CPEN 455: Deep Learning

Lecture 5: Convolutional Neural Networks Il

Renjie Liao

University of British Columbia
Winter, Term 2, 2024

Outline

 Invariance & Equivariance

« Convolution
« 1D Convolution
« Matrix Multiplication Views
« Translation Equivariance
« 2D Convolution

« Convolution Variants
* Transposed Convolution
« Dilated Convolution
« Grouped Convolution
» Separable Convolution

« Pooling

« Example Architectures

2D Transposed Convolution

We know convolution can reduce the input size, e.g., with stride > 1. Can any convolution operator enlarge the input size?

2D Transposed Convolution

We know convolution can reduce the input size, e.g., with stride > 1. Can any convolution operator enlarge the input size?

Yes, transposed convolution!

2D Transposed Convolution

We know convolution can reduce the input size, e.g., with stride > 1. Can any convolution operator enlarge the input size?

Yes, transposed convolution!

Suppose we have a 2D convolution (3x3 kernel):

Shapes: 4x4 -> 2x2

2D Convolution
(stride=1, padding=0)

Image Credit: [1]

2D Transposed Convolution

We know convolution can reduce the input size, e.g., with stride > 1. Can any convolution operator enlarge the input size?

Yes, transposed convolution!

Suppose we have a 2D convolution (3x3 kernel):

Shapes: 4x4 -> 2x2

2D Convolution 2D Transposed Convolution
(stride=1, padding=0) (stride=1, padding=2)

Image Credit: [1]

2D Transposed Convolution

We know convolution can reduce the input size, e.g., with stride > 1. Can any convolution operator enlarge the input size?

Yes, transposed convolution! _ _ _ _
« Convolution and its transposed version are mutually inverse only w.r.t. shapes of

Suppose we have a 2D convolution (3x3 kernel): input and output, but not w.r.t. values of input and output!

Shapes: 4x4 -> 2x2 Shapes: 2x2 -> 4x4

® & L B .:"".‘s.
\c: \ﬂ.—,"*’__v
T\"' “\l}# -
2D Convolution 2D Transposed Convolution
(stride=1, padding=0) (stride=1, padding=2)

Image Credit: [1]

2D Transposed Convolution

We know convolution can reduce the input size, e.g., with stride > 1. Can any convolution operator enlarge the input size?

Yes, transposed convolution! _ _ _ _
« Convolution and its transposed version are mutually inverse only w.r.t. shapes of

Suppose we have a 2D convolution (3x3 kernel): input and output, but not w.r.t. values of input and output!
« Convolution and deconvolution are mutually inverse w.r.t. values of input and output!

Shapes: 4x4 -> 2x2 Shapes: 2x2 -> 4x4

® & L B .:"".‘s.
\c: \ﬂ.—,"*’__v
T\"' “\l}# -
2D Convolution 2D Transposed Convolution
(stride=1, padding=0) (stride=1, padding=2)

Image Credit: [1]

2D Transposed Convolution

We know convolution can reduce the input size, e.g., with stride > 1. Can any convolution operator enlarge the input size?

Yes, transposed convolution!

Try another example of 2D convolution (3x3 kernel):

2D Convolution
(stride=2, padding=1)

Image Credit: [1]

2D Transposed Convolution

We know convolution can reduce the input size, e.g., with stride > 1. Can any convolution operator enlarge the input size?

Yes, transposed convolution!

Try another example of 2D convolution (3x3 kernel):

Shapes: 3x3 -> 5x5

2D Convolution 2D Transposed Convolution
(stride=2, padding=1) (stride=1, padding=1)

Image Credit: [1]

10

2D Transposed Convolution

We know convolution can reduce the input size, e.g., with stride > 1. Can any convolution operator enlarge the input size?

Yes, transposed convolution!

Try another example of 2D convolution (3x3 kernel): Transposed convolution is also known as fractionally strided convolution!

Shapes: 3x3 -> 5x5

2D Convolution 2D Transposed Convolution
(stride=2, padding=1) (stride=1, padding=1)
11

Image Credit: [1]

2D Transposed Convolution

We know convolution can reduce the input size, e.g., with stride > 1. Can any convolution operator enlarge the input size?

Yes, transposed convolution!
In practice, we do not pad zeros in between and then perform convolution due to its

Try another example of 2D convolution (3x3 kernel): _ _
high computational cost.

Shapes: 5x5 -> 3x3 Shapes: 3x3 -> 5x5

LY - ‘}'
2D Convolution 2D Transposed Convolution
(stride=2, padding=1) (stride=1, padding=1)

12

Image Credit: [1]

2D Transposed Convolution

We know convolution can reduce the input size, e.g., with stride > 1. Can any convolution operator enlarge the input size?

Yes, transposed convolution!
In practice, we do not pad zeros in between and then perform convolution due to its

Try another example of 2D convolution (3x3 kernel): _ _ _ :
high computational cost. Instead, we leverage the gradient of convolution:

y = Wx Filter -> Matrix

Oy
L W
ox
Shapes: 5x5 -> 3x3 Shapes: 3x3 -> 5x5 8y -
X = —
ox J

LY - ‘}'
2D Convolution 2D Transposed Convolution
(stride=2, padding=1) (stride=1, padding=1)

13
Image Credit: [1]

2D Transposed Convolution

We know convolution can reduce the input size, e.g., with stride > 1. Can any convolution operator enlarge the input size?

Yes, transposed convolution!

Try another example of 2D convolution (3x3 kernel): Ir_l practice, we do not pad zeros in between and then pgrform convolut_ion due to its
high computational cost. Instead, we leverage the gradient of convolution:

y = Wx Filter -> Matrix

Oy
L W
ox
Shapes: 5x5 -> 3x3 Shapes: 3x3 -> 5x5 8y -
X = —
ox J

This is why we need to specify the
stride and padding of the
corresponding convolution, e.g., in
PyTorch.

NP
For transposed convolution, stride
2D Convolution 2D Transposed Convolution Is always 1 and we sometimes
(stride=2, padding=1) te=1; Hg= need (output) padding!

14
Image Credit: [1]

2D Transposed Convolution

We know convolution can reduce the input size, e.g., with stride > 1. Can any convolution operator enlarge the input size?

Yes, transposed convolution!

Try another example of 2D convolution (3x3 kernel): Ir_l practice, we do not pad zeros in between and then pgrform convolut_ion due to its
high computational cost. Instead, we leverage the gradient of convolution:

y = Wx Filter -> Matrix

Oy
L W
ox
Shapes: 5x5 -> 3x3 Shapes: 3x3 -> 5x5 8y -
X = —
ox J

This is why we need to specify the
stride and padding of the
corresponding convolution, e.g., in
PyTorch.

NP
For transposed convolution, stride
2D Convolution 2D Transposed Convolution Is always 1 and we sometimes
(stride=2, padding=1) te=1; Hg= need (output) padding!

15
Image Credit: [1]

2D Transposed Convolution

The gradients of the following two convolutions have the same shape in im2patch (data-> toeplitz matrix) implementation.

Shapes: 5x5 -> 3x3 Shapes: 6x6 -> 3x3

2D Convolution
(stride=2, padding=1)

Image Credit: [1]

16

2D Transposed Convolution

The gradients of the following two convolutions have the same shape in im2patch (data-> toeplitz matrix) implementation.

To distinguish them and output correct shapes in their transposed convolutions, we add output padding on one side in the 29 case.

Shapes: 5x5 -> 3x3 Shapes: 6x6 -> 3x3 Shapes: 3x3 -> 5x5 Shapes: 3x3 -> 6x6

2D Convolution 2D Transposed Convolution
(stride=2, padding=1)

17

Image Credit: [1]

2D Transposed Convolution

The gradients of the following two convolutions have the same shape in im2patch (data-> toeplitz matrix) implementation.

To distinguish them and output correct shapes in their transposed convolutions, we add output padding on one side in the 29 case.

Shapes: 5x5 -> 3x3 Shapes: 6x6 -> 3x3 Shapes: 3x3 -> 5x5 Shapes: 3x3 -> 6x6

2D Convolution 2D Transposed Convolution
(stride=2, padding=1) output padding=0 output padding=1

18

Image Credit: [1]

2D Transposed Convolution

Take the API in PyTorch as an example

CLASS torch.nn.ConvTranspose2d (in_channels, out_channels, kernel_size, stride=1, padding=0,
output_padding=0, groups=1, bias=True, dilation=1, padding_mode="'zeros', device=None, R
dtype=None) [SOURCE]

Applies a 2D transposed convolution operator over an input image composed of several input planes.

This module can be seen as the gradient of Conv2d with respect to its input. It is also known as a fractionally-strided
convolution or a deconvolution (although it is not an actual deconvolution operation as it does not compute a true
inverse of convolution). For more information, see the visualizations here and the Deconvolutional Networks paper.

This module supports TensorFloat32.

On certain ROCm devices, when using float16 inputs this module will use different precision for backward.]]
stride of convolution, not the

e | stride [controls the stride for the cross-correlation. stride of transposed convolution!

¢ padding controls the amount of implicit zero padding on both sides for dilation * (kernel_size - 1) -

padding number of points. See note below for details.

* output_padding controls the additional size added to one side of the output shape. See note below for details.

19
Image Credit: [1]

2D Transposed Convolution

Take the API in PyTorch as an example

CLASS torch.nn.ConvTranspose2d (in_channels, out_channels, kernel_size, stride=1, padding=0,
output_padding=0, groups=1, bias=True, dilation=1, padding_mode="'zeros', device=None, R
dtype=None) [SOURCE]

Applies a 2D transposed convolution operator over an input image composed of several input planes.

This module can be seen as the gradient of Conv2d with respect to its input. It is also known as a fractionally-strided
convolution or a deconvolution (although it is not an actual deconvolution operation as it does not compute a true
inverse of convolution). For more information, see the visualizations here and the Deconvolutional Networks paper.

This module supports TensorFloat32.

On certain ROCm devices, when using float16 inputs this module will use different precision for backward.

e stride controls the stride for the cross-correlation.

padding of convolution, not the

¢ | padding Fontrols the amount of implicit zero padding on both sides for dilation % (kernel_size - 1) - padding of transposed convolution!

padding number of points. See note below for details.

* output_padding controls the additional size added to one side of the output shape. See note below for details.

20
Image Credit: [1]

2D Transposed Convolution

Take the API in PyTorch as an example

CLASS torch.nn.ConvTranspose2d (in_channels, out_channels, kernel_size, stride=1, padding=0,
output_padding=0, groups=1, bias=True, dilation=1, padding_mode="'zeros', device=None, R
dtype=None) [SOURCE]

Applies a 2D transposed convolution operator over an input image composed of several input planes.

This module can be seen as the gradient of Conv2d with respect to its input. It is also known as a fractionally-strided
convolution or a deconvolution (although it is not an actual deconvolution operation as it does not compute a true
inverse of convolution). For more information, see the visualizations here and the Deconvolutional Networks paper.

This module supports TensorFloat32.

On certain ROCm devices, when using float16 inputs this module will use different precision for backward.

e stride controls the stride for the cross-correlation.
¢ padding controls the amount of implicit zero padding on both sides for dilation * (kernel_size - 1) -

padding number of points. See note below for details.

* |output_padding |controls the additional size added to one side of the output shape. See note below for details. padding of transposed convolution!

21
Image Credit: [1]

Outline

 Invariance & Equivariance

« Convolution
« 1D Convolution
« Matrix Multiplication Views
« Translation Equivariance
« 2D Convolution

« Convolution Variants
« Transposed Convolution
« Dilated Convolution
« Grouped Convolution
» Separable Convolution

« Pooling

« Example Architectures

2D Dilated Convolution

We know the kernel size decides what elements are used in convolution at one location. Can we enlarge the kernel size without
increasing the number of parameters?

2D Dilated Convolution

We know the kernel size decides what elements are used in convolution at one location. Can we enlarge the kernel size without
increasing the number of parameters?

Yes, dilated (atrous) convolution!

2D Dilated Convolution

We know the kernel size decides what elements are used in convolution at one location. Can we enlarge the kernel size without
increasing the number of parameters?

Yes, dilated (atrous) convolution!

Suppose we have a 2D convolution:

2D Convolution
(stride=1, padding=0)

Image Credit: [1]

25

2D Dilated Convolution

We know the kernel size decides what elements are used in convolution at one location. Can we enlarge the kernel size without
increasing the number of parameters?

Yes, dilated (atrous) convolution!

Suppose we have a 2D convolution:

2D Convolution 2D Dilated Convolution
(stride=1, padding=0) (stride=1, padding=0, dilation=2)

Image Credit: [1]

26

2D Dilated Convolution

We know the kernel size decides what elements are used in convolution at one location. Can we enlarge the kernel size without
increasing the number of parameters?

By using dilated kernels, we effectively increase the receptive field
(the region of input that affects the output)!

Yes, dilated (atrous) convolution!

Suppose we have a 2D convolution:

2D Convolution 2D Dilated Convolution
(stride=1, padding=0) (stride=1, padding=0, dilation=2)

27
Image Credit: [1]

Outline

 Invariance & Equivariance

« Convolution
« 1D Convolution
« Matrix Multiplication Views
« Translation Equivariance
« 2D Convolution

« Convolution Variants
« Transposed Convolution
« Dilated Convolution
« Grouped Convolution
» Separable Convolution

« Pooling

« Example Architectures

Grouped Convolution

Can we maintain the same shaped input and output in convolution with fewer number of parameters?

Grouped Convolution

Can we maintain the same shaped input and output in convolution with fewer number of parameters?

Yes, grouped convolution!

Grouped Convolution

Can we maintain the same shaped input and output in convolution with fewer number of parameters?

Yes, grouped convolution!

It was first proposed in AlexNet [2]:

J— 3\‘\\\ 3 : 3 >
S\ N1 ; e B " AN I i S
| 3 _i ________ 3
' 192 192 128 s0a8 \ / 20as \dense
48 — R 048 1\ / 204
55 27 I
: 1370 13 \ 13
5\ 3 e S
s/ | 3 ENER 3| |t N N
- 13 U3 ’ 13 dense’| |dense
‘ 27 EN 3|\
EE 1000
, 192 192 128 Max]]
, 2048 2048
Stride Max 128 Max pooling
“of 4 pooling pooling
3 48

Image Credit: [2]

Grouped Convolution

Can we maintain the same shaped input and output in convolution with fewer number of parameters?

Yes, grouped convolution!

Suppose we have a convolution layer applied to input (shape H X W X ¢;):

c, filters

H C, RelU

c,
W h, W H

|14

We have c, filters with kernel size h; X wy X ¢4

Image Credit: [3]

Grouped Convolution

Can we maintain the same shaped input and output in convolution with fewer number of parameters?

Yes, grouped convolution!

Now we switch to a grouped (# groups=2) convolution layer applied to the same input (shape H x W X ¢;):

o, filters x €2/ /

/L

H / cz/ y) X o - /

¢ c ¢
|14 h, w, i, H

|14

We have 2 groups of filters, and the total number of
parameters is the same as a single filter before!

Image Credit: [3]

Grouped Convolution

Can we maintain the same shaped input and output in convolution with fewer number of parameters?

Yes, grouped convolution!

Now we switch to a grouped (# groups=2) convolution layer applied to the same input (shape H x W X ¢;):

¢, filters x €2/ /

/L

H / 02/2>< - /

¢ c ¢
|14 h, w, i, H

|14

We have 2 groups of filters, and the total number of
parameters is the same as a single filter before!

Generalize it to multi-groups by yourself!

Image Credit: [3]

Outline

 Invariance & Equivariance

« Convolution
« 1D Convolution
« Matrix Multiplication Views
« Translation Equivariance
« 2D Convolution
« Convolution Variants
« Transposed Convolution
« Dilated Convolution
« Grouped Convolution
» Separable Convolution
« Pooling
« Example Architectures

Separable Convolution

Can we maintain the same shaped input and output in convolution with fewer number of parameters?

Separable Convolution

Can we maintain the same shaped input and output in convolution with fewer number of parameters?

Yes, grouped convolution & separable convolution!

Separable Convolution

Can we maintain the same shaped input and output in convolution with fewer number of parameters?

Yes, grouped convolution & separable convolution!

Let us look at a 3x3 convolutional kernel:

3 6 9 3
[4 8 12} = [4] x [1 2 3]
5

5 10 15

Image Credit: [4]

Separable Convolution

Can we maintain the same shaped input and output in convolution with fewer number of parameters?

Yes, grouped convolution & separable convolution!

Let us look at a 3x3 convolutional kernel:

3 6 9 3
4 8 12| = |4 X [1 2 3]
5 10 15 5

Simple Convolution

Convolution with 3x3 kernel

4 8 12
5 10 15

[3 6 g‘ Qutput Image

Spatial Separable Convolution

Convolution with
1x3 kernel

Convolution with
3%l kernel

- —
Image 3 Intermediate Image Output Image
[4‘ [1 2 3]

5

Image Credit: [4]

Separable Convolution

Can we maintain the same shaped input and output in convolution with fewer number of parameters?

Yes, grouped convolution & separable convolution!

Let us look at a 3x3 convolutional kernel:

3 6 9 3
[4 8 12‘ = [4‘ x [1 2 3]
5

5 10 15

Spatial separable kernels are rank one and
can not represent full-rank kernels, thus
being limited in terms of expressiveness!

Simple Convolution

Convolution with 3x3 kernel

4 8

:

5 10 15

Qutput Image

Spatial Separable Convolution

Convolution with

3xl kernel
—_—

Image 3
4
5

Image Credit: [4]

Convolution with

Intermediate Im age

1x3 kernel
—

Output Image

[1 2 3]

40

Separable Convolution

Can we maintain the same shaped input and output in convolution with fewer number of parameters?

Yes, grouped convolution & separable convolution!

In practice, one often use depthwise separable convolution:

Image Credit: [4]

Separable Convolution

Can we maintain the same shaped input and output in convolution with fewer number of parameters?

Yes, grouped convolution & separable convolution!

In practice, one often use depthwise separable convolution:

» Depthwise spatial convolution

Image Credit: [4]

42

Separable Convolution

Can we maintain the same shaped input and output in convolution with fewer number of parameters?

Yes, grouped convolution & separable convolution!

In practice, one often use depthwise separable convolution:

» Depthwise spatial convolution
« Pointwise 1x1 convolution ;
B 3
12 ¢

Image Credit: [4]

43

Separable Convolution

Can we maintain the same shaped input and output in convolution with fewer number of parameters?

Yes, grouped convolution & separable convolution!

In practice, one often use depthwise separable convolution:

» Depthwise spatial convolution
« Pointwise 1x1 convolution ;
B 3
12 ¢

It is a separable convolution: spatial x depth (channel)!

Image Credit: [4]

44

Separable Convolution

Can we maintain the same shaped input and output in convolution with fewer number of parameters?

Yes, grouped convolution & separable convolution!

In practice, one often use depthwise separable convolution:

» Depthwise spatial convolution
« Pointwise 1x1 convolution ;
B 3
12 ¢

It is a separable convolution: spatial x depth (channel)!

Work out the numbers of parameters and operations,
you will find it saves both! 8

45
Image Credit: [4]

Outline

 Invariance & Equivariance

« Convolution
« 1D Convolution
« Matrix Multiplication Views
« Translation Equivariance
« 2D Convolution

« Convolution Variants
« Transposed Convolution
« Dilated Convolution
« Grouped Convolution
» Separable Convolution

* Pooling

« Example Architectures

Pooling

Asimilar idea as convolution except that you replace weighted sum operator with some pooling operator (e.g., max, mean)

2 X 2 Max Pooling with Stride 2

N| W | A~ O

kLWl

Pooling

Asimilar idea as convolution except that you replace weighted sum operator with some pooling operator (e.g., max, mean)

110315
314|122 415
2 X 2 Max Pooling with Stride 2 I:>
1131319 719
517|8| 4
1101315
2 X 2 Mean Pooling with Stride 2 Al - :> 3
1131319 416
517|814

Pooling

Asimilar idea as convolution except that you replace weighted sum operator with some pooling operator (e.g., max, mean)

110315
314|122 415
2 X 2 Max Pooling with Stride 2 I:>
1131319 719
517|8| 4
1101315
2 X 2 Mean Pooling with Stride 2 Al - :> 3
1131319 416
517|814

Pooling gives you permutation-invariance!

Outline

 Invariance & Equivariance

« Convolution
« 1D Convolution
« Matrix Multiplication Views
« Translation Equivariance
« 2D Convolution

« Convolution Variants
« Transposed Convolution
« Dilated Convolution
« Grouped Convolution
» Separable Convolution

« Pooling

« Example Architectures

Convolutional Neural Networks (CNNSs)

Let us look at an example CNN:

Conv_1
Convolution
(5 x 5) kernel
valid padding

r .

fc_ 3 fc_4
Fully-Connected Fully-Connected
Neural Network Neural Network
Conv_2 RelLU activation
Convolution K—M
s e /_* N

Max-Pooling (5x5)kernel pay.pooling
(2x2) valid padding (2x2)

INPUT
(28 x28 x 1)

Image Credit: [5]

"""" ®
nl channels nl channels n2 channels n2 channels || & {j‘j’;
(24 x 24 x n1) (12 x 12 x n1) (8 x 8 xn2) (4x4xn2) | _/
n3 units

(with
dropout)

TAR \ []
A \\

¥ \
/)

OUTPUT

51

Translation/Shift Invariance

Suppose background does not change and one only shifts the foreground object, pooling gives you shift-invariance!

224 x224x3 224x224x64

112x]112x 128

56
28x28><5121

4096 1x1x1000

——~

@ convolution+ReL.U
@ max pooling

I’ fully connected+ReLU

’j softmax

Image Credit: [6]

Translation/Shift Equivariance Invariance

Yann LeCun’s LeNet Demo:

AR

|

TAr e R 2. 10

e s SR 2 NS, ey T
[

o
||

LR By B

oy

SEE
0
J
o B

Image Credit: [7]

Bz

53

More on Invariance & Equivariance

What about other transformations, e.g., scaling, 2D/3D rotations?
Vanilla CNNs do not have such properties. One can add data augmentation to make the model approximately have them.
One can also design CNN architectures, e.g., spherical CNNs (rotation equivariant), that are guaranteed to have such properties [9].

-
b
[
[
[

o =
=8 | feNel5 | geseancu

Liekz 7 iDbR

e

F

I

fr

“IEI—
[
H

B
-
4k
LN
.
Ll

1=, I

Hal Gl

i

Image Credit: [8]

U-Net

U-Net [10] is a popular fully-convolutional CNN architecture for pixel-level tasks like image segmentation.

| 64 64
128 64 64 2
input
imrfge > >l output
- segmentation
tile ol S &Y 8
™ off ol ™ map
~lol g | = e
R ks al & & 3
x| X X B
| COff 0
~| =l ©
| WO w
"128128 I
256 128
=1 E B
I K3 Y '

¥ oso ons 512 256
‘“@I'gl'?ol [I"I"I = conv 3x3, ReLU
T e e . copy and crop
I»I»I E-»-—- ¥ max pool 2x2
¥ 102 g o 4 up-conv 2x2

e
o

@
o (&)

= conv 1x1

Image Credit: [10]

55

U-Net

U-Net [10] is a popular fully-convolutional CNN architecture for pixel-level tasks like image segmentation.

| 64 64
128 64 64 2
input
imrfge > >l output
- segmentation
tile ol S &Y 8
™ off ol ™ map
~lol g | = e
R ks al & & 3
x| X X B
| COff 0
~| =l ©
| WO w
"128128 I
256 128
=1 E B
I K3 Y '

¥ 2o o 512 256
NQ*I.EI.E’I [I"I"I =» conv 3x3, RelLU
T e e . copy and crop
I»I»I E-»-—- § max pool 2x2
S¥ 104 I # up-conv 2x2 Transposed Convolution

e
o

@
o (&)

= conv 1x1

Image Credit: [10]

ResNet

ResNet [11] is a popular fully-convolutional CNN architecture for pixel-level tasks like image segmentation.

000T 24

7y

|Jood Snae

IS ‘AU0D €XE _
A

715 ‘Aod exg |

715 ‘Ao exg |
A

215 ‘Ao exg |

[ezrs‘auooexe |

A

[2/‘e1s‘Auooexe |

95z ‘AU xg |
7y

95z ‘AU xg |

95 ‘Aud £xg |

A

95z ‘AU £xg |

957 ‘AUOD EXE _
A

95¢ ‘AU exg |

95 ‘Aud exg |

A

95z ‘AU exg |

957 ‘AUOD £XE _
A

957 ‘AUOD £XE _

| oszruooexe |

A

| 7/‘95z ‘Auooexe |

8TT ‘AU £XE |

A

8TT ‘AU £Xg |

8CT ‘AUOD EXE _
A

87T ‘AU €Xg |

87T ‘AU0D £XE _

A

8T ‘AU £XE |

9 ‘AUOD EXE _
A

9 ‘AUOD EXE _

9 ‘AUOD £XE _

A

9 ‘AUOD £XE _

9 ‘AUOD £XE _
A

9 ‘AU0D £XE _

¢/ ‘lood
A
[2/ 99 ‘huod £x,
A

98ew

|lenpisaJ JaAe|-{¢

57

Image Credit: [11]

ResNet

ResNet [11] is a popular fully-convolutional CNN architecture for pixel-level tasks like image segmentation.

000T 24

7y

|Jood Snae

58

TS ‘AUOD EXE

A

TTG ‘AU0D EXE

TTS ‘AU0D €XE

A

TS ‘AU0D €XE

o [zis‘auooexe |
A A
[2/‘e1s‘Auooexe |

e
ceen

9G¢ ‘AUOD EXE

A

957 ‘AUOD EXE

95¢ ‘AUOD EXE

A

95T ‘AUOD EXE

9G¢C ‘AUOD EXE

A

957 ‘AU0J EXE

95 ‘AUOD €XE

A

9GZ ‘AUOD EXE

95T ‘AUOD €XE

A

9GZ ‘AUOD EXE

.

| 95z ‘nuod exe

A A

| 2/‘95z ‘Auod gxg

cee

8CT ‘AUOD EXE

A

8CT ‘AUOD EXE

8CT ‘AUOD EXE

A

8CT ‘AUOD EXE

8T ‘AUOD EXE

A

QCT ‘AUOD EXE

P
.

[81 ‘nuoo exe

A A

|/ ‘sz1 ‘Auooexe

oo
cea

9 ‘AU0D EXE

A

9 ‘AU0D EXE

$9 ‘AUOI EXE

A

$9 ‘AU0D EXE

9 ‘AU0D £XE

A

9 ‘AU0D £XE

¢/ ‘j0od

A

[2/ 99 ‘huod £x,

A

98ew

Residual block with skip connection

|lenpisaJ JaAe|-{¢

Image Credit: [11]

ResNet

ResNet [11] is a popular fully-convolutional CNN architecture for pixel-level tasks like image segmentation.

e

P
e

000T 24

7y

|Jood Snae

7Is ‘Ao exg |
A

715 ‘Aod exg |

715 ‘Ao exg |
A

215 ‘Ao exg |

_.. 715 ‘Auod exg |

A

[2/‘e1s‘Auooexe |

e
aaaaaaa

957 ‘AUOd £XE |

A

95z ‘AU xg |

95 ‘Aud £xg |

A

95z ‘AU £xg |

957 ‘AUOD EXE _
A

95¢ ‘AU exg |

95 ‘Aud exg |

A

95z ‘AU exg |

957 ‘AU0d €xE |
A

95z ‘Nuod €xg |

m- 95z ‘Auod exg |

A

| 7/‘95z ‘Auooexe |

ttttttt

8T ‘AU £XE |

A

8TT ‘AU £Xg |

8TT ‘AUOd £XE |
A

87T ‘AU €Xg |

8T ‘AU eXg |
A

8T ‘AU £XE |

_.. 8T ‘AU £XE |

A

| 7/ ‘szr‘rucoexe |

oo
Sead

9 ‘AUOD EXE _
A

9 ‘AUOD EXE _

9 ‘AUOD £XE _

A

9 ‘AUOD £XE _

9 ‘AUOD £XE _
A

9 ‘AU0D £XE _

¢/ ‘lood
A
[2/ p9 nuoosxz |
A

98ew

|lenpisaJ JaAe|-{¢

Residual block with skip connection

64

256, 1x1, 64
-
3x3,

64,

64, 1x1, 256

101)

ResNet-50, ResNet-

by replacing it with the bottleneck structure!

Build deeper ones (e.g.

256-d out

59

Image Credit: [11]

ResNet

ResNet [11] is a popular fully-convolutional CNN architecture for pixel-level tasks like image segmentation.

i P i 2N
. . .
] .
. .
J
— ; J
p— p— p— pr— pr— pr— § pr— pr— pr— pr— pr— pr— p— pr— pr— pr— pr— p— pr— pr— pr— pr— pr— pr— pr— W s pr— pr— pr— pr— pr—
© ' '
3 .
o & o I o
— ~ < < < < < < = 0 0 00 [0 0) ~ © © © © © © © © © © © ~ ~ ~ ~ ~ ~
) o) & o) Ry & & o0 N I ~N I N N N It n n N N N A N N N A) N ~ H — — —
)] g ~ ~ — — — — - — — N ~ o~ N o~ ~ ~ ~ o~ o~ ~ ~ — [Te} [T} n LN N
) N = = = = = = — = = = S o > ~ < < ~ < = = ~ < = = n = o o S
o > > > > > > > > > > > > > > > > = > > > > > >
oD > > 5 S 5 S S S S Sl c < < c c c S c c c c c c c c c c c Sl c c c < <
e £ < o o o o o o c s} o 9] <] o o o c (] Q o o (9] 9] o o o o o c [s} o o o o
) = S 8_ o o o o (s} o o o S (s} (s} o o o s} o o o o o] o o o o s}
> ° ° D D)) [} %) %) %) %)) %)) o %) %)) %) %) %) %) %)) ™ %) s} %) %) ™ %))
~ & & & & & & o X = X X X x X o X x = x x X x < < X X o X x x X X
© X)) 9] N 3]]) 5 0 3] 3]) o) o) %) 5 N %) 15 o) 3]) N 0 3]
- 5] o)
m e S — S —— | S S —— S —— —— —— —— —— e S S ——— ——— e e ——— ——— ——— e ——— ——— ——— — —— —— S S —— ——

Residual block with skip connection

Build deeper ones (e.g., ResNet-50, ResNet-101) 256, 1x1, 64 256,1x1,4 | | 256,1x1,4 | o5, | 256,1x1,4
by replacing it with the bottleneck structure! ~ * = paths =
64, 3x3, 64 4,3x3,4 4,3x3,4 seee 4,3x3,4
. . ¥ - - -
ResNeXt [12] replaces it with aggregated 64, 1x1, 256 4,1x1,256 | | 4,1x1,256 4,1x1,256
transformations (similar to grouped convolution

but with shared input)!

256-d out

256-d out

60
Image Credit: [11,12]

avg pool
fc 1000

MobileNet

MobileNet [13] is designed to be used in mobile applications, achieving good performances with fewer computations.

Object Detection Finegrain Classification

¥ 4 01050

v 4 i 10:50

Photo by Juanedc (CC BY 2.0) / / / / / / Photo by HarshLight (CC BY 2.0)
000 @)
H{D O 4 HCI O d

Face Attributes Landmark Recognition

MobileNets

Google Doodle by Sarah Harrison Photo by Sharon VanderKaay (CC BY 2.0)

Image Credit: [13]

61

MobileNet

MobileNet [13] is designed to be used in mobile applications, achieving good performances with fewer computations.

Image Credit: [13]

3x3 Conv 3x3 Depthwise Conv
BIN BlN
ReILU Re[LU
1x1 é)onv
BlN
RelLU

Replace the vanilla conv layer with depthwise
separable convolutional layer

62

MobileNet

MobileNet [13] is designed to be used in mobile applications, achieving good performances with fewer computations.

Image Credit: [13]

Table 1. MobileNet Body Architecture

3x3 Conv 3x3 Depthwise Conv
BIN BlN
Re[LU Re[LU
1x1 é)onv
BlN
RelLU

Replace the vanilla conv layer with depthwise
separable convolutional layer

Type / Stride Filter Shape Input Size
Conv /s2 3x3x3x32 224 x 224 x 3
Conv dw / sl 3 x3x32dw 112 x 112 x 32
Conv / sl 1x1x32x64 112 x 112 x 32
Conv dw / s2 3 x 3 x 64dw 112 x 112 x 64
Conv /sl 1x1x64x128 06 x 56 x 64
Conv dw / sl 3 x 3 x 128 dw 56 x 56 x 128
Conv / sl 1x1x128 x 128 56 x 56 x 128
Conv dw / s2 3 x 3 x 128 dw 56 x 56 x 128
Conv /sl 1x1 x 128 x 256 28 x 28 x 128
Conv dw / sl 3 X 3 x 256 dw 28 X 28 x 256
Conv / sl 1 x1 x 256 x 256 28 x 28 x 256
Conv dw / s2 3 X 3 x 256 dw 28 x 28 x 256
Conv / sl 1x1x 256 x512 14 x 14 x 256
><Convdw/sl 3 x3x512dw 14 x 14 x 512
Conv /sl 1x1x512x 512 14 x 14 x 512
Conv dw / s2 3 x3x512dw 14 x 14 x 512
Conv /sl 1x1x512x1024 | 7x7x512
Conv dw / s2 3 x3x1024 dw 7 x7x 1024
Conv / sl 1x1x1024x1024 | 7x 7 x 1024
Avg Pool / sl Pool 7 x 7 7 x7x1024
FC /sl 1024 x 1000 1x1x 1024
Softmax / sl Classifier 1 x 1 x 1000

63

References

[1] https://github.com/vdumoulin/conv_arithmetic/blob/master/README.md

[2] Krizhevsky A, Sutskever I, Hinton GE. ImageNet Classification with Deep Convolutional Neural Networks. Advances in Neural
Information Processing Systems. 2012;25.

[3] https://blog.yani.ai/filter-group-tutorial/

[4] https://towardsdatascience.com/a-basic-introduction-to-separable-convolutions-b99ec3102728
[5] https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53

[6] https://towardsdatascience.com/covolutional-neural-network-cb0883dd6529

[7] http://yann.lecun.com/exdb/lenet/translation.html

[8] http://yann.lecun.com/exdb/lenet/scale.html
[9] https://pure.uva.nl/ws/files/60770359/Thesis.pdf

[10] Ronneberger O, Fischer P, Brox T. U-Net: Convolutional Networks for Biomedical Image Segmentation. InMedical Image
Computing and Computer-Assisted Intervention (MICCALI) 2015.

[11] He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. InProceedings of the IEEE conference on computer
vision and pattern recognition 2016 (pp. 770-778).

[12] Xie S, Girshick R, Dolléar P, Tu Z, He K. Aggregated residual transformations for deep neural networks. InProceedings of the
IEEE conference on computer vision and pattern recognition 2017 (pp. 1492-1500).

[13] Howard AG, Zhu M, Chen B, Kalenichenko D, Wang W, Weyand T, Andreetto M, Adam H. Mobilenets: Efficient convolutional
neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861. 2017 Apr 17.

64

https://github.com/vdumoulin/conv_arithmetic/blob/master/README.md
https://blog.yani.ai/filter-group-tutorial/
https://towardsdatascience.com/a-basic-introduction-to-separable-convolutions-b99ec3102728
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
https://towardsdatascience.com/covolutional-neural-network-cb0883dd6529
http://yann.lecun.com/exdb/lenet/translation.html
http://yann.lecun.com/exdb/lenet/scale.html
https://pure.uva.nl/ws/files/60770359/Thesis.pdf

Questions?

	Slide 1: CPEN 455: Deep Learning Lecture 5: Convolutional Neural Networks II
	Slide 2: Outline
	Slide 3: 2D Transposed Convolution
	Slide 4: 2D Transposed Convolution
	Slide 5: 2D Transposed Convolution
	Slide 6: 2D Transposed Convolution
	Slide 7: 2D Transposed Convolution
	Slide 8: 2D Transposed Convolution
	Slide 9: 2D Transposed Convolution
	Slide 10: 2D Transposed Convolution
	Slide 11: 2D Transposed Convolution
	Slide 12: 2D Transposed Convolution
	Slide 13: 2D Transposed Convolution
	Slide 14: 2D Transposed Convolution
	Slide 15: 2D Transposed Convolution
	Slide 16: 2D Transposed Convolution
	Slide 17: 2D Transposed Convolution
	Slide 18: 2D Transposed Convolution
	Slide 19: 2D Transposed Convolution
	Slide 20: 2D Transposed Convolution
	Slide 21: 2D Transposed Convolution
	Slide 22: Outline
	Slide 23: 2D Dilated Convolution
	Slide 24: 2D Dilated Convolution
	Slide 25: 2D Dilated Convolution
	Slide 26: 2D Dilated Convolution
	Slide 27: 2D Dilated Convolution
	Slide 28: Outline
	Slide 29: Grouped Convolution
	Slide 30: Grouped Convolution
	Slide 31: Grouped Convolution
	Slide 32: Grouped Convolution
	Slide 33: Grouped Convolution
	Slide 34: Grouped Convolution
	Slide 35: Outline
	Slide 36: Separable Convolution
	Slide 37: Separable Convolution
	Slide 38: Separable Convolution
	Slide 39: Separable Convolution
	Slide 40: Separable Convolution
	Slide 41: Separable Convolution
	Slide 42: Separable Convolution
	Slide 43: Separable Convolution
	Slide 44: Separable Convolution
	Slide 45: Separable Convolution
	Slide 46: Outline
	Slide 47: Pooling
	Slide 48: Pooling
	Slide 49: Pooling
	Slide 50: Outline
	Slide 51: Convolutional Neural Networks (CNNs)
	Slide 52: Translation/Shift Invariance
	Slide 53: Translation/Shift Equivariance Invariance
	Slide 54: More on Invariance & Equivariance
	Slide 55: U-Net
	Slide 56: U-Net
	Slide 57: ResNet
	Slide 58: ResNet
	Slide 59: ResNet
	Slide 60: ResNet
	Slide 61: MobileNet
	Slide 62: MobileNet
	Slide 63: MobileNet
	Slide 64: References
	Slide 65: Questions?

