
CPEN 455: Deep Learning

Lecture 12: Deep Reinforcement Learning Part II

Renjie Liao

University of British Columbia

Winter, Term 2, 2024

Outline

• Reinforcement Learning (RL) I

• Overview & Applications

• RL Formulation & Taxonomy

• Markov Decision Process (MDP)

• Bellman Equations

• Solving RL problems using the Bellman Equations

• Reinforcement Learning (RL) II

• Model-Free RL: (Deep) Q-learning

• Model-Free RL: Policy Gradient & Actor-Critic

• Model-Based RL: Dyna-Q

2

RL Taxonomy: Recap

Image Credit: [1]
3

RL Taxonomy: Recap

4

RL Taxonomy: Recap

5

Model-Free RL

Image Credit: [2]
6

Model-Based RL

Image Credit: [3]
7

Model-Free RL

Model-Based RL

Image Credit: [3]
8

Model-Free RL Model-Based RL

Model-Based RL

Image Credit: [3]
9

Model-Free RL Model-Based RL Model-Based RL

Outline

• Reinforcement Learning (RL) I

• Overview & Applications

• RL Formulation & Taxonomy

• Markov Decision Process (MDP)

• Bellman Equations

• Solving RL problems using the Bellman Equations

• Reinforcement Learning (RL) II

• Model-Free RL: (Deep) Q-learning

• Model-Free RL: Policy Gradient & Actor-Critic

• Model-Based RL: Dyna-Q

10

On-Policy vs. Off-Policy

• On-Policy Learning

• “Learn on the job”

• Learn about (target) policy 𝜋 from experience sampled from (target) policy 𝜋

On-Policy vs. Off-Policy

• On-Policy Learning

• “Learn on the job”

• Learn about (target) policy 𝜋 from experience sampled from (target) policy 𝜋

• Off-Policy Learning

• “Look over someone’s shoulder”

• Learn about (target) policy 𝜋 from experience sampled from (behavior) policy 𝜇

Q-Learning

Consider the off-policy learning setup:

 Sample episode from behavior policy

 We want to learn the target policy 𝜋 via learning the Q function

Q-Learning

Consider the off-policy learning setup:

 Sample episode from behavior policy

 We want to learn the target policy 𝜋 via learning the Q function

Recall the Bellman Optimality Equation:

Q-Learning

Consider the off-policy learning setup:

 Sample episode from behavior policy

 We want to learn the target policy 𝜋 via learning the Q function

Recall the Bellman Optimality Equation:

We can define the Bellman Error (of one step) as:

Q-Learning

Consider the off-policy learning setup:

 Sample episode from behavior policy

 We want to learn the target policy 𝜋 via learning the Q function

Recall the Bellman Optimality Equation:

We can define the Bellman Error (of one step) as:

Q value at 𝑡Q value at 𝑡 + 1 following

greedy (target) policy 𝜋

Q-Learning

Consider the off-policy learning setup:

 Sample episode from behavior policy

 We want to learn the target policy 𝜋 via learning the Q function

Recall the Bellman Optimality Equation:

We can define the Bellman Error (of one step) as:

Here the target policy is the greedy policy:

Q value at 𝑡Q value at 𝑡 + 1 following

greedy (target) policy 𝜋

Q-Learning

The idea of Q-Learning [4] is to learn a Q function that minimizes the Bellman Error. In particular, we can

use the fix point iteration to update the Q function iteratively:

Q-Learning

The idea of Q-Learning [4] is to learn a Q function that minimizes the Bellman Error. In particular, we can

use the fix point iteration to update the Q function iteratively:

Exploration-exploitation tradeoff: Q-learning only learns from the state-action pairs it visits. One often

needs some strategy to improve the exploration, e.g., 𝜖-greedy policy [5] (choose optimal action based on

Q with probability 1- 𝜖 and choose a random action with probability 𝜖).

Q-Learning

The idea of Q-Learning [4] is to learn a Q function that minimizes the Bellman Error. In particular, we can

use the fix point iteration to update the Q function iteratively:

Exploration-exploitation tradeoff: Q-learning only learns from the state-action pairs it visits. One often

needs some strategy to improve the exploration, e.g., 𝜖-greedy policy [5] (choose optimal action based on

Q with probability 1- 𝜖 and choose a random action with probability 𝜖).

We thus choose the behavior policy to be:

Q-Learning

The idea of Q-Learning [4] is to learn a Q function that minimizes the Bellman Error. In particular, we can

use the fix point iteration to update the Q function iteratively:

Exploration-exploitation tradeoff: Q-learning only learns from the state-action pairs it visits. One often

needs some strategy to improve the exploration, e.g., 𝜖-greedy policy [5] (choose optimal action based on

Q with probability 1- 𝜖 and choose a random action with probability 𝜖).

We thus choose the behavior policy to be:

This ensures that we eventually visit all actions infinitely often!

Q-Learning

The idea of Q-Learning [4] is to learn a Q function that minimizes the Bellman Error. In particular, we can

use the fix point iteration to update the Q function iteratively:

With some mild (decaying) condition on the step size 𝜂, Q-Learning is guaranteed to converge:

Q-Learning

The idea of Q-Learning [4] is to learn a Q function that minimizes the Bellman Error. In particular, we can

use the fix point iteration to update the Q function iteratively:

With some mild (decaying) condition on the step size 𝜂, Q-Learning is guaranteed to converge:

For small state and action spaces, we can represent Q function as a table and learn it. However, for large or

infinite spaces, we need to represent it as a parametric function, e.g., a deep neural network!

Deep Q-Learning

Approximating Q function with a neural net is a decades-old idea, but DeepMind got it to work really well

on Atari games in 2013 (“deep Q-learning”) [6].

Image Credit: [7]

Deep Q-Learning

Approximating Q function with a neural net is a decades-old idea, but DeepMind got it to work really well

on Atari games in 2013 (“deep Q-learning”) [6].

• Take actions following 𝜖-greedy policy

Image Credit: [7]

Deep Q-Learning

Approximating Q function with a neural net is a decades-old idea, but DeepMind got it to work really well

on Atari games in 2013 (“deep Q-learning”) [6].

• Take actions following 𝜖-greedy policy

• Store in replay buffer and sample random mini-batch of tuples from the buffer

Image Credit: [7]

Deep Q-Learning

Approximating Q function with a neural net is a decades-old idea, but DeepMind got it to work really well

on Atari games in 2013 (“deep Q-learning”) [6].

• Take actions following 𝜖-greedy policy

• Store in replay buffer and sample random mini-batch of tuples from the buffer

• Compute Q-targets w.r.t. old and fixed parameters

Image Credit: [7]

Outline

• Reinforcement Learning (RL) I

• Overview & Applications

• RL Formulation & Taxonomy

• Markov Decision Process (MDP)

• Bellman Equations

• Solving RL problems using the Bellman Equations

• Reinforcement Learning (RL) II

• Model-Free RL: (Deep) Q-learning

• Model-Free RL: Policy Gradient & Actor-Critic

• Model-Based RL: Dyna-Q

28

Policy Gradient Methods

In deep Q learning, we parameterize the Q function as a neural network and learn it to minimize the

Bellman error. A policy is then obtained from Q function, e.g., via 𝜖-greedy strategy.

Policy Gradient Methods

In deep Q learning, we parameterize the Q function as a neural network and learn it to minimize the

Bellman error. A policy is then obtained from Q function, e.g., via 𝜖-greedy strategy.

Image Credit: [2]

Policy Gradient Methods

In policy based methods, we directly parameterize the policy and learn it to maximize some reward.

Policy Gradient Methods

In policy based methods, we directly parameterize the policy and learn it to maximize some reward.

Advantages:

• Better convergence properties

• Effective in high-dimensional or continuous action spaces

• Can learn stochastic policies

Policy Gradient Methods

In policy based methods, we directly parameterize the policy and learn it to maximize some reward.

Advantages:

• Better convergence properties

• Effective in high-dimensional or continuous action spaces

• Can learn stochastic policies

Disadvantages:

• Often converge to local rather than global optimum

• Evaluating a policy is typically inefficient and high variance

Policy Gradient Methods

In policy based methods, we directly parameterize the policy and learn it to maximize some reward.

Given a trajectory , let us consider the simple expected reward:

Policy Gradient Methods

In policy based methods, we directly parameterize the policy and learn it to maximize some reward.

Given a trajectory , let us consider the simple expected reward:

Policy Gradient Methods

In policy based methods, we directly parameterize the policy and learn it to maximize some reward.

Given a trajectory , let us consider the simple expected reward:

Log derivative trick:

Policy Gradient Methods

Let us substitute

We have

Policy Gradient Methods

Let us substitute

We have

Policy Gradient Methods

Let us substitute

We have

We use the Monte Carlo Approximation. This is known as REINFORCE algorithm [8]!

Policy Gradient Methods

Let us substitute

We have

Full Reward

Reward-to-go: my current policy can

not change past rewards (causality)!

Policy Gradient Methods

Policy gradient typically has a high variance due to the Monte Carlo approximation in high dimension.

Reward-to-go: my current action can

not change past rewards (causality)!

Policy Gradient Methods

Policy gradient typically has a high variance due to the Monte Carlo approximation in high dimension.

To reduce the variance, a common approach is the control variate method, a.k.a., baseline.

Reward-to-go: my current action can

not change past rewards (causality)!

Policy Gradient Methods

Policy gradient typically has a high variance due to the Monte Carlo approximation in high dimension.

To reduce the variance, a common approach is the control variate method, a.k.a., baseline.

We can compute the average reward as a baseline:

We then subtract the baseline:

Reward-to-go: my current action can

not change past rewards (causality)!

Policy Gradient Methods

Policy gradient typically has a high variance due to the Monte Carlo approximation in high dimension.

To reduce the variance, a common approach is the control variate method, a.k.a., baseline.

We can compute the average reward as a baseline:

We then subtract the baseline:

This works since

Reward-to-go: my current action can

not change past rewards (causality)!

Policy Gradient Methods

Policy gradient typically has a high variance due to the Monte Carlo approximation in high dimension.

To reduce the variance, a common approach is the control variate method, a.k.a., baseline.

We can compute the average reward as a baseline:

We then subtract the baseline:

This works since

Reward-to-go: my current action can

not change past rewards (causality)!

Since the baseline does not depend on the

action, subtracting the baseline still leads to

an unbiased estimator. By carefully choosing

the baseline, we can reduce the variance!

Advanced Policy Gradient Methods

What is wrong with the Policy Gradient besides high variance?

Similar to other optimization methods, step sizes matter for convergence!

Advanced Policy Gradient Methods

What is wrong with the Policy Gradient besides high variance?

Similar to other optimization methods, step sizes matter for convergence!

• Natural Policy Gradient [9]: Preconditioning with Fisher-Information Matrix

Advanced Policy Gradient Methods

What is wrong with the Policy Gradient besides high variance?

Similar to other optimization methods, step sizes matter for convergence!

• Natural Policy Gradient [9]: Preconditioning with Fisher-Information Matrix

• Trust Region Policy Optimization (TRPO) [10]: select 𝜖 and solve for the optimal 𝛼 while solving

using conjugate gradient

Advanced Policy Gradient Methods

What is wrong with the Policy Gradient besides high variance?

Similar to other optimization methods, step sizes matter for convergence!

• Natural Policy Gradient [9]: Preconditioning with Fisher-Information Matrix

• Trust Region Policy Optimization (TRPO) [10]: select 𝜖 and solve for the optimal 𝛼 while solving

using conjugate gradient

• Proximal Policy Optimization (PPO) [11]: turn above constrained optimization into an unconstrained

one (with clipped loss) and use modern 1st-order optimizers like Adam.

Demo

Simulated Continuous Control in Mujoco using PPO [11] and graph neural networks [12]:

Actor-Critic Methods

Recall policy gradient:

Actor-Critic Methods

Recall policy gradient:

Since , the reward-to-go is a single-sample estimation of Q.

Q is the true expected reward-to-go and we can use more samples to estimate it!

Actor-Critic Methods

Recall policy gradient:

Since , the reward-to-go is a single-sample estimation of Q.

Q is the true expected reward-to-go and we can use more samples to estimate it!

Image Credit: [13]

Actor-Critic Methods

Recall policy gradient:

Since , the reward-to-go is a single-sample estimation of Q.

Q is the true expected reward-to-go and we can use more samples to estimate it!

Following the idea of reducing variance via baselines, we introduce the advantage:

where the value does not depend on the action, thus serving as the baseline.

We can estimate the value based on:

Image Credit: [13]

Actor-Critic Methods

Recall policy gradient:

Since , the reward-to-go is a single-sample estimation of Q.

Q is the true expected reward-to-go and we can use more samples to estimate it!

Following the idea of reducing variance via baselines, we introduce the advantage:

where the value does not depend on the action, thus serving as the baseline.

We can estimate the value based on:

Since subtracting a baseline still gives us an unbiased estimator, we have:

Image Credit: [13]

Actor-Critic Methods

How to estimate the advantage function?

Actor-Critic Methods

How to estimate the advantage function?

Based on the TD error, we can reduce it to estimating the value function!

Temporal Difference (TD) error!

Actor-Critic Methods

How to estimate the advantage function?

Based on the TD error, we can reduce it to estimating the value function!

How to estimate the value? We can learn a value network to fit the (Monte Carlo) Policy Evaluation!

Temporal Difference (TD) error!

Actor-Critic Methods

How to estimate the advantage function?

Based on the TD error, we can reduce it to estimating the value function!

How to estimate the value? We can learn a value network to fit the (Monte Carlo) Policy Evaluation!

The target can be estimated from rollout:

• Vanilla

• Bootstrap

Temporal Difference (TD) error!

Actor-Critic Methods

Given the target, we can learn a value network (critic) by

minimizing:

Critic = Value

Actor-Critic Methods

Given the target, we can learn a value network (critic) by

minimizing:

On the other hand, we learn a policy network (actor) by

following policy gradient!

Actor = Policy

Critic = Value

Actor-Critic Methods

Given the target, we can learn a value network (critic) by

minimizing:

On the other hand, we learn a policy network (actor) by

following policy gradient!

Actor = Policy

Critic = Value

Actor-Critic Methods

Given the target, we can learn a value network (critic) by

minimizing:

On the other hand, we learn a policy network (actor) by

following policy gradient!

Actor = Policy

Critic = Value

Episodic trajectories

Outline

• Reinforcement Learning (RL) I

• Overview & Applications

• RL Formulation & Taxonomy

• Markov Decision Process (MDP)

• Bellman Equations

• Solving RL problems using the Bellman Equations

• Reinforcement Learning (RL) II

• Model-Free RL: (Deep) Q-learning

• Model-Free RL: Policy Gradient & Actor-Critic

• Model-Based RL: Dyna-Q

64

Model-Based RL

Image Credit: [3]
65

Advantages:

• Can efficiently learn models via supervised learning

• Can reason about model uncertainty

Model-Based RL

Image Credit: [3]
66

Advantages:

• Can efficiently learn models via supervised learning

• Can reason about model uncertainty

Disadvantages:

• First learn a model and then do planning

 → Two sources of approximation error

• Sometimes learning a model is harder than solving the

tasks at hand

Model-Based RL

Image Credit: [3]
67

Advantages:

• Can efficiently learn models via supervised learning

• Can reason about model uncertainty

Disadvantages:

• First learn a model and then do planning

 → Two sources of approximation error

• Sometimes learning a model is harder than solving the

tasks at hand

Recall what a model is, e.g., an MDP that represents how state transits and what the next reward should be!

Dyna-Q

Dyna-Q [14] combines model-free and model-based RL:

• Learn a model from real experience

• Learn and plan value function (and/or policy) from real

and simulated experience

Dyna-Q

Dyna-Q [14] combines model-free and model-based RL:

• Learn a model from real experience

• Learn and plan value function (and/or policy) from real

and simulated experience

Image Credit: [15]

Dyna-Q

Dyna-Q [14] combines model-free and model-based RL:

• Learn a model from real experience

• Learn and plan value function (and/or policy) from real

and simulated experience

Image Credit: [15]

Dyna-Q

Dyna-Q [14] combines model-free and model-based RL:

• Learn a model from real experience

• Learn and plan value function (and/or policy) from real

and simulated experience

Image Credit: [15]

Supervised learning from real experience!

Dyna-Q

Dyna-Q [14] combines model-free and model-based RL:

• Learn a model from real experience

• Learn and plan value function (and/or policy) from real

and simulated experience

Image Credit: [15]

Supervised learning from real experience!

Learning from simulated experience (imagination)!

References

[1] Murphy, K.P., 2023. Probabilistic machine learning: Advanced topics. MIT Press.

[2] https://www.davidsilver.uk/wp-content/uploads/2020/03/pg.pdf

[3] https://github.com/yjavaherian/deepmind-x-ucl-rl/blob/main/slides/All%20Lectures.pdf

[4] Watkins, C.J. and Dayan, P., 1992. Q-learning. Machine learning, 8, pp.279-292.

[5] Sutton, R.S. and Barto, A.G., 1998. Reinforcement Learning: An Introduction.

[6] Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D. and Riedmiller, M., 2013. Playing atari with deep
reinforcement learning. arXiv preprint arXiv:1312.5602.

[7] https://www.davidsilver.uk/wp-content/uploads/2020/03/FA.pdf

[8] Williams, R.J., 1992. Simple statistical gradient-following algorithms for connectionist reinforcement learning. Reinforcement
learning, pp.5-32.

[9] Peters, J. and Schaal, S., 2008. Reinforcement learning of motor skills with policy gradients. Neural networks, 21(4), pp.682-697.

[10] Schulman, J., Levine, S., Abbeel, P., Jordan, M. and Moritz, P., 2015, June. Trust region policy optimization. In International
conference on machine learning (pp. 1889-1897). PMLR.

[11] Schulman, J., Wolski, F., Dhariwal, P., Radford, A. and Klimov, O., 2017. Proximal policy optimization algorithms. arXiv preprint
arXiv:1707.06347.

https://www.davidsilver.uk/wp-content/uploads/2020/03/pg.pdf
https://github.com/yjavaherian/deepmind-x-ucl-rl/blob/main/slides/All%20Lectures.pdf
https://www.davidsilver.uk/wp-content/uploads/2020/03/FA.pdf

References

[12] Wang, T., Liao, R., Ba, J. and Fidler, S., 2018. Nervenet: Learning structured policy with graph neural networks. In Proceedings of
the International Conference on Learning Representations, Vancouver, BC, Canada (Vol. 30).

[13] https://rail.eecs.berkeley.edu/deeprlcourse/deeprlcourse/static/slides/lec-6.pdf

[14] Sutton, R.S., 1990, June. Integrated architecture for learning, planning, and reacting based on approximating dynamic
programming. In Proceedings of the seventh international conference (1990) on Machine learning (pp. 216-224).

[15] https://www.davidsilver.uk/wp-content/uploads/2020/03/dyna.pdf

https://rail.eecs.berkeley.edu/deeprlcourse/deeprlcourse/static/slides/lec-6.pdf
https://www.davidsilver.uk/wp-content/uploads/2020/03/dyna.pdf

Questions?

	Slide 1: CPEN 455: Deep Learning Lecture 12: Deep Reinforcement Learning Part II
	Slide 2: Outline
	Slide 3: RL Taxonomy: Recap
	Slide 4: RL Taxonomy: Recap
	Slide 5: RL Taxonomy: Recap
	Slide 6: Model-Free RL
	Slide 7: Model-Based RL
	Slide 8: Model-Based RL
	Slide 9: Model-Based RL
	Slide 10: Outline
	Slide 11: On-Policy vs. Off-Policy
	Slide 12: On-Policy vs. Off-Policy
	Slide 13: Q-Learning
	Slide 14: Q-Learning
	Slide 15: Q-Learning
	Slide 16: Q-Learning
	Slide 17: Q-Learning
	Slide 18: Q-Learning
	Slide 19: Q-Learning
	Slide 20: Q-Learning
	Slide 21: Q-Learning
	Slide 22: Q-Learning
	Slide 23: Q-Learning
	Slide 24: Deep Q-Learning
	Slide 25: Deep Q-Learning
	Slide 26: Deep Q-Learning
	Slide 27: Deep Q-Learning
	Slide 28: Outline
	Slide 29: Policy Gradient Methods
	Slide 30: Policy Gradient Methods
	Slide 31: Policy Gradient Methods
	Slide 32: Policy Gradient Methods
	Slide 33: Policy Gradient Methods
	Slide 34: Policy Gradient Methods
	Slide 35: Policy Gradient Methods
	Slide 36: Policy Gradient Methods
	Slide 37: Policy Gradient Methods
	Slide 38: Policy Gradient Methods
	Slide 39: Policy Gradient Methods
	Slide 40: Policy Gradient Methods
	Slide 41: Policy Gradient Methods
	Slide 42: Policy Gradient Methods
	Slide 43: Policy Gradient Methods
	Slide 44: Policy Gradient Methods
	Slide 45: Policy Gradient Methods
	Slide 46: Advanced Policy Gradient Methods
	Slide 47: Advanced Policy Gradient Methods
	Slide 48: Advanced Policy Gradient Methods
	Slide 49: Advanced Policy Gradient Methods
	Slide 50: Demo
	Slide 51: Actor-Critic Methods
	Slide 52: Actor-Critic Methods
	Slide 53: Actor-Critic Methods
	Slide 54: Actor-Critic Methods
	Slide 55: Actor-Critic Methods
	Slide 56: Actor-Critic Methods
	Slide 57: Actor-Critic Methods
	Slide 58: Actor-Critic Methods
	Slide 59: Actor-Critic Methods
	Slide 60: Actor-Critic Methods
	Slide 61: Actor-Critic Methods
	Slide 62: Actor-Critic Methods
	Slide 63: Actor-Critic Methods
	Slide 64: Outline
	Slide 65: Model-Based RL
	Slide 66: Model-Based RL
	Slide 67: Model-Based RL
	Slide 68: Dyna-Q
	Slide 69: Dyna-Q
	Slide 70: Dyna-Q
	Slide 71: Dyna-Q
	Slide 72: Dyna-Q
	Slide 73: References
	Slide 74: References
	Slide 75: Questions?

