# CPEN 455: Deep Learning

#### Lecture 5: Convolutional Neural Networks I

Renjie Liao

University of British Columbia Winter, Term 2, 2024

### Outline

- Invariance & Equivariance
- Convolution
  - 1D Convolution
  - Matrix Multiplication Views
  - Translation Equivariance
  - 2D Convolution
- Convolution Variants
  - Transposed Convolution
  - Dilated Convolution
  - Grouped Convolution
  - Separable Convolution
- Pooling
- Example Architectures

### Outline

#### • Invariance & Equivariance

- Convolution
  - 1D Convolution
  - Matrix Multiplication Views
  - Translation Equivariance
  - 2D Convolution
- Convolution Variants
  - Transposed Convolution
  - Dilated Convolution
  - Grouped Convolution
  - Separable Convolution
- Pooling
- Example Architectures

### Invariance & Equivariance

• Invariance:

A mathematical object (or a class of mathematical objects) remains unchanged after operations or transformations of a certain type are applied to the objects

f(X) = f(g(X))

### Invariance & Equivariance

• Invariance:

A mathematical object (or a class of mathematical objects) remains unchanged after operations or transformations of a certain type are applied to the objects

f(X) = f(g(X))

• Equivariance:

Applying a transformation and then computing the function produces the same result as computing the function and then applying the transformation

$$g(f(X)) = f(g(X))$$

Convolution is Translation Equivariant! We will see why shortly.

### Outline

- Invariance & Equivariance
- Convolution
  - 1D Convolution
  - Matrix Multiplication Views
  - Translation Equivariance
  - 2D Convolution
- Convolution Variants
  - Transposed Convolution
  - Dilated Convolution
  - Grouped Convolution
  - Separable Convolution
- Pooling
- Example Architectures

Let us see what 1D (Discrete) Convolution looks like



Input  $\mathcal{X}$ 



















What if we hope the output to have the same shape as input?









What if we hope the output to have a much smaller size compared to input?











### Outline

- Invariance & Equivariance
- Convolution
  - 1D Convolution
  - Matrix Multiplication Views
  - Translation Equivariance
  - 2D Convolution
- Convolution Variants
  - Transposed Convolution
  - Dilated Convolution
  - Grouped Convolution
  - Separable Convolution
- Pooling
- Example Architectures

1D Convolution (Discrete)  $\Leftrightarrow$  Matrix Multiplication

1D Convolution (Discrete) ⇔ Matrix Multiplication



1D Convolution (Discrete) ⇔ Matrix Multiplication



1D Convolution (Discrete) ⇔ Matrix Multiplication



1D Convolution (Discrete) ⇔ Matrix Multiplication



1D Convolution (Discrete) ⇔ Matrix Multiplication

Filter => Toeplitz matrix (diagonal-constant)

It could be very sparse (e.g., when  $n \gg m$ )!



1D Convolution (Discrete) 🗇 Matrix Multiplication

1D Convolution (Discrete) ⇔ Matrix Multiplication

Data => Toeplitz matrix (diagonal-constant)

$$y^{\top} = (h * x)^{\top}$$

$$padding: [m/2] \begin{bmatrix} 0 & 0 & \cdots & x_1 & \cdots & x_{n-\lfloor m/2 \rfloor - 1} & x_{n-\lfloor m/2 \rfloor} \\ \vdots & \vdots & \cdots & \vdots & \cdots & \vdots & \vdots \\ 0 & x_1 & \cdots & x_{\lfloor m/2 \rfloor + 1} & \cdots & x_{n-1} & x_n \\ x_1 & x_2 & \cdots & x_{\lfloor m/2 \rfloor + 1} & \cdots & x_{n-1} & x_n \\ x_2 & x_3 & \cdots & x_{\lfloor m/2 \rfloor + 2} & \cdots & x_n & 0 \\ \vdots & \vdots & \cdots & \vdots & \cdots & \vdots & \vdots \\ x_{m-\lfloor m/2 \rfloor} & x_{m-\lfloor m/2 \rfloor + 1} & \cdots & x_m & \cdots & 0 \end{bmatrix}$$
Input  $\mathcal{X}$ 

$$\begin{bmatrix} 0 & \cdots & x_1 & \cdots & x_{m-\lfloor m/2 \rfloor} & \cdots & \cdots & x_n & \cdots & 0 \\ 0 & \cdots & x_1 & \cdots & x_{m-\lfloor m/2 \rfloor} & \cdots & \cdots & x_n & \cdots & 0 \end{bmatrix}$$

Filter h  $h_1$   $\dots$   $h_{\lfloor m/2 \rfloor + 1}$   $\dots$   $h_m$ 

1D Convolution (Discrete)  $\Leftrightarrow$  Matrix Multiplication

Data => Toeplitz matrix (diagonal-constant)

$$y^{\top} = (h * x)^{\top}$$

$$padding: \lfloor m/2 \rfloor \begin{bmatrix} 0 & 0 & \cdots & x_1 & \cdots & x_{n-\lfloor m/2 \rfloor - 1} & x_{n-\lfloor m/2 \rfloor} \\ \vdots & \vdots & \cdots & \vdots & \cdots & \vdots & \vdots \\ 0 & x_1 & \cdots & x_{\lfloor m/2 \rfloor} & \cdots & x_{n-2} & x_{n-1} \\ x_1 & x_2 & \cdots & x_{\lfloor m/2 \rfloor + 1} & \cdots & x_n \\ x_2 & x_3 & \cdots & x_{\lfloor m/2 \rfloor + 1} & \cdots & x_n & 0 \\ \vdots & \vdots & \cdots & \vdots & \cdots & \vdots & \vdots \\ x_{m-\lfloor m/2 \rfloor} & x_{m-\lfloor m/2 \rfloor + 1} & \cdots & x_m & \cdots & 0 & 0 \end{bmatrix}$$

| Input $X$  | 0     | <br><i>x</i> <sub>1</sub>         | <br>$x_{m-\lfloor m/2 \rfloor}$ | <br> | <i>x</i> <sub>n</sub> | <br>0 |
|------------|-------|-----------------------------------|---------------------------------|------|-----------------------|-------|
| Filter $h$ | $h_1$ | <br>$h_{\lfloor m/2 \rfloor + 1}$ | <br>$h_m$                       |      |                       |       |

Filter h

35

1D Convolution (Discrete)  $\Leftrightarrow$  Matrix Multiplication

$$y^{\top} = (h * x)^{\top}$$

$$padding: \lfloor m/2 \rfloor - \begin{bmatrix} 0 & 0 \\ \vdots & \ddots & \vdots & \ddots & \vdots & \vdots \\ 0 & x_1 & x_2 & \vdots & \ddots & x_{lm/2} \rfloor & \cdots & x_{n-\lfloor m/2 \rfloor - 1} & x_{n-\lfloor m/2 \rfloor} \\ \vdots & x_1 & \ddots & \vdots & \ddots & \vdots & \vdots \\ x_1 & x_2 & x_3 & \cdots & x_{lm/2 \rfloor + 1} & \cdots & x_{n-1} & x_n \\ \vdots & x_{m-\lfloor m/2 \rfloor} & x_3 & \vdots & \cdots & x_{lm/2 \rfloor + 1} & \cdots & x_{n-1} & x_n \\ \vdots & x_{m-\lfloor m/2 \rfloor + 1} & \cdots & x_m & \cdots & 0 & 0 \end{bmatrix}$$
Input  $x$ 

$$\begin{bmatrix} 0 & \cdots & x_1 & \cdots & x_{lm/2 \rfloor + 1} & \cdots & x_n & \cdots & 0 \\ 0 & \cdots & x_1 & \cdots & x_{lm/2 \rfloor + 1} & \cdots & x_n & \cdots & 0 \end{bmatrix}$$
Filter  $h$ 

$$\begin{bmatrix} h_1 & \cdots & h_{lm/2 \rfloor + 1} & \cdots & h_m \end{bmatrix}$$

1D Convolution (Discrete) ⇔ Matrix Multiplication

Data => Toeplitz matrix (diagonal-constant)

It could be dense (e.g., when  $n \gg m$ )!

$$y^{\top} = (h * x)^{\top}$$

$$padding: \lfloor m/2 \rfloor \begin{bmatrix} 0 & 0 \\ \vdots & \ddots & \vdots & \ddots & \vdots & \vdots \\ 0 & x_1 & x_2 & \vdots & \ddots & x_{lm/2} \rfloor & \cdots & x_{n-\lfloor m/2 \rfloor - 1} & x_{n-\lfloor m/2 \rfloor} \\ \vdots & x_1 & x_2 & \vdots & \cdots & x_{lm/2} \rfloor & \cdots & x_{n-2} & x_{n-1} \\ x_2 & x_3 & \vdots & \cdots & x_{lm/2 \rfloor + 1} & \cdots & x_{n-1} & x_n \\ \vdots & x_{m-\lfloor m/2 \rfloor} & \vdots & \cdots & x_{lm/2 \rfloor + 1} & \cdots & x_{n-1} & x_n \\ \vdots & x_{m-\lfloor m/2 \rfloor + 1} & \cdots & x_m & \cdots & 0 & 0 \end{bmatrix}$$
Input  $x$ 

$$\begin{bmatrix} 0 & \cdots & x_1 & \cdots & x_{lm/2 \rfloor + 1} & \cdots & x_n & \cdots & x_n \\ 0 & \cdots & x_1 & \cdots & x_{lm/2 \rfloor + 1} & \cdots & x_n & \cdots & 0 \end{bmatrix}$$
Filter  $h$ 

$$\begin{bmatrix} h_1 & \cdots & h_{lm/2 \rfloor + 1} & \cdots & h_m \end{bmatrix}$$

1D Convolution (Discrete) ⇔ Matrix Multiplication

Data => Toeplitz matrix (diagonal-constant)

It could be dense (e.g., when  $n \gg m$ )!

1D Convolution (Discrete)  $\Leftrightarrow$  Matrix Multiplication

This equivalence holds for 2D and other higher-order convolutions!  $y^{\top} = (h * x)^{\top}$  Data => Toeplitz matrix (diagonal-constant)

It could be dense (e.g., when  $n \gg m$ )!

$$= \begin{bmatrix} h_1 & \cdots & h_{\lfloor m/2 \rfloor + 1} & \cdots & h_m \end{bmatrix} \begin{bmatrix} 0 & 0 & \cdots & x_1 & \cdots & x_{n - \lfloor m/2 \rfloor - 1} & x_{n - \lfloor m/2 \rfloor} \\ \vdots & \ddots & \vdots & \cdots & \vdots & \vdots \\ n_1 & x_2 & \vdots & \ddots & x_{\lfloor m/2 \rfloor + 1} & \cdots & x_{n - 1} & x_n \\ x_2 & x_3 & \vdots & \cdots & x_{\lfloor m/2 \rfloor + 1} & \cdots & x_{n - 1} & x_n \\ \vdots & \vdots & \ddots & x_{\lfloor m/2 \rfloor + 2} & \cdots & x_n & 0 \\ \vdots & \vdots & \cdots & \vdots & \cdots & \vdots & \vdots \\ x_{m - \lfloor m/2 \rfloor} & x_{m - \lfloor m/2 \rfloor + 1} & \cdots & x_m & \cdots & 0 \end{bmatrix}$$
Input  $x$ 

$$\begin{bmatrix} 0 & \cdots & x_1 & \cdots & k_{m - \lfloor m/2 \rfloor} & \cdots & \cdots & x_n & \cdots & 0 \\ \vdots & \vdots & \cdots & x_m & \cdots & 0 & 0 \end{bmatrix}$$
Filter  $h$ 

$$\boxed{h_1 & \cdots & h_{\lfloor m/2 \rfloor + 1} & \cdots & h_m}$$
This version is typically implemented on GPUs!

### Outline

- Invariance & Equivariance
- Convolution
  - 1D Convolution
  - Matrix Multiplication Views
  - Translation Equivariance
  - 2D Convolution
- Convolution Variants
  - Transposed Convolution
  - Dilated Convolution
  - Grouped Convolution
  - Separable Convolution
- Pooling
- Example Architectures

Matrix multiplication view (Filter => Toeplitz matrix) of 1D convolution:

Consider a special Toeplitz matrix: circulant matrix (must be square!)



#### Translation/Shift Operator





### Translation/Shift Operator

Shift operator is also a circulant matrix!



## Translation/Shift Equivariance

Matrix multiplication is non-commutative. But not for circulant matrices!



## Translation/Shift Equivariance

Matrix multiplication is non-commutative. But not for circulant matrices!



This equivariance holds for 2D and higher-order convolutions!

### Outline

- Invariance & Equivariance
- Convolution
  - 1D Convolution
  - Matrix Multiplication Views
  - Translation Equivariance
  - 2D Convolution
- Convolution Variants
  - Transposed Convolution
  - Dilated Convolution
  - Grouped Convolution
  - Separable Convolution
- Pooling
- Example Architectures

Let us see what convolution is in 2D



Let us see what convolution is in 2D





Convolutional Filter

 $W \in \mathbb{R}^{K \times K}$ 



Let us see what convolution is in 2D





Convolutional Filter

 $W \in \mathbb{R}^{K \times K}$ 



Sliding Window

Input X

Let us see what convolution is in 2D

$$\mathbf{y}_{i,j} = \sum_{m=1}^{K} \sum_{n=1}^{K} W_{m,n} \mathbf{x}_{i+m-\lceil K/2 \rceil, j+n-\lceil K/2 \rceil}$$



Convolutional Filter

 $W \in \mathbb{R}^{K \times K}$ 





2D Convolution with Stride = 1



2D Convolution with Stride = 1, Half Padding



2D Convolution with Stride = 2, Half Padding











2D Convolution with multiple input channels





Image Credit: [3]





















2D Convolution with multiple input channels and multiple filters













### References

- [1] <u>https://towardsdatascience.com/deriving-convolution-from-first-principles-4ff124888028</u>
- [2] <u>https://github.com/vdumoulin/conv\_arithmetic/blob/master/README.md</u>
- [3] <u>https://fleuret.org/dlc/materials/dlc-slides-4-4-convolutions.pdf</u>

# Questions?