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2D Transposed Convolution

We know convolution can reduce the input size, e.g., with stride > 1. Can any convolution operator enlarge the input size?
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2D Transposed Convolution
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Suppose we have a 2D convolution (3x3 kernel):
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Image Credit: [1]

2D Convolution

(stride=1, padding=0) 

Shapes: 4x4 -> 2x2
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2D Transposed Convolution

We know convolution can reduce the input size, e.g., with stride > 1. Can any convolution operator enlarge the input size?

Yes, transposed convolution!

Suppose we have a 2D convolution (3x3 kernel):
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input and output, but not w.r.t. values of input and output! 
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2D Transposed Convolution

We know convolution can reduce the input size, e.g., with stride > 1. Can any convolution operator enlarge the input size?

Yes, transposed convolution!

Suppose we have a 2D convolution (3x3 kernel):
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Shapes: 4x4 -> 2x2 Shapes: 2x2 -> 4x4

• Convolution and its transposed version are mutually inverse only w.r.t. shapes of 

input and output, but not w.r.t. values of input and output! 

• Convolution and deconvolution are mutually inverse w.r.t. values of input and output! 

2D Convolution

(stride=1, padding=0) 

2D Transposed Convolution

(stride=1, padding=2) 

Image Credit: [1]



2D Transposed Convolution

We know convolution can reduce the input size, e.g., with stride > 1. Can any convolution operator enlarge the input size?

Yes, transposed convolution!

Try another example of 2D convolution (3x3 kernel):
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2D Convolution

(stride=2, padding=1) 

Shapes: 5x5 -> 3x3

Image Credit: [1]



2D Transposed Convolution

We know convolution can reduce the input size, e.g., with stride > 1. Can any convolution operator enlarge the input size?

Yes, transposed convolution!

Try another example of 2D convolution (3x3 kernel):

10

2D Convolution

(stride=2, padding=1) 

2D Transposed Convolution

(stride=1, padding=1) 

Shapes: 5x5 -> 3x3 Shapes: 3x3 -> 5x5

Image Credit: [1]



2D Transposed Convolution

We know convolution can reduce the input size, e.g., with stride > 1. Can any convolution operator enlarge the input size?

Yes, transposed convolution!

Try another example of 2D convolution (3x3 kernel):
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2D Convolution

(stride=2, padding=1) 

2D Transposed Convolution

(stride=1, padding=1) 

Shapes: 5x5 -> 3x3 Shapes: 3x3 -> 5x5

Transposed convolution is also known as fractionally strided convolution!

Image Credit: [1]



2D Transposed Convolution

We know convolution can reduce the input size, e.g., with stride > 1. Can any convolution operator enlarge the input size?

Yes, transposed convolution!

Try another example of 2D convolution (3x3 kernel):
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2D Convolution

(stride=2, padding=1) 

2D Transposed Convolution

(stride=1, padding=1) 

Shapes: 5x5 -> 3x3 Shapes: 3x3 -> 5x5

In practice, we do not pad zeros in between and then perform convolution due to its 

high computational cost. 

Image Credit: [1]



2D Transposed Convolution

We know convolution can reduce the input size, e.g., with stride > 1. Can any convolution operator enlarge the input size?

Yes, transposed convolution!

Try another example of 2D convolution (3x3 kernel):

13

2D Convolution

(stride=2, padding=1) 

2D Transposed Convolution
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Shapes: 5x5 -> 3x3 Shapes: 3x3 -> 5x5

In practice, we do not pad zeros in between and then perform convolution due to its 

high computational cost. Instead, we leverage the gradient of convolution:

Filter -> Matrix

Image Credit: [1]
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The gradients of  the following two convolutions have the same shape in im2patch (data-> toeplitz matrix) implementation.

2D Transposed Convolution
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2D Convolution

(stride=2, padding=1) 

Shapes: 5x5 -> 3x3 Shapes: 6x6 -> 3x3

Image Credit: [1]



The gradients of  the following two convolutions have the same shape in im2patch (data-> toeplitz matrix) implementation.

To distinguish them and output correct shapes in their transposed convolutions, we add output padding on one side in the 2nd case.

2D Transposed Convolution
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2D Convolution

(stride=2, padding=1) 

2D Transposed Convolution

Shapes: 5x5 -> 3x3 Shapes: 3x3 -> 6x6Shapes: 6x6 -> 3x3 Shapes: 3x3 -> 5x5

Image Credit: [1]



The gradients of  the following two convolutions have the same shape in im2patch (data-> toeplitz matrix) implementation.

To distinguish them and output correct shapes in their transposed convolutions, we add output padding on one side in the 2nd case.

2D Transposed Convolution
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2D Convolution

(stride=2, padding=1) 

2D Transposed Convolution

Shapes: 5x5 -> 3x3 Shapes: 3x3 -> 6x6Shapes: 6x6 -> 3x3 Shapes: 3x3 -> 5x5

output padding=0 output padding=1

Image Credit: [1]



Take the API in PyTorch as an example

2D Transposed Convolution
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stride of convolution, not the 

stride of transposed convolution!



Take the API in PyTorch as an example

2D Transposed Convolution
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padding of convolution, not the 

padding of transposed convolution!



Take the API in PyTorch as an example

2D Transposed Convolution
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Image Credit: [1]

padding of transposed convolution!
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2D Dilated Convolution

We know the kernel size decides what elements are used in convolution at one location. Can we enlarge the kernel size without 

increasing the number of parameters?
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2D Dilated Convolution

We know the kernel size decides what elements are used in convolution at one location. Can we enlarge the kernel size without 

increasing the number of parameters?

Yes, dilated (atrous) convolution!

Suppose we have a 2D convolution:
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2D Convolution

(stride=1, padding=0) 



2D Dilated Convolution

We know the kernel size decides what elements are used in convolution at one location. Can we enlarge the kernel size without 

increasing the number of parameters?

Yes, dilated (atrous) convolution!

Suppose we have a 2D convolution:
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2D Convolution

(stride=1, padding=0) 

2D Dilated Convolution

(stride=1, padding=0, dilation=2) 

Image Credit: [1]



2D Dilated Convolution

We know the kernel size decides what elements are used in convolution at one location. Can we enlarge the kernel size without 

increasing the number of parameters?

Yes, dilated (atrous) convolution!

Suppose we have a 2D convolution:
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2D Convolution

(stride=1, padding=0) 

2D Dilated Convolution

(stride=1, padding=0, dilation=2) 

By using dilated kernels, we effectively increase the receptive field 

(the region of input that affects the output)!

Image Credit: [1]
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Grouped Convolution

Can we maintain the same shaped input and output in convolution with fewer number of parameters?
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Grouped Convolution

Can we maintain the same shaped input and output in convolution with fewer number of parameters?

Yes, grouped convolution!
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Grouped Convolution

Can we maintain the same shaped input and output in convolution with fewer number of parameters?

Yes, grouped convolution!

It was first proposed in AlexNet [2]:
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Image Credit: [2]



Grouped Convolution

Can we maintain the same shaped input and output in convolution with fewer number of parameters?

Yes, grouped convolution!

Suppose we have a convolution layer applied to input (shape H ×𝑊 × 𝑐1):

32
Image Credit: [3]

We have 𝑐2 filters with kernel size ℎ1 × 𝑤1 × 𝑐1



Grouped Convolution

Can we maintain the same shaped input and output in convolution with fewer number of parameters?

Yes, grouped convolution!

Now we switch to a grouped (# groups=2) convolution layer applied to the same input (shape H ×𝑊 × 𝑐1):

33
Image Credit: [3]

We have 2 groups of filters, and the total number of 

parameters is the same as a single filter before!

2

2

2



Grouped Convolution

Can we maintain the same shaped input and output in convolution with fewer number of parameters?

Yes, grouped convolution!

Now we switch to a grouped (# groups=2) convolution layer applied to the same input (shape H ×𝑊 × 𝑐1):

34
Image Credit: [3]

We have 2 groups of filters, and the total number of 

parameters is the same as a single filter before!

Generalize it to multi-groups by yourself!
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Separable Convolution

Can we maintain the same shaped input and output in convolution with fewer number of parameters?
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Separable Convolution

Can we maintain the same shaped input and output in convolution with fewer number of parameters?

Yes, grouped convolution & separable convolution!
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Separable Convolution

Can we maintain the same shaped input and output in convolution with fewer number of parameters?

Yes, grouped convolution & separable convolution!

Let us look at a 3x3 convolutional kernel:
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Separable Convolution

Can we maintain the same shaped input and output in convolution with fewer number of parameters?
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Separable Convolution

Can we maintain the same shaped input and output in convolution with fewer number of parameters?

Yes, grouped convolution & separable convolution!

Let us look at a 3x3 convolutional kernel:
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Image Credit: [4]

Spatial separable kernels are rank one and 

can not represent full-rank kernels, thus 

being limited in terms of expressiveness!



Separable Convolution

Can we maintain the same shaped input and output in convolution with fewer number of parameters?

Yes, grouped convolution & separable convolution!

In practice, one often use depthwise separable convolution:
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Separable Convolution

Can we maintain the same shaped input and output in convolution with fewer number of parameters?

Yes, grouped convolution & separable convolution!

In practice, one often use depthwise separable convolution:
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• Depthwise spatial convolution



Separable Convolution

Can we maintain the same shaped input and output in convolution with fewer number of parameters?

Yes, grouped convolution & separable convolution!

In practice, one often use depthwise separable convolution:
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• Depthwise spatial convolution

• Pointwise 1x1 convolution



Separable Convolution

Can we maintain the same shaped input and output in convolution with fewer number of parameters?

Yes, grouped convolution & separable convolution!

In practice, one often use depthwise separable convolution:
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Image Credit: [4]

• Depthwise spatial convolution

• Pointwise 1x1 convolution

It is a separable convolution: spatial × depth (channel)!



Separable Convolution

Can we maintain the same shaped input and output in convolution with fewer number of parameters?

Yes, grouped convolution & separable convolution!

In practice, one often use depthwise separable convolution:
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Image Credit: [4]

• Depthwise spatial convolution

• Pointwise 1x1 convolution

It is a separable convolution: spatial × depth (channel)!

Work out the numbers of parameters and operations, 

you will find it saves both!
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Pooling
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A similar idea as convolution except that you replace weighted sum operator with some pooling operator (e.g., max, mean)

2 X 2 Max Pooling with Stride 2
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A similar idea as convolution except that you replace weighted sum operator with some pooling operator (e.g., max, mean)

2 X 2 Max Pooling with Stride 2
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A similar idea as convolution except that you replace weighted sum operator with some pooling operator (e.g., max, mean)

2 X 2 Max Pooling with Stride 2
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Pooling gives you permutation-invariance!
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Convolutional Neural Networks (CNNs)

Image Credit: [5]

Let us look at an example CNN:
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Translation/Shift Invariance

Image Credit: [6]

Suppose background does not change and one only shifts the foreground object, pooling gives you shift-invariance!
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Translation/Shift Equivariance Invariance

Image Credit: [7]

Yann LeCun’s LeNet Demo: 
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More on Invariance & Equivariance

What about other transformations, e.g., scaling, 2D/3D rotations?

Vanilla CNNs do not have such properties. One can add data augmentation to make the model approximately have them.

One can also design CNN architectures, e.g., spherical CNNs (rotation equivariant), that are guaranteed to have such properties [9].

Image Credit: [8]
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U-Net

Image Credit: [10]

U-Net [10] is a popular fully-convolutional CNN architecture for pixel-level tasks like image segmentation.

55



U-Net

Image Credit: [10]

U-Net [10] is a popular fully-convolutional CNN architecture for pixel-level tasks like image segmentation.
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Transposed Convolution



ResNet

Image Credit: [11]

ResNet [11] is a popular fully-convolutional CNN architecture for pixel-level tasks like image segmentation.
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ResNet

Image Credit: [11]

ResNet [11] is a popular fully-convolutional CNN architecture for pixel-level tasks like image segmentation.
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Residual block with skip connection



ResNet

Image Credit: [11]

ResNet [11] is a popular fully-convolutional CNN architecture for pixel-level tasks like image segmentation.
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Residual block with skip connection

Build deeper ones (e.g., ResNet-50, ResNet-101) 

by replacing it with the bottleneck structure!



ResNet

Image Credit: [11,12]

ResNet [11] is a popular fully-convolutional CNN architecture for pixel-level tasks like image segmentation.
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Residual block with skip connection

Build deeper ones (e.g., ResNet-50, ResNet-101) 

by replacing it with the bottleneck structure!

ResNeXt [12] replaces it with aggregated 

transformations (similar to grouped convolution 

but with shared input)!



MobileNet [13] is designed to be used in mobile applications, achieving good performances with fewer computations.

 

MobileNet

Image Credit: [13]
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MobileNet [13] is designed to be used in mobile applications, achieving good performances with fewer computations.

 

MobileNet

Image Credit: [13]
62

Replace the vanilla conv layer with depthwise 

separable convolutional layer



MobileNet [13] is designed to be used in mobile applications, achieving good performances with fewer computations.

 

MobileNet

Image Credit: [13]
63

Replace the vanilla conv layer with depthwise 

separable convolutional layer
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