
CPEN 455: Deep Learning

Lecture 5: Convolutional Neural Networks II

Renjie Liao

University of British Columbia

Winter, Term 2, 2024

Outline

• Invariance & Equivariance

• Convolution

• 1D Convolution

• Matrix Multiplication Views

• Translation Equivariance

• 2D Convolution

• Convolution Variants

• Transposed Convolution

• Dilated Convolution

• Grouped Convolution

• Separable Convolution

• Pooling

• Example Architectures

2

2D Transposed Convolution

We know convolution can reduce the input size, e.g., with stride > 1. Can any convolution operator enlarge the input size?

3

2D Transposed Convolution

We know convolution can reduce the input size, e.g., with stride > 1. Can any convolution operator enlarge the input size?

Yes, transposed convolution!

4

2D Transposed Convolution

We know convolution can reduce the input size, e.g., with stride > 1. Can any convolution operator enlarge the input size?

Yes, transposed convolution!

Suppose we have a 2D convolution (3x3 kernel):

5
Image Credit: [1]

2D Convolution

(stride=1, padding=0)

Shapes: 4x4 -> 2x2

2D Transposed Convolution

We know convolution can reduce the input size, e.g., with stride > 1. Can any convolution operator enlarge the input size?

Yes, transposed convolution!

Suppose we have a 2D convolution (3x3 kernel):

6

Shapes: 4x4 -> 2x2 Shapes: 2x2 -> 4x4

2D Convolution

(stride=1, padding=0)

2D Transposed Convolution

(stride=1, padding=2)

Image Credit: [1]

2D Transposed Convolution

We know convolution can reduce the input size, e.g., with stride > 1. Can any convolution operator enlarge the input size?

Yes, transposed convolution!

Suppose we have a 2D convolution (3x3 kernel):

7

Shapes: 4x4 -> 2x2 Shapes: 2x2 -> 4x4

• Convolution and its transposed version are mutually inverse only w.r.t. shapes of

input and output, but not w.r.t. values of input and output!

2D Convolution

(stride=1, padding=0)

2D Transposed Convolution

(stride=1, padding=2)

Image Credit: [1]

2D Transposed Convolution

We know convolution can reduce the input size, e.g., with stride > 1. Can any convolution operator enlarge the input size?

Yes, transposed convolution!

Suppose we have a 2D convolution (3x3 kernel):

8

Shapes: 4x4 -> 2x2 Shapes: 2x2 -> 4x4

• Convolution and its transposed version are mutually inverse only w.r.t. shapes of

input and output, but not w.r.t. values of input and output!

• Convolution and deconvolution are mutually inverse w.r.t. values of input and output!

2D Convolution

(stride=1, padding=0)

2D Transposed Convolution

(stride=1, padding=2)

Image Credit: [1]

2D Transposed Convolution

We know convolution can reduce the input size, e.g., with stride > 1. Can any convolution operator enlarge the input size?

Yes, transposed convolution!

Try another example of 2D convolution (3x3 kernel):

9

2D Convolution

(stride=2, padding=1)

Shapes: 5x5 -> 3x3

Image Credit: [1]

2D Transposed Convolution

We know convolution can reduce the input size, e.g., with stride > 1. Can any convolution operator enlarge the input size?

Yes, transposed convolution!

Try another example of 2D convolution (3x3 kernel):

10

2D Convolution

(stride=2, padding=1)

2D Transposed Convolution

(stride=1, padding=1)

Shapes: 5x5 -> 3x3 Shapes: 3x3 -> 5x5

Image Credit: [1]

2D Transposed Convolution

We know convolution can reduce the input size, e.g., with stride > 1. Can any convolution operator enlarge the input size?

Yes, transposed convolution!

Try another example of 2D convolution (3x3 kernel):

11

2D Convolution

(stride=2, padding=1)

2D Transposed Convolution

(stride=1, padding=1)

Shapes: 5x5 -> 3x3 Shapes: 3x3 -> 5x5

Transposed convolution is also known as fractionally strided convolution!

Image Credit: [1]

2D Transposed Convolution

We know convolution can reduce the input size, e.g., with stride > 1. Can any convolution operator enlarge the input size?

Yes, transposed convolution!

Try another example of 2D convolution (3x3 kernel):

12

2D Convolution

(stride=2, padding=1)

2D Transposed Convolution

(stride=1, padding=1)

Shapes: 5x5 -> 3x3 Shapes: 3x3 -> 5x5

In practice, we do not pad zeros in between and then perform convolution due to its

high computational cost.

Image Credit: [1]

2D Transposed Convolution

We know convolution can reduce the input size, e.g., with stride > 1. Can any convolution operator enlarge the input size?

Yes, transposed convolution!

Try another example of 2D convolution (3x3 kernel):

13

2D Convolution

(stride=2, padding=1)

2D Transposed Convolution

(stride=1, padding=1)

Shapes: 5x5 -> 3x3 Shapes: 3x3 -> 5x5

In practice, we do not pad zeros in between and then perform convolution due to its

high computational cost. Instead, we leverage the gradient of convolution:

Filter -> Matrix

Image Credit: [1]

2D Transposed Convolution

We know convolution can reduce the input size, e.g., with stride > 1. Can any convolution operator enlarge the input size?

Yes, transposed convolution!

Try another example of 2D convolution (3x3 kernel):

14

2D Convolution

(stride=2, padding=1)

2D Transposed Convolution

(stride=1, padding=1)

Shapes: 5x5 -> 3x3 Shapes: 3x3 -> 5x5

In practice, we do not pad zeros in between and then perform convolution due to its

high computational cost. Instead, we leverage the gradient of convolution:

This is why we need to specify the

stride and padding of the

corresponding convolution, e.g., in

PyTorch.

For transposed convolution, stride

is always 1 and we sometimes

need (output) padding!

Filter -> Matrix

Image Credit: [1]

2D Transposed Convolution

We know convolution can reduce the input size, e.g., with stride > 1. Can any convolution operator enlarge the input size?

Yes, transposed convolution!

Try another example of 2D convolution (3x3 kernel):

15

2D Convolution

(stride=2, padding=1)

2D Transposed Convolution

(stride=1, padding=1)

Shapes: 5x5 -> 3x3 Shapes: 3x3 -> 5x5

In practice, we do not pad zeros in between and then perform convolution due to its

high computational cost. Instead, we leverage the gradient of convolution:

This is why we need to specify the

stride and padding of the

corresponding convolution, e.g., in

PyTorch.

For transposed convolution, stride

is always 1 and we sometimes

need (output) padding!

Filter -> Matrix

Image Credit: [1]

The gradients of the following two convolutions have the same shape in im2patch (data-> toeplitz matrix) implementation.

2D Transposed Convolution

16

2D Convolution

(stride=2, padding=1)

Shapes: 5x5 -> 3x3 Shapes: 6x6 -> 3x3

Image Credit: [1]

The gradients of the following two convolutions have the same shape in im2patch (data-> toeplitz matrix) implementation.

To distinguish them and output correct shapes in their transposed convolutions, we add output padding on one side in the 2nd case.

2D Transposed Convolution

17

2D Convolution

(stride=2, padding=1)

2D Transposed Convolution

Shapes: 5x5 -> 3x3 Shapes: 3x3 -> 6x6Shapes: 6x6 -> 3x3 Shapes: 3x3 -> 5x5

Image Credit: [1]

The gradients of the following two convolutions have the same shape in im2patch (data-> toeplitz matrix) implementation.

To distinguish them and output correct shapes in their transposed convolutions, we add output padding on one side in the 2nd case.

2D Transposed Convolution

18

2D Convolution

(stride=2, padding=1)

2D Transposed Convolution

Shapes: 5x5 -> 3x3 Shapes: 3x3 -> 6x6Shapes: 6x6 -> 3x3 Shapes: 3x3 -> 5x5

output padding=0 output padding=1

Image Credit: [1]

Take the API in PyTorch as an example

2D Transposed Convolution

19
Image Credit: [1]

stride of convolution, not the

stride of transposed convolution!

Take the API in PyTorch as an example

2D Transposed Convolution

20
Image Credit: [1]

padding of convolution, not the

padding of transposed convolution!

Take the API in PyTorch as an example

2D Transposed Convolution

21
Image Credit: [1]

padding of transposed convolution!

Outline

• Invariance & Equivariance

• Convolution

• 1D Convolution

• Matrix Multiplication Views

• Translation Equivariance

• 2D Convolution

• Convolution Variants

• Transposed Convolution

• Dilated Convolution

• Grouped Convolution

• Separable Convolution

• Pooling

• Example Architectures

22

2D Dilated Convolution

We know the kernel size decides what elements are used in convolution at one location. Can we enlarge the kernel size without

increasing the number of parameters?

23

2D Dilated Convolution

We know the kernel size decides what elements are used in convolution at one location. Can we enlarge the kernel size without

increasing the number of parameters?

Yes, dilated (atrous) convolution!

24

2D Dilated Convolution

We know the kernel size decides what elements are used in convolution at one location. Can we enlarge the kernel size without

increasing the number of parameters?

Yes, dilated (atrous) convolution!

Suppose we have a 2D convolution:

25
Image Credit: [1]

2D Convolution

(stride=1, padding=0)

2D Dilated Convolution

We know the kernel size decides what elements are used in convolution at one location. Can we enlarge the kernel size without

increasing the number of parameters?

Yes, dilated (atrous) convolution!

Suppose we have a 2D convolution:

26

2D Convolution

(stride=1, padding=0)

2D Dilated Convolution

(stride=1, padding=0, dilation=2)

Image Credit: [1]

2D Dilated Convolution

We know the kernel size decides what elements are used in convolution at one location. Can we enlarge the kernel size without

increasing the number of parameters?

Yes, dilated (atrous) convolution!

Suppose we have a 2D convolution:

27

2D Convolution

(stride=1, padding=0)

2D Dilated Convolution

(stride=1, padding=0, dilation=2)

By using dilated kernels, we effectively increase the receptive field

(the region of input that affects the output)!

Image Credit: [1]

Outline

• Invariance & Equivariance

• Convolution

• 1D Convolution

• Matrix Multiplication Views

• Translation Equivariance

• 2D Convolution

• Convolution Variants

• Transposed Convolution

• Dilated Convolution

• Grouped Convolution

• Separable Convolution

• Pooling

• Example Architectures

28

Grouped Convolution

Can we maintain the same shaped input and output in convolution with fewer number of parameters?

29

Grouped Convolution

Can we maintain the same shaped input and output in convolution with fewer number of parameters?

Yes, grouped convolution!

30

Grouped Convolution

Can we maintain the same shaped input and output in convolution with fewer number of parameters?

Yes, grouped convolution!

It was first proposed in AlexNet [2]:

31
Image Credit: [2]

Grouped Convolution

Can we maintain the same shaped input and output in convolution with fewer number of parameters?

Yes, grouped convolution!

Suppose we have a convolution layer applied to input (shape H ×𝑊 × 𝑐1):

32
Image Credit: [3]

We have 𝑐2 filters with kernel size ℎ1 × 𝑤1 × 𝑐1

Grouped Convolution

Can we maintain the same shaped input and output in convolution with fewer number of parameters?

Yes, grouped convolution!

Now we switch to a grouped (# groups=2) convolution layer applied to the same input (shape H ×𝑊 × 𝑐1):

33
Image Credit: [3]

We have 2 groups of filters, and the total number of

parameters is the same as a single filter before!

2

2

2

Grouped Convolution

Can we maintain the same shaped input and output in convolution with fewer number of parameters?

Yes, grouped convolution!

Now we switch to a grouped (# groups=2) convolution layer applied to the same input (shape H ×𝑊 × 𝑐1):

34
Image Credit: [3]

We have 2 groups of filters, and the total number of

parameters is the same as a single filter before!

Generalize it to multi-groups by yourself!

2

2

2

Outline

• Invariance & Equivariance

• Convolution

• 1D Convolution

• Matrix Multiplication Views

• Translation Equivariance

• 2D Convolution

• Convolution Variants

• Transposed Convolution

• Dilated Convolution

• Grouped Convolution

• Separable Convolution

• Pooling

• Example Architectures

35

Separable Convolution

Can we maintain the same shaped input and output in convolution with fewer number of parameters?

36

Separable Convolution

Can we maintain the same shaped input and output in convolution with fewer number of parameters?

Yes, grouped convolution & separable convolution!

37

Separable Convolution

Can we maintain the same shaped input and output in convolution with fewer number of parameters?

Yes, grouped convolution & separable convolution!

Let us look at a 3x3 convolutional kernel:

38
Image Credit: [4]

Separable Convolution

Can we maintain the same shaped input and output in convolution with fewer number of parameters?

Yes, grouped convolution & separable convolution!

Let us look at a 3x3 convolutional kernel:

39
Image Credit: [4]

Separable Convolution

Can we maintain the same shaped input and output in convolution with fewer number of parameters?

Yes, grouped convolution & separable convolution!

Let us look at a 3x3 convolutional kernel:

40
Image Credit: [4]

Spatial separable kernels are rank one and

can not represent full-rank kernels, thus

being limited in terms of expressiveness!

Separable Convolution

Can we maintain the same shaped input and output in convolution with fewer number of parameters?

Yes, grouped convolution & separable convolution!

In practice, one often use depthwise separable convolution:

41
Image Credit: [4]

Separable Convolution

Can we maintain the same shaped input and output in convolution with fewer number of parameters?

Yes, grouped convolution & separable convolution!

In practice, one often use depthwise separable convolution:

42
Image Credit: [4]

• Depthwise spatial convolution

Separable Convolution

Can we maintain the same shaped input and output in convolution with fewer number of parameters?

Yes, grouped convolution & separable convolution!

In practice, one often use depthwise separable convolution:

43
Image Credit: [4]

• Depthwise spatial convolution

• Pointwise 1x1 convolution

Separable Convolution

Can we maintain the same shaped input and output in convolution with fewer number of parameters?

Yes, grouped convolution & separable convolution!

In practice, one often use depthwise separable convolution:

44
Image Credit: [4]

• Depthwise spatial convolution

• Pointwise 1x1 convolution

It is a separable convolution: spatial × depth (channel)!

Separable Convolution

Can we maintain the same shaped input and output in convolution with fewer number of parameters?

Yes, grouped convolution & separable convolution!

In practice, one often use depthwise separable convolution:

45
Image Credit: [4]

• Depthwise spatial convolution

• Pointwise 1x1 convolution

It is a separable convolution: spatial × depth (channel)!

Work out the numbers of parameters and operations,

you will find it saves both!

Outline

• Invariance & Equivariance

• Convolution

• 1D Convolution

• Matrix Multiplication Views

• Translation Equivariance

• 2D Convolution

• Convolution Variants

• Transposed Convolution

• Dilated Convolution

• Grouped Convolution

• Separable Convolution

• Pooling

• Example Architectures

46

Pooling

1 0

3 4

3 9

8 4

3 5

2 2

1 3

5 7

4

9

5

7

A similar idea as convolution except that you replace weighted sum operator with some pooling operator (e.g., max, mean)

2 X 2 Max Pooling with Stride 2

47

Pooling

1 0

3 4

3 9

8 4

3 5

2 2

1 3

5 7

4

9

5

7

A similar idea as convolution except that you replace weighted sum operator with some pooling operator (e.g., max, mean)

2 X 2 Max Pooling with Stride 2

1 0

3 4

3 9

8 4

3 5

2 2

1 3

5 7

2 X 2 Mean Pooling with Stride 2
2

6

3

4

48

Pooling

1 0

3 4

3 9

8 4

3 5

2 2

1 3

5 7

4

9

5

7

A similar idea as convolution except that you replace weighted sum operator with some pooling operator (e.g., max, mean)

2 X 2 Max Pooling with Stride 2

1 0

3 4

3 9

8 4

3 5

2 2

1 3

5 7

2 X 2 Mean Pooling with Stride 2
2

6

3

4

Pooling gives you permutation-invariance!

49

Outline

• Invariance & Equivariance

• Convolution

• 1D Convolution

• Matrix Multiplication Views

• Translation Equivariance

• 2D Convolution

• Convolution Variants

• Transposed Convolution

• Dilated Convolution

• Grouped Convolution

• Separable Convolution

• Pooling

• Example Architectures

50

Convolutional Neural Networks (CNNs)

Image Credit: [5]

Let us look at an example CNN:

51

Translation/Shift Invariance

Image Credit: [6]

Suppose background does not change and one only shifts the foreground object, pooling gives you shift-invariance!

52

Translation/Shift Equivariance Invariance

Image Credit: [7]

Yann LeCun’s LeNet Demo:

53

More on Invariance & Equivariance

What about other transformations, e.g., scaling, 2D/3D rotations?

Vanilla CNNs do not have such properties. One can add data augmentation to make the model approximately have them.

One can also design CNN architectures, e.g., spherical CNNs (rotation equivariant), that are guaranteed to have such properties [9].

Image Credit: [8]
54

U-Net

Image Credit: [10]

U-Net [10] is a popular fully-convolutional CNN architecture for pixel-level tasks like image segmentation.

55

U-Net

Image Credit: [10]

U-Net [10] is a popular fully-convolutional CNN architecture for pixel-level tasks like image segmentation.

56

Transposed Convolution

ResNet

Image Credit: [11]

ResNet [11] is a popular fully-convolutional CNN architecture for pixel-level tasks like image segmentation.

57

ResNet

Image Credit: [11]

ResNet [11] is a popular fully-convolutional CNN architecture for pixel-level tasks like image segmentation.

58

Residual block with skip connection

ResNet

Image Credit: [11]

ResNet [11] is a popular fully-convolutional CNN architecture for pixel-level tasks like image segmentation.

59

Residual block with skip connection

Build deeper ones (e.g., ResNet-50, ResNet-101)

by replacing it with the bottleneck structure!

ResNet

Image Credit: [11,12]

ResNet [11] is a popular fully-convolutional CNN architecture for pixel-level tasks like image segmentation.

60

Residual block with skip connection

Build deeper ones (e.g., ResNet-50, ResNet-101)

by replacing it with the bottleneck structure!

ResNeXt [12] replaces it with aggregated

transformations (similar to grouped convolution

but with shared input)!

MobileNet [13] is designed to be used in mobile applications, achieving good performances with fewer computations.

MobileNet

Image Credit: [13]
61

MobileNet [13] is designed to be used in mobile applications, achieving good performances with fewer computations.

MobileNet

Image Credit: [13]
62

Replace the vanilla conv layer with depthwise

separable convolutional layer

MobileNet [13] is designed to be used in mobile applications, achieving good performances with fewer computations.

MobileNet

Image Credit: [13]
63

Replace the vanilla conv layer with depthwise

separable convolutional layer

References

[1] https://github.com/vdumoulin/conv_arithmetic/blob/master/README.md

[2] Krizhevsky A, Sutskever I, Hinton GE. ImageNet Classification with Deep Convolutional Neural Networks. Advances in Neural
Information Processing Systems. 2012;25.

[3] https://blog.yani.ai/filter-group-tutorial/

[4] https://towardsdatascience.com/a-basic-introduction-to-separable-convolutions-b99ec3102728

[5] https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53

[6] https://towardsdatascience.com/covolutional-neural-network-cb0883dd6529

[7] http://yann.lecun.com/exdb/lenet/translation.html

[8] http://yann.lecun.com/exdb/lenet/scale.html

[9] https://pure.uva.nl/ws/files/60770359/Thesis.pdf

[10] Ronneberger O, Fischer P, Brox T. U-Net: Convolutional Networks for Biomedical Image Segmentation. InMedical Image
Computing and Computer-Assisted Intervention (MICCAI) 2015.

[11] He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. InProceedings of the IEEE conference on computer
vision and pattern recognition 2016 (pp. 770-778).

[12] Xie S, Girshick R, Dollár P, Tu Z, He K. Aggregated residual transformations for deep neural networks. InProceedings of the
IEEE conference on computer vision and pattern recognition 2017 (pp. 1492-1500).

[13] Howard AG, Zhu M, Chen B, Kalenichenko D, Wang W, Weyand T, Andreetto M, Adam H. Mobilenets: Efficient convolutional
neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861. 2017 Apr 17.

64

https://github.com/vdumoulin/conv_arithmetic/blob/master/README.md
https://blog.yani.ai/filter-group-tutorial/
https://towardsdatascience.com/a-basic-introduction-to-separable-convolutions-b99ec3102728
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
https://towardsdatascience.com/covolutional-neural-network-cb0883dd6529
http://yann.lecun.com/exdb/lenet/translation.html
http://yann.lecun.com/exdb/lenet/scale.html
https://pure.uva.nl/ws/files/60770359/Thesis.pdf

Questions?

65

	Slide 1: CPEN 455: Deep Learning Lecture 5: Convolutional Neural Networks II
	Slide 2: Outline
	Slide 3: 2D Transposed Convolution
	Slide 4: 2D Transposed Convolution
	Slide 5: 2D Transposed Convolution
	Slide 6: 2D Transposed Convolution
	Slide 7: 2D Transposed Convolution
	Slide 8: 2D Transposed Convolution
	Slide 9: 2D Transposed Convolution
	Slide 10: 2D Transposed Convolution
	Slide 11: 2D Transposed Convolution
	Slide 12: 2D Transposed Convolution
	Slide 13: 2D Transposed Convolution
	Slide 14: 2D Transposed Convolution
	Slide 15: 2D Transposed Convolution
	Slide 16: 2D Transposed Convolution
	Slide 17: 2D Transposed Convolution
	Slide 18: 2D Transposed Convolution
	Slide 19: 2D Transposed Convolution
	Slide 20: 2D Transposed Convolution
	Slide 21: 2D Transposed Convolution
	Slide 22: Outline
	Slide 23: 2D Dilated Convolution
	Slide 24: 2D Dilated Convolution
	Slide 25: 2D Dilated Convolution
	Slide 26: 2D Dilated Convolution
	Slide 27: 2D Dilated Convolution
	Slide 28: Outline
	Slide 29: Grouped Convolution
	Slide 30: Grouped Convolution
	Slide 31: Grouped Convolution
	Slide 32: Grouped Convolution
	Slide 33: Grouped Convolution
	Slide 34: Grouped Convolution
	Slide 35: Outline
	Slide 36: Separable Convolution
	Slide 37: Separable Convolution
	Slide 38: Separable Convolution
	Slide 39: Separable Convolution
	Slide 40: Separable Convolution
	Slide 41: Separable Convolution
	Slide 42: Separable Convolution
	Slide 43: Separable Convolution
	Slide 44: Separable Convolution
	Slide 45: Separable Convolution
	Slide 46: Outline
	Slide 47: Pooling
	Slide 48: Pooling
	Slide 49: Pooling
	Slide 50: Outline
	Slide 51: Convolutional Neural Networks (CNNs)
	Slide 52: Translation/Shift Invariance
	Slide 53: Translation/Shift Equivariance Invariance
	Slide 54: More on Invariance & Equivariance
	Slide 55: U-Net
	Slide 56: U-Net
	Slide 57: ResNet
	Slide 58: ResNet
	Slide 59: ResNet
	Slide 60: ResNet
	Slide 61: MobileNet
	Slide 62: MobileNet
	Slide 63: MobileNet
	Slide 64: References
	Slide 65: Questions?

