
CPEN 455: Deep Learning
Lecture 11: Diffusion Models

Felix Fu, Qi Yan, Renjie Liao

University of British Columbia
Winter, Term 2, 2024

Outline

• Denoising Diffusion Probabilistic Models (DDPMs)
• Forward Process
• Reverse Process
• ELBO
• Noise vs Data Prediction
• Inference

• Other Diffusion Models
• Score Matching & Score-based Models
• Score SDEs

2

Generative models

• Learning to generate data.

3
Image credit: [1]

Image credit: [1]

Generative models

5

Last lecture:

Image credit: [2]

Generative models

6

This lecture:

Image credit: [2]

Stable Diffusion

7

AI Artworks 2021

Image credit: [3]

Midjourney

8

AI Artworks 2022

Image credit: [14]

Sora
9

A fast-involving field 2024

Video credit: [15]

Mercury Coder
10

A fast-involving field 2025

Video credit: [16]

Motivations

Probabilistic models suffer from a trade-off:
• Some models are tractable but not flexible. (e.g. Laplace, Gaussian distributions)
• Some models are flexible but not tractable. (e.g. energy-based models)

We build a generative Markov Chain that
• converts a simple distribution into a target distribution.
• has an analytically evaluable probability at each step, thus the full chain.
• based on non-equilibrium statistical physics.

11

2015

Motivations

1. A defined forward process that transforms data to noise (more tractable).
2. A learned reverse process that transforms noise to data (more flexible).

12

2015

Forward 😎

Reverse
🤯

What does this remind you of ?

Motivations

1. A defined forward process that transforms data to noise (more tractable).
2. A learned reverse process that transforms noise to data (more flexible).

13

2015

Forward 😎

Reverse 🤔

Denoising Diffusion Probabilistic Models

Denoising diffusion models consist of two processes:
• Forward diffusion process that gradually adds noise to input data.
• Reverse denoising process that learns to generate data by denoising.

14

2020

DataNoise

Forward diffusion process (fixed)

Reverse denoising process (generative)

Outline

• Denoising Diffusion Probabilistic Models (DDPMs)
• Forward Process
• Reverse Process
• ELBO
• Noise vs Data Prediction
• Inference

• Other Diffusion Models
• Score Matching & Score-based Models
• Score SDEs

15

Forward Process

• Given real data distribution , we gradually adding Gaussian noise
according to a schedule .

16
Image credit: [1]

• The forward process allows sampling of at arbitrary timestep in
tractable, closed form:

• The noise schedule is designed such that .

Forward Process

17
Image credit: [1]

Forward Process

• The re-parametrization trick.
• Blackboard time!

18
Image credit: [21]

Noise Schedule

19
Ref: [9]

Outline

• Denoising Diffusion Probabilistic Models (DDPMs)
• Forward Process
• Reverse Process
• ELBO
• Noise vs Data Prediction
• Inference

• Other Diffusion Models
• Score Matching & Score-based Models
• Score SDEs

20

Reverse Process

21
Image credit: [22]

Reverse Process

22
Image credit: [22]

Reverse Process

23
Image credit: [22]

Reverse Process

24
Image credit: [22]

Reverse Process

25
Image credit: [22]

Reverse Process

• We predict the mean and covariance of added Gaussian noise.

26
Image credit: [1]

Reverse Process

• How to generate data?
• Sample
• Iteratively sample from the reversed Markov chain

• But is unknown and intractable!

• Luckily, if we condition on the data, we arrive at something tractable
• That is to say, we have a closed-form posterior distribution. Yay!

27

Outline

• Denoising Diffusion Probabilistic Models (DDPMs)
• Forward Process
• Reverse Process
• ELBO
• Noise vs Data Prediction
• Inference

• Other Diffusion Models
• Score Matching & Score-based Models
• Score SDEs

28

ELBO

• Connection with Variational Autoencoders

29

ELBO

• Connection with Variational Autoencoders

30

ELBO

• Connection with Variational Autoencoders

31

ELBO

32

Intractable!

Markov Chain

Logarithmic rules

Telescoping products

Parameterizing DDPM

• KL divergence has a simple form between Gaussians.

33

Parameterizing DDPM

• KL divergence has a simple form between Gaussians.

• Recall the re-parameterization of the forward process

34

Parameterizing DDPM

• KL divergence has a simple form between Gaussians.

• Recall the re-parameterization of the forward process

35

Parameterizing DDPM

• KL divergence has a simple form between Gaussians.

• Recall the re-parameterization of the forward process

• Trainable network predicts the noise mean.

36

Parameterizing DDPM

• KL divergence has a simple form between Gaussians.

• Recall the re-parameterization of the forward process

• Trainable network predicts the noise mean.

37

Parameterizing DDPM

• KL divergence has a simple form between Gaussians.

• Recall the re-parameterization of the forward process

• Trainable network predicts the noise mean.

• Final objective:

38

Simplified Training Objective

39

Simplified Training Objective

• adjusts the weights for correct maximum likelihood estimation.

40

Simplified Training Objective

• adjusts the weights for correct maximum likelihood estimation.
• In DDPM, the training objective gets simplified to:

41

Training and Inference

42
Ref: [5]

Generated Samples

43
Image credit: [5]

Outline

• Denoising Diffusion Probabilistic Models (DDPMs)
• Forward Process
• Reverse Process
• ELBO
• Noise vs Data Prediction
• Inference

• Other Diffusion Models
• Score Matching & Score-based Models
• Score SDEs

44

Noise vs Data Prediction

• DDPM noise estimation loss:

45

Lsimple = Ex0,ϵ,t

[

∥ϵ− ϵθ (xt, t)∥2
]

= Ex0,ϵ,t

[

∥

∥

∥

∥

xt −
√
ᾱt x0√

1− ᾱt

− ϵθ (xt, t)

∥

∥

∥

∥

2
]

Noise vs Data Prediction

• DDPM noise estimation loss:

• Recall the forward process:

46

Lsimple = Ex0,ϵ,t

[

∥ϵ− ϵθ (xt, t)∥2
]

= Ex0,ϵ,t

[

∥

∥

∥

∥

xt −
√
ᾱt x0√

1− ᾱt

− ϵθ (xt, t)

∥

∥

∥

∥

2
]

xt =
√
ᾱtx0 +

√
1− ᾱt ϵ, ϵ ∼ N (0, I)

ϵ =
xt −

√
ᾱt x0√

1− ᾱt

Noise vs Data Prediction

• DDPM noise estimation loss:

• Recall the forward process:

• Let’s use x0 centered parameterization:

47

Lsimple = Ex0,ϵ,t

[

∥ϵ− ϵθ (xt, t)∥2
]

= Ex0,ϵ,t

[

∥

∥

∥

∥

xt −
√
ᾱt x0√

1− ᾱt

− ϵθ (xt, t)

∥

∥

∥

∥

2
]

Dθ(xt, t) ≈ x0

ϵθ =
xt −

√
ᾱt Dθ(xt, t)

√
1− ᾱt

xt =
√
ᾱtx0 +

√
1− ᾱt ϵ, ϵ ∼ N (0, I)

ϵ =
xt −

√
ᾱt x0√

1− ᾱt

Noise vs Data Prediction

• DDPM data estimation loss:

• Here, we show a simplified objective. See more discussion in [5].

48

Lsimple = Ex0,ϵ,t

[

∥ϵ− ϵθ (xt, t)∥2
]

= Ex0,ϵ,t

[

∥

∥

∥

∥

xt −
√
ᾱt x0√

1− ᾱt

− ϵθ (xt, t)

∥

∥

∥

∥

2
]

= Ex0,ϵ,t

[

∥

∥

∥

∥

xt −
√
ᾱt x0√

1− ᾱt

−
xt −

√
ᾱt Dθ (xt, t)√
1− ᾱt

∥

∥

∥

∥

2
]

L′

simple := Ex0,ϵ,t

[

∥x0 −Dθ (xt, t)∥2
]

Ref: [5]

Outline

• Denoising Diffusion Probabilistic Models (DDPMs)
• Forward Process
• Reverse Process
• ELBO
• Noise vs Data Prediction
• Inference

• Guided conditional generation
• Classifier-free guidance
• DDIM

• Other Diffusion Models
• Score Matching & Score-based Models
• Score SDEs

49

Inference: guided conditional generation

• Goal: generation with conditions (controllability)

50
Image credit: [6]

Unconditional generation Class-conditional generation

Inference: guided conditional generation

• Goal: generation with conditions (controllability)

51
Image credit: [7, 8]

Text-to-Image generation Visual cue-based generation

Inference: guided conditional generation

• Naïve approach: explicit training using the data-condition pairs
• Generative modeling objective:

 through denoiser network:

52

q(x | y)

(x,y)

ϵθ(xt, t,y)

Inference: guided conditional generation

• Naïve approach: explicit training using the data-condition pairs
• Generative modeling objective:

 through denoiser network:

• Caveats:
• Data scarcity: what if one condition appears rarely in the dataset?
• Flexibility: control “strength” of conditioning?

53

q(x | y)

(x,y)

ϵθ(xt, t,y)

Inference: classifier guidance

• Can we steer the generation controllably using another neural net?
• Bayes’ rule:

54

∇xt
log q(xt|y) = ∇xt

log q(xt) +∇xt
log q(y|xt)−∇xt

log q(y)

q(xt|y) =
q(xt)q(y|xt)

q(y)

Ref: [9]

Inference: classifier guidance

• Can we steer the generation controllably using another neural net?
• Bayes’ rule:

55

Uncond. distribution Classifier objective

∇xt
log q(xt|y) = ∇xt

log q(xt) +∇xt
log q(y|xt)−∇xt

log q(y)

Cond. distribution

q(xt|y) =
q(xt)q(y|xt)

q(y)

Ref: [9]

Inference: classifier guidance

• Can we steer the generation controllably using another neural net?
• Bayes’ rule:

• Take gradient w.r.t. data:

56

∇xt
log q(xt|y) = ∇xt

log q(xt) +∇xt
log q(y|xt)−✭

✭
✭
✭

✭✭∇xt
log q(y)

∇xt
log q(xt|y) = ∇xt

log q(xt) +∇xt
log q(y|xt)

q(xt|y) =
q(xt)q(y|xt)

q(y)

Ref: [9]

Uncond. distribution Classifier objective

∇xt
log q(xt|y) = ∇xt

log q(xt) +∇xt
log q(y|xt)−∇xt

log q(y)

Cond. distribution

Inference: classifier guidance

• Some background on score function:

• Think about gradient ascent

• Gaussian distribution score function:

57
Ref: [10]

If x ∼ N (µ,σ2
I), then ∇x log q(x) = ∇x

(

−
1

2σ2
(x− µ)2

)

= −
x− µ

σ2
= −

ϵ

σ
, ϵ ∼ N (0, I)

s(x) := ∇x log q(x)

Inference: classifier guidance

• Some background on score function:

• Think about gradient ascent

• Gaussian distribution score function:

• Denoising score matching (DSM) [10]:

58
Ref: [10]

q(xt|x0) ∼ N (
√
ᾱtx0, (1− ᾱt)I)

∇xt
log q(xt) = Eq(x0)q(xt|x0) [∇xt

log q(xt | x0)]

≈ −
ϵθ(xt, t)√
1− ᾱt

If x ∼ N (µ,σ2
I), then ∇x log q(x) = ∇x

(

−
1

2σ2
(x− µ)2

)

= −
x− µ

σ2
= −

ϵ

σ
, ϵ ∼ N (0, I)

s(x) := ∇x log q(x)

Inference: classifier guidance

• Can we steer the generation controllably using another neural net?
• Putting things together:

• First term:

• Second term:

• Gradient of a classifier

59

∇xt
log q(xt|y) = ∇xt

log q(xt) +∇xt
log q(y|xt)

∇xt
log q(xt) ≈ −

ϵθ(xt, t)√
1− ᾱt

∇xt
log q(y|xt) = ∇xt

log fφ(y|xt)

Inference: classifier guidance

• Can we steer the generation controllably using another neural net?
• Classifier guidance:

• Modified denoising process:

60

∇xt
log q(xt|y) = ∇xt

log q(xt) +∇xt
log q(y|xt)

≈ −
1√

1− ᾱt

ϵθ(xt, t) +∇xt
log fφ(y|xt)

= −
1√

1− ᾱt

(ϵθ(xt, t)−
√
1− ᾱt∇xt

log fφ(y|xt))

ϵ̄θ(xt, t) = ϵθ(xt, t)−
√
1− ᾱt w∇xt

log fφ(y|xt)

Ref: [9]

Inference: classifier guidance

61
Image credit: [9]

Outline

• Denoising Diffusion Probabilistic Models (DDPMs)
• Forward Process
• Reverse Process
• ELBO
• Noise vs Data Prediction
• Inference

• Guided conditional generation
• Classifier-free guidance
• DDIM

• Other Diffusion Models
• Score Matching & Score-based Models
• Score SDEs

62

Inference: classifier-free guidance

• Drawbacks of classifier guidance

• Classifier must be separately trained, but it is usually not trained on the noisy data.
• Computing gradient in the denoising process is slow.

63

ϵ̄θ(xt, t) = ϵθ(xt, t)−
√
1− ᾱt w∇xt

log fφ(y|xt)

Inference: classifier-free guidance

• Drawbacks of classifier guidance

• Classifier must be separately trained, but it is usually not trained on the noisy data.
• Computing gradient in the denoising process is slow.

• Classifier-free guidance (CFG) uses a single neural net for both purposes.

64

ϵ̄θ(xt, t) = ϵθ(xt, t)−
√
1− ᾱt w∇xt

log fφ(y|xt)

Unconditional: ∇xt
log q(xt) = −

ϵθ(xt, t, y = ∅)√
1− ᾱt

Conditional: ∇xt
log q(xt|y) = −

ϵθ(xt, t, y)√
1− ᾱt

Ref: [11]

Inference: classifier-free guidance

• Drawbacks of classifier guidance

• Classifier must be separately trained, but it is usually not trained on the noisy data.
• Computing gradient in the denoising process is slow.

• Classifier-free guidance (CFG) uses a single neural net for both purposes.

65

ϵ̄θ(xt, t) = ϵθ(xt, t)−
√
1− ᾱt w∇xt

log fφ(y|xt)

∇xt
log p(y|xt) = ∇xt

log p(xt|y)−∇xt
log p(xt)

= −
1√

1− ᾱt

(

ϵθ(xt, t, y)− ϵθ(xt, t, y = ∅)
)

ϵ̄θ(xt, t, y) = ϵθ(xt, t, y)−
√
1− ᾱt w∇xt

log p(y|xt)

= ϵθ(xt, t, y) + w
(

ϵθ(xt, t, y)− ϵθ(xt, t)
)

= (w + 1)ϵθ(xt, t, y)− wϵθ(xt, t)

Ref: [11]

Inference: classifier-free guidance

• Drawbacks of classifier guidance

• Classifier must be separately trained, but it is usually not trained on the noisy data.
• Computing gradient in the denoising process is slow.

• Classifier-free guidance (CFG) uses a single neural net for both purposes.

66

ϵ̄θ(xt, t) = ϵθ(xt, t)−
√
1− ᾱt w∇xt

log fφ(y|xt)

∇xt
log p(y|xt) = ∇xt

log p(xt|y)−∇xt
log p(xt)

= −
1√

1− ᾱt

(

ϵθ(xt, t, y)− ϵθ(xt, t, y = ∅)
)

ϵ̄θ(xt, t, y) = ϵθ(xt, t, y)−
√
1− ᾱt w∇xt

log p(y|xt)

= ϵθ(xt, t, y) + w
(

ϵθ(xt, t, y)− ϵθ(xt, t)
)

= (w + 1)ϵθ(xt, t, y)− wϵθ(xt, t)

Guidance scale

Ref: [11]

Inference: classifier-free guidance

67
Image credit: [11]

Outline

• Denoising Diffusion Probabilistic Models (DDPMs)
• Forward Process
• Reverse Process
• ELBO
• Noise vs Data Prediction
• Inference

• Guided conditional generation
• Classifier-free guidance
• DDIM

• Other Diffusion Models
• Score Matching & Score-based Models
• Score SDEs

68

Inference: DDIM

• Sampling for-loop is slow.

69
Image credit: [4]

Inference: DDIM

• Let’s skip some steps in the middle!

70
Image credit: [12]

Inference: DDIM

• Let’s skip some steps in the middle!

• Recall the data prediction formulation:

• We can jump to data prediction and jump back to arbitrary noisy step.
• This is called denoising diffusion implicit model (DDIM).

71
Image credit: [12]

x̂0 =
xt −

√

1− ᾱt ϵθ(xt, t)
√

ᾱt

Inference: DDIM

• We can jump to data prediction and jump back to arbitrary noisy step.

72

Algorithm 1: Fewer-Steps DDIM Sampling

1: xT ∼ N (0, I)
2: for s from S to 1 do

3: t← τs
4: t′ ← τs−1

5: ϵ̂← ϵθ(xt, t)
6: x̂0 ← 1√

ᾱt

(

xt −
√
1− ᾱtϵ̂

)

7: xt′ ←
√
ᾱt′ x̂0 +

√
1− ᾱt′ ϵ̂

8: end for

9: return x̂0

[1, . . . , T] =⇒ [τ0 = 0, . . . , τS = T], e.g., τ = [0, 10, 20, 30, . . . , 1000]

Inference: DDIM

• Application: StableDiffusion v1.5 at huggingface.co

73
Image credit: [13]

Outline

• Denoising Diffusion Probabilistic Models (DDPMs)
• Forward Process
• Reverse Process
• ELBO
• Noise vs Data Prediction
• Inference

• Other Diffusion Models
• Score Matching & Score-based Models
• Score SDEs

74

Score Matching & Score-based Models

• Recall the aforementioned denoising score matching (DSM) [10]:

• Here, we introduce DSM within the DDPM objective. What if we train score-
based models from scratch?

75
Ref: [10]

q(xt|x0) ∼ N (
√
ᾱtx0, (1− ᾱt)I)

∇xt
log q(xt) = Eq(x0)q(xt|x0) [∇xt

log q(xt | x0)]

≈ −
ϵθ(xt, t)√
1− ᾱt

Score Matching & Score-based Models

• Score matching objective:

• Interpretation of score function: the direction where data likelihood increases.

76
Ref: [17, 18]

s(x) := ∇x log q(x)

Score Matching & Score-based Models

• What if we train score-based models from scratch (using DSM)?

77
Ref: [17, 18]

qσi
(x̃|x0) ∼ N (x0,σ

2
i I)

∇x̃ log qσi
(x̃) = Eq(x0)qσi

(x̃|x0) [∇x̃ log qσi
(x̃|x0)]

≈ −sθ(x̃,σi)

where σmin = σ1 < σ2 < · · · < σN = σmax

Score Matching & Score-based Models

• What if we train score-based models from scratch (using DSM)?

• Training:

78

L =

N
∑

i=1

σ2
i Eq(x0)Eqσi

(x̃|x0)

[

∥sθ(x̃,σi)−∇x̃ log qσi
(x̃ | x0)∥

2
2

]

qσi
(x̃|x0) ∼ N (x0,σ

2
i I)

∇x̃ log qσi
(x̃) = Eq(x0)qσi

(x̃|x0) [∇x̃ log qσi
(x̃|x0)]

≈ −sθ(x̃,σi)

where σmin = σ1 < σ2 < · · · < σN = σmax

Ref: [17, 18]

Score Matching & Score-based Models

• Sampling:

79

Algorithm 1 Langevin MCMC Sampling from Score-Based Model

1: Input: Number of noise scales N , step sizes {ϵi}Ni=1
, number of MCMC

steps M , score model sθ(x,σ)
2: Initialize: x0

N
∼ N (0,σ2

N
I)

3: for i = N,N − 1, . . . , 1 do ◃ Loop over noise scales
4: for m = 1 to M do ◃ Langevin MCMC at one noise level
5: Sample zm

i
∼ N (0, I)

6: xm
i
← xm−1

i
+ ϵisθ(x

m−1

i
,σi) +

√
2ϵiz

m
i

7: end for

8: if i > 1 then

9: x0

i−1
← xM

i

10: end if

11: end for

12: Output: Sample xM
1
∼ pσmin

(x)

Ref: [17, 18]

Score Matching & Score-based Models

• Sampling:

80
Ref: [17, 18]

Outline

• Denoising Diffusion Probabilistic Models (DDPMs)
• Forward Process
• Reverse Process
• ELBO
• Noise vs Data Prediction
• Inference

• Other Diffusion Models
• Score Matching & Score-based Models
• Score SDEs

81

Score SDEs

• What happens if we generalize the number of noise scales to infinity?

82

qσi
(x̃|x0) ∼ N (x0,σi

2
I)

Ref: [17, 18, 19]

Score SDEs

• What happens if we generalize the number of noise scales to infinity?

83
Ref: [17, 18, 19]

Score SDEs

• We use stochastic differential equation (SDEs) to represent the forward process:

• SDE solutions follow the distributions of , which are analogous
to in the vanilla score-based models.
• tractable prior
• data distribution

84
Ref: [17, 18, 19]

Drift term
(deterministic)

Diffusion term
(stochastic)

Wiener process

{x(t)}t∈[0,T]

pσi
(x)

pt(x)

pT (x)

p0(x)

dx = f(x, t)dt+ g(t)dw

Score SDEs

• We use stochastic differential equation (SDEs) to represent the forward process:

• Reverse-time SDE corresponds to the sampling process:

85

dx = f(x, t)dt+ g(t)dw

Ref: [17, 18, 19]

dx = [f(x, t)− g2(t)∇x log pt(x)]dt+ g(t)dw

Score function

Score SDEs

• We use stochastic differential equation (SDEs) to represent the forward process:

• Reverse-time SDE corresponds to the sampling process:

• Training (based on forward SDEs):

86

dx = f(x, t)dt+ g(t)dw

Ref: [17, 18, 19]

dx = [f(x, t)− g2(t)∇x log pt(x)]dt+ g(t)dw

Et∈U(0,T)Ept(x)[λ(t)∥∇x log pt(x)− sθ(x, t)∥
2
2]

Denoising score matching
(or other variants)

Score SDEs

• We use stochastic differential equation (SDEs) to represent the forward process:

• Reverse-time SDE corresponds to the sampling process:

• Training (based on forward SDEs):

• Neural reverse SDE:

87

dx = f(x, t)dt+ g(t)dw

Ref: [17, 18, 19]

dx = [f(x, t)− g2(t)∇x log pt(x)]dt+ g(t)dw

Et∈U(0,T)Ept(x)[λ(t)∥∇x log pt(x)− sθ(x, t)∥
2
2]

dx = [f(x, t)− g2(t)sθ(x, t)]dt+ g(t)dw

Score SDEs

• Sampling (based on reverse SDEs):

• Numerical solver design space:
• Euler-Maruyama
• Adaptive step size
• High-order SDE solver

88
Ref: [17, 18, 19]

dx = [f(x, t)− g2(t)sθ(x, t)]dt+ g(t)dw

∆x← [f(x, t)− g2(t)sθ(x, t)]∆t+ g(t)
√

|∆t|zt

x← x+∆x, t← t+∆t, zt ∼ N (0, I)

Score SDEs

• Sampling (based on reverse SDEs):

• Transforming SDEs into probability flow ODEs (without noise):

• Both share the same marginal distributions
• ODEs allow for exact log-likelihood evaluation.

89
Ref: [17, 18, 19]

dx = [f(x, t)− g2(t)sθ(x, t)]dt+ g(t)dw

dx =

[

f(x, t)−
1

2
g2(t)∇x log pt(x)

]

dt

{pt(x)}t∈[0,T]

References
[1] https://cvpr2023-tutorial-diffusion-models.github.io/

[2] https://lilianweng.github.io/posts/2021-07-11-diffusion-models/

[3] https://github.com/CompVis/stable-diffusion?tab=readme-ov-file

[4] Ho J, Jain A, Abbeel P. Denoising diffusion probabilistic models. Advances in neural information processing systems.
2020;33:6840-51.

[5] Karras T, Aittala M, Aila T, Laine S. Elucidating the design space of diffusion-based generative models. Advances in
neural information processing systems. 2022 Dec 6;35:26565-77.

[6] Ho J, Saharia C, Chan W, Fleet DJ, Norouzi M, Salimans T. Cascaded diffusion models for high fidelity image generation.
Journal of Machine Learning Research. 2022;23(47):1-33.

[7] Rombach R, Blattmann A, Lorenz D, Esser P, Ommer B. High-resolution image synthesis with latent diffusion models.
InProceedings of the IEEE/CVF conference on computer vision and pattern recognition 2022 (pp. 10684-10695).

[8] Zhang L, Rao A, Agrawala M. Adding conditional control to text-to-image diffusion models. In Proceedings of the
IEEE/CVF international conference on computer vision 2023 (pp. 3836-3847).

[9] Dhariwal P, Nichol A. Diffusion models beat gans on image synthesis. Advances in neural information processing systems.
2021 Dec 6;34:8780-94.

[10] Vincent P. A connection between score matching and denoising autoencoders. Neural computation. 2011 Jul;23(7):1661-
74.

https://cvpr2023-tutorial-diffusion-models.github.io/
https://lilianweng.github.io/posts/2021-07-11-diffusion-models/
https://github.com/CompVis/stable-diffusion?tab=readme-ov-file

References
[11] Ho J, Salimans T. Classifier-free diffusion guidance. arXiv preprint arXiv:2207.12598. 2022 Jul 26.

[12] Song J, Meng C, Ermon S. Denoising diffusion implicit models. arXiv preprint arXiv:2010.02502. 2020 Oct 6.

[13] https://huggingface.co/blog/stable_diffusion

[14] https://www.midjourney.com/explore?tab=top

[15] https://openai.com/sora/?shareId=15

[16] https://chat.inceptionlabs.ai/

[17] Song Y, Sohl-Dickstein J, Kingma DP, Kumar A, Ermon S, Poole B. Score-based generative modeling through stochastic
differential equations. arXiv preprint arXiv:2011.13456. 2020 Nov 26.

[18] https://yang-song.net/blog/2021/score/

[19] https://iclr-blogposts.github.io/2024/blog/diffusion-theory-from-scratch/

[20] Strümke I, Langseth H. Lecture Notes in Probabilistic Diffusion Models. arXiv preprint arXiv:2312.10393. 2023 Dec 16.

[21] https://www.cs.toronto.edu/~duvenaud/courses/csc2541/slides/structured-encoders-decoders.pdf

[22] Xiao Z, Kreis K, Vahdat A. Tackling the generative learning trilemma with denoising diffusion GANs. arXiv preprint
arXiv:2112.07804. 2021 Dec 15.

https://huggingface.co/blog/stable_diffusion
https://www.midjourney.com/explore?tab=top
https://openai.com/sora/?shareId=15
https://chat.inceptionlabs.ai/
https://yang-song.net/blog/2021/score/
https://iclr-blogposts.github.io/2024/blog/diffusion-theory-from-scratch/
https://www.cs.toronto.edu/~duvenaud/courses/csc2541/slides/structured-encoders-decoders.pdf

Questions?

