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Reinforcement Learning (RL)

RL is about learning to make decisions from interaction!

Image Credit: [4]

God’s move: AlphaGo 

thought this move happens 

with 0.007% probability in 

human players!

This may be the last time a 

human go player beats AI!
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The Interaction Loop

• Agent: an intelligent program or a real robot

• Environment: the (simulated/real) “world” where the agent 

interacts

• Reward: a scalar feedback signal that defines the goal
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RL Formulation

Image Credit: [9]

The Interaction Loop

• Agent: an intelligent program or a real robot

• Environment: the (simulated/real) “world” where the agent 

interacts

• Reward: a scalar feedback signal that defines the goal

At each time step t:

• Agent receives observation 𝑂𝑡 and reward 𝑅𝑡, and then 

executes action 𝐴𝑡

• Environment receives action 𝐴𝑡  and emits observation 

𝑂𝑡+1 and reward 𝑅𝑡+1
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RL Formulation

Image Credit: [9]

The agent’s job is to maximize cumulative reward 𝐺𝑡:

𝐺𝑡 = 𝑅𝑡+1 + 𝑅𝑡+2 + 𝑅𝑡+3 + ⋯
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The reward hypothesis [11]:

All of what we mean by goals and purposes can be well thought of as 

maximization of the expected value of the cumulative sum of a 

received scalar signal (reward).
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RL Formulation

Image Credit: [9]

The agent’s job is to maximize cumulative reward 𝐺𝑡:

𝐺𝑡 = 𝑅𝑡+1 + 𝑅𝑡+2 + 𝑅𝑡+3 + ⋯

The reward hypothesis [11]:

All of what we mean by goals and purposes can be well thought of as 

maximization of the expected value of the cumulative sum of a 

received scalar signal (reward).

RL differs from supervised/unsupervised learning:

• Supervision is scarce, e.g., reward is often a scalar

• Supervision is often sparse, e.g., an agent gets the reward after a 

sequence of actions

• Sequential data is often non-iid, e.g., an agent’s current decision 

would affect the future data distribution
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What are the key components of the agent?
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What are the key components of the agent?

Agent contains: Agent State, Policy, Value(?), and Model(?).

• The environment’s (internal) state, is usually invisible (fully 

observable vs. partially observable) to the agent. Even if it is 

visible, it may contain lots of irrelevant information.

• The history is the full sequence of observations, actions, and 

rewards up to time t:
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What are the key components of the agent?

Agent contains: Agent State, Policy, Value(?), and Model(?).

• The environment’s (internal) state, is usually invisible (fully 

observable vs. partially observable) to the agent. Even if it is 

visible, it may contain lots of irrelevant information.

• The history is the full sequence of observations, actions, and 

rewards up to time t:

𝐻𝑡 = 𝑂1, 𝐴1, 𝑅1, … , 𝑂𝑡−1, 𝐴𝑡−1, 𝑅𝑡−1, 𝑂𝑡 , 𝑅𝑡

• The agent state is the agent’s internal information/representation 

used to determine the next action. It is a function of the history 

𝑆𝑡 = 𝑓(𝐻𝑡).
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What are the key components of the agent?

Agent contains: Agent State, Policy, Value(?), and Model(?).

• A policy is a map from agent state to action that defines the agent’s 

behavior
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RL Formulation

Image Credit: [9]

What are the key components of the agent?

Agent contains: Agent State, Policy, Value(?), and Model(?).

• A policy is a map from agent state to action that defines the agent’s 

behavior

• It could be deterministic or stochastic. We can conveniently denote 

it as a probability distribution 𝜋(𝑎|𝑠).
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What are the key components of the agent?

Agent contains: Agent State, Policy, Value(?), and Model(?).

• A value function is a prediction of future reward
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RL Formulation

Image Credit: [9]

What are the key components of the agent?

Agent contains: Agent State, Policy, Value(?), and Model(?).

• A value function is a prediction of future reward

• It is used to evaluate the goodness of states (𝛾 ∈ 0,1  is a 

discounting factor):

𝑣𝜋(𝑠) = 𝔼𝜋[𝑅𝑡+1 + 𝛾𝑅𝑡+2 + 𝛾2𝑅𝑡+3 + ⋯ |𝑆𝑡 = 𝑠]
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What are the key components of the agent?

Agent contains: Agent State, Policy, Value(?), and Model(?).

• A model predicts what the environment will do next, e.g., 

ℛ predicts the next immediate reward 

ℛ(𝑠, 𝑎) ≈ 𝔼 [𝑅𝑡+1|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎]
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• A model does not immediately give us a good policy - we would 

still need to plan
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RL Formulation

Image Credit: [9]

What are the key components of the agent?

Agent contains: Agent State, Policy, Value(?), and Model(?).

• A model predicts what the environment will do next, e.g., 

ℛ predicts the next immediate reward 

ℛ(𝑠, 𝑎) ≈ 𝔼 [𝑅𝑡+1|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎]

• A model does not immediately give us a good policy - we would 

still need to plan

• We could also use stochastic (generative) models

29



RL Formulation

Image Credit: [9]

What are the key components of the agent?

Agent contains: Agent State, Policy, Value(?), and Model(?).

Agent Taxonomy:
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Learning and Planning

Two fundamental problems in sequential decision making:

1. Reinforcement Learning:

 

• The environment is initially unknown 

• The agent interacts with the environment 

• The agent improves its policy 
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Learning and Planning

Two fundamental problems in sequential decision making:

1. Reinforcement Learning:

 

• The environment is initially unknown 

• The agent interacts with the environment 

• The agent improves its policy 

2. Planning: 

• A model of the environment is known 

• The agent performs computations with its model (without any external interaction) 

• The agent improves its policy 

• a.k.a. deliberation, reasoning, introspection, pondering, thought, search
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Image Credit: [10]
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RL Taxonomy
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Markov Decision Process

Almost all RL problems can be formalized as Markov decision processes (MDPs).
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Markov Decision Process

Almost all RL problems can be formalized as Markov decision processes (MDPs).

A Markov decision process (MDP) is a tuple

•      is a finite set of states

•      is a finite set of actions

•      is a state transition probability matrix

•      is a reward function

•                  is a discount factor

MDP describes an environment where all states are Markov and can be extended to:

• countably infinite states and or action spaces

• continuous state and or action spaces

• continuous time (requires partial differentiable equations)

• partially observable (POMDPs)

Markov Property: The future is 

independent of the past given the present!
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Markov Decision Process

Return: the total discounted reward from time t 
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convenient, avoid infinite returns, 

uncertainty about the future……
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Markov Decision Process

Return: the total discounted reward from time t 

Policy: the distribution over actions given states

Value (a.k.a., State-Value) function: the expected return starting from state s and then following policy  

Optimal value function
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convenient, avoid infinite returns, 

uncertainty about the future……

We assume stationary policies
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Optimal Q function

Why discount? Mathematically 

convenient, avoid infinite returns, 

uncertainty about the future……

We assume stationary policies

What is the relationship between the value function and Q function?
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convenient, avoid infinite returns, 
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We assume stationary policies

What is the relationship between the value function and Q function?

49



Optimal Policy

Optimal value function

Optimal Q function

One can define a partial ordering over policies

Image Credit: [12]
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Optimal Policy

Optimal value function

Optimal Q function

If we know                 , an optimal policy can be found:
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Optimal value function

Optimal Q function

If we know                 , an optimal policy can be found:

Why?
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Optimal Policy

Optimal value function

Optimal Q function

If we know                 , an optimal policy can be found:

Because                                                      is a convex combination of                  , we have

and the equality holds only if the policy is optimal.

Why?
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Optimal Policy

Optimal value function

Optimal Q function

If we know                 , an optimal policy can be found:

• There is always a deterministic optimal policy for any MDP.

• There can be multiple actions that maximize                 , we can just pick any of these.
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Bellman Equations

Many RL algorithms are based on Bellman Equations, which are recursive formulas and have two main 

variations: Bellman Expectation Equations and Bellman Optimality Equations. 
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Bellman Expectation Equations

For Q-function, we have:
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Bellman Expectation Equations

For Q-function, we have:

64



Bellman Expectation Equations

For Q-function, we have:

65



Due to time-homogeneous Markov chains!

Bellman Expectation Equations

For Q-function, we have:
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Bellman Expectation Equations

Similarly, for value function, we have: 
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Bellman Expectation Equations

In summary, we conclude the Bellman Expectation Equations as follows.

Given an MDP                             , for any policy     , the value function and the Q function obey the 

following expectation equations:

Note that
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Recall the optimal value function is 

Recall the optimal Q function is 

Recall the optimal policy is

Bellman Optimality Equations
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Recall the optimal value function is 

Recall the optimal Q function is 

Recall the optimal policy is

Similar to the expectation case, we can solve a recursive formula for the optimality case: 

Bellman Optimality Equations
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Recall the optimal value function is 

Recall the optimal Q function is 

Recall the optimal policy is

Similar to the expectation case, we can solve a recursive formula for the optimality case: 

Bellman Optimality Equations

Since
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Bellman Optimality Equations

In summary, we conclude the Bellman Optimality Equations as follows.

Given an MDP                             , for any policy     , the optimal value function and the optimal Q function 

obey the following expectation equations:

Note that
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Solve Problems in RL via Bellman Equations

Two important problems in RL:

• Prediction (a.k.a., policy evaluation): given a policy, evaluate the future, e.g., what is my expected 

return under that policy?

• Control: optimize the future, e.g., estimating optimal value or Q functions, to find the best policy.
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Solve Problems in RL via Bellman Equations

Two important problems in RL:

• Prediction (a.k.a., policy evaluation): given a policy, evaluate the future, e.g., what is my expected 

return under that policy?

 Use Bellman Expectation Equations to solve!

• Control: optimize the future, e.g., estimating optimal value or Q functions, to find the best policy.

  Use Bellman Optimality Equations to solve!
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Solve Problems in RL via Bellman Equations
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under that policy?

From Bellman Expectation Equations, we know:
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Solve Problems in RL via Bellman Equations

Prediction (a.k.a., policy evaluation): given a policy, evaluate the future, e.g., what is my expected return 

under that policy?

From Bellman Expectation Equations, we know:

We can use fixed-point iteration:

Under mild conditions (e.g.,            ), this algorithm converges!
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Solve Problems in RL via Bellman Equations

Control: optimize the future, e.g., estimating optimal value or Q functions, to find the best policy.

Since we have already known how to evaluate a policy, we just need to improve it!
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Solve Problems in RL via Bellman Equations

Control: optimize the future, e.g., estimating optimal value or Q functions, to find the best policy.

Since we have already known how to evaluate a policy, we just need to improve it!

How to improve the policy? Greedy strategy!

One can show that the greedy strategy ensures:                                          !
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Solve Problems in RL via Bellman Equations

Control: optimize the future, e.g., estimating optimal value or Q functions, to find the best policy.

Since we have already known how to evaluate a policy, we just need to improve it!

Image Credit: [13]
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Solve Problems in RL via Bellman Equations

Control: optimize the future, e.g., estimating optimal value or Q functions, to find the best policy.

We could also leverage the Bellman Optimality Equations!
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This is equivalent to policy iteration with 1-step of policy evaluation!
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Solve Problems in RL via Bellman Equations
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