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• On-Policy Learning

• “Learn on the job”

• Learn about (target) policy 𝜋 from experience sampled from (target) policy 𝜋

• Off-Policy Learning

• “Look over someone’s shoulder”

• Learn about (target) policy 𝜋 from experience sampled from (behavior) policy 𝜇
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Q-Learning

Consider the off-policy learning setup: 

 Sample episode from behavior policy

 We want to learn the target policy 𝜋 via learning the Q function

Recall the Bellman Optimality Equation:

We can define the Bellman Error (of one step) as: 

Here the target policy is the greedy policy:

Q value at 𝑡Q value at 𝑡 + 1 following 

greedy (target) policy 𝜋
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The idea of Q-Learning [4] is to learn a Q function that minimizes the Bellman Error. In particular, we can 

use the fix point iteration to update the Q function iteratively:
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We thus choose the behavior policy to be:

This ensures that we eventually visit all actions infinitely often!
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Q-Learning

The idea of Q-Learning [4] is to learn a Q function that minimizes the Bellman Error. In particular, we can 

use the fix point iteration to update the Q function iteratively:

With some mild (decaying) condition on the step size 𝜂, Q-Learning is guaranteed to converge:

For small state and action spaces, we can represent Q function as a table and learn it. However, for large or 

infinite spaces, we need to represent it as a parametric function, e.g., a deep neural network!
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Deep Q-Learning

Approximating Q function with a neural net is a decades-old idea, but DeepMind got it to work really well 

on Atari games in 2013 (“deep Q-learning”) [6].

• Take actions following 𝜖-greedy policy

• Store                                 in replay buffer and sample random mini-batch of tuples from the buffer

• Compute Q-targets w.r.t. old and fixed parameters 

Image Credit: [7]
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In policy based methods, we directly parameterize the policy and learn it to maximize some reward.

Advantages:

 

• Better convergence properties

• Effective in high-dimensional or continuous action spaces

• Can learn stochastic policies

Disadvantages:

• Often converge to local rather than global optimum

• Evaluating a policy is typically inefficient and high variance
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Policy Gradient Methods

In policy based methods, we directly parameterize the policy and learn it to maximize some reward.

Given a trajectory    , let us consider the simple expected reward:

Log derivative trick:
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Let us substitute

We have

We use the Monte Carlo Approximation. This is known as REINFORCE algorithm [8]!
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Policy Gradient Methods

Policy gradient typically has a high variance due to the Monte Carlo approximation in high dimension.

To reduce the variance, a common approach is the control variate method, a.k.a., baseline.

We can compute the average reward as a baseline: 

We then subtract the baseline:

This works since

Reward-to-go: my current action can 

not change past rewards (causality)!

Since the baseline does not depend on the 

action, subtracting the baseline still leads to 

an unbiased estimator. By carefully choosing 

the baseline, we can reduce the variance!
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Advanced Policy Gradient Methods

What is wrong with the Policy Gradient besides high variance?

Similar to other optimization methods, step sizes matter for convergence!

• Natural Policy Gradient [9]: Preconditioning with Fisher-Information Matrix

• Trust Region Policy Optimization (TRPO) [10]: select 𝜖 and solve for the optimal 𝛼 while solving                       

using conjugate gradient

• Proximal Policy Optimization (PPO) [11]: turn above constrained optimization into an unconstrained 

one (with clipped loss) and use modern 1st-order optimizers like Adam.



Demo

Simulated Continuous Control in Mujoco using PPO [11] and graph neural networks [12]:
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Actor-Critic Methods

Recall policy gradient:

Since                                                                  , the reward-to-go is a single-sample estimation of Q.

Q is the true expected reward-to-go and we can use more samples to estimate it!

Following the idea of reducing variance via baselines, we introduce the advantage:

where the value does not depend on the action, thus serving as the baseline.

We can estimate the value based on:

Since subtracting a baseline still gives us an unbiased estimator, we have:

Image Credit: [13]
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Actor-Critic Methods

How to estimate the advantage function?

Based on the TD error, we can reduce it to estimating the value function!

How to estimate the value? We can learn a value network to fit the (Monte Carlo) Policy Evaluation! 

The target can be estimated from rollout:

• Vanilla

• Bootstrap

Temporal Difference (TD) error!



Actor-Critic Methods

Given the target, we can learn a value network (critic) by 

minimizing:

Critic = Value 



Actor-Critic Methods

Given the target, we can learn a value network (critic) by 

minimizing:

On the other hand, we learn a policy network (actor) by 

following policy gradient! 

Actor = Policy 

Critic = Value 



Actor-Critic Methods

Given the target, we can learn a value network (critic) by 

minimizing:

On the other hand, we learn a policy network (actor) by 

following policy gradient! 

Actor = Policy 

Critic = Value 



Actor-Critic Methods

Given the target, we can learn a value network (critic) by 

minimizing:

On the other hand, we learn a policy network (actor) by 

following policy gradient! 

Actor = Policy 

Critic = Value 

Episodic trajectories
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Advantages:

• Can efficiently learn models via supervised learning

• Can reason about model uncertainty

Disadvantages:

• First learn a model and then do planning

 → Two sources of approximation error

• Sometimes learning a model is harder than solving the 

tasks at hand

Recall what a model is, e.g., an MDP that represents how state transits and what the next reward should be!
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Dyna-Q

Dyna-Q [14] combines model-free and model-based RL:

• Learn a model from real experience

• Learn and plan value function (and/or policy) from real 

and simulated experience

Image Credit: [15]

Supervised learning from real experience!

Learning from simulated experience (imagination)!
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