 … … 𝑥𝑛0 …… 0
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Matrix Multiplication View II

1D Convolution (Discrete)  Matrix Multiplication Data => Toeplitz matrix (diagonal-constant)

It could be dense (e.g., when n >> m)!

Input

Filter ℎ1 … … ℎ𝑚

… 𝑥1 … … 𝑥𝑛0 …… 0
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Matrix Multiplication View II

1D Convolution (Discrete)  Matrix Multiplication Data => Toeplitz matrix (diagonal-constant)

It could be dense (e.g., when n >> m)!

Input

Filter ℎ1 … … ℎ𝑚

… 𝑥1 … … 𝑥𝑛0 …… 0

This version is typically implemented on GPUs!
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Matrix Multiplication View II

1D Convolution (Discrete)  Matrix Multiplication Data => Toeplitz matrix (diagonal-constant)

It could be dense (e.g., when n >> m)!

Input

Filter ℎ1 … … ℎ𝑚

… 𝑥1 … … 𝑥𝑛0 …… 0

This version is typically implemented on GPUs!

This equivalence holds for 2D and other higher-order convolutions!
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1D (Discrete) Convolutions

Matrix multiplication view (Filter => Toeplitz matrix) of 1D convolution:

Consider a special Toeplitz matrix: circulant matrix (must be square!)

Convolution with padding

Image Credit: [1]
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Translation/Shift Operator

Image Credit: [1]
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Translation/Shift Operator

Image Credit: [1]

Shift operator is also a circulant matrix!
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Translation/Shift Equivariance

Image Credit: [1]

Matrix multiplication is non-commutative. But not for circulant matrices!
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Translation/Shift Equivariance

Image Credit: [1]

Matrix multiplication is non-commutative. But not for circulant matrices!

Convolution is translation equivariant, i.e., Conv(Shift(X)) = Shift(Conv(X))!

This equivariance holds for 2D and higher-order convolutions!
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2D (Discrete) Convolution

Input

Let us see what convolution is in 2D
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2D (Discrete) Convolution

Input

Convolutional Filter

Let us see what convolution is in 2D
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2D (Discrete) Convolution

Input

Convolutional Filter

Let us see what convolution is in 2D

Sliding Window
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2D (Discrete) Convolution

Input

Convolutional Filter

Let us see what convolution is in 2D

Output
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2D (Discrete) Convolution

2D Convolution with Stride = 1

Image Credit: [2]
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2D (Discrete) Convolution

2D Convolution with Stride = 1, Half Padding

Image Credit: [2]
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2D (Discrete) Convolution

2D Convolution with Stride = 2, Half Padding

Image Credit: [2]
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2D (Discrete) Convolution

2D Convolution with multiple input channels

Image Credit: [3]
54



2D (Discrete) Convolution

2D Convolution with multiple input channels

Image Credit: [3]
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2D (Discrete) Convolution

2D Convolution with multiple input channels

Image Credit: [3]
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2D (Discrete) Convolution

2D Convolution with multiple input channels

Image Credit: [3]
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2D (Discrete) Convolution

2D Convolution with multiple input channels

Image Credit: [3]
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2D (Discrete) Convolution

2D Convolution with multiple input channels

Image Credit: [3]
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2D (Discrete) Convolution

2D Convolution with multiple input channels

Image Credit: [3]
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2D (Discrete) Convolution

2D Convolution with multiple input channels and multiple filters

Image Credit: [3]
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2D (Discrete) Convolution

Let us see the effect of 2D convolution:

Image Credit: [3]
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2D (Discrete) Convolution

Let us see the effect of 2D convolution:

Image Credit: [3]
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2D (Discrete) Convolution

Let us see the effect of 2D convolution:

Image Credit: [3]
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2D (Discrete) Convolution

Let us see the effect of 2D convolution:

Image Credit: [3]
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2D (Discrete) Convolution

Let us see the effect of 2D convolution:

Image Credit: [3]
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