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Generative models 

• Learning to generate data.
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Generative models
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Last lecture:

Image credit: [2]



Generative models
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This lecture:

Image credit: [2]



Stable Diffusion
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AI Artworks 2021

Image credit: [3]



Midjourney
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AI Artworks 2022

Image credit: [14]



Sora
9

A fast-involving field 2024

Video credit: [15]



Mercury Coder
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A fast-involving field 2025

Video credit: [16]



Motivations

Probabilistic models suffer from a trade-off:
• Some models are tractable but not flexible. (e.g. Laplace, Gaussian distributions)
• Some models are flexible but not tractable. (e.g. energy-based models)

We build a generative Markov Chain that
• converts a simple distribution into a target distribution.
• has an analytically evaluable probability at each step, thus the full chain.
• based on non-equilibrium statistical physics.
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Motivations

1. A defined forward process that transforms data to noise (more tractable).
2. A learned reverse process that transforms noise to data (more flexible).
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2015

Forward 😎

Reverse
🤯

What does this remind you of ?



Motivations

1. A defined forward process that transforms data to noise (more tractable).
2. A learned reverse process that transforms noise to data (more flexible).
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2015

Forward 😎

Reverse 🤔



Denoising Diffusion Probabilistic Models

Denoising diffusion models consist of two processes:
• Forward diffusion process that gradually adds noise to input data.
• Reverse denoising process that learns to generate data by denoising.
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DataNoise

Forward diffusion process (fixed)

Reverse denoising process (generative)
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Forward Process

• Given real data distribution               , we gradually adding Gaussian noise 
according to a schedule                     .
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Image credit: [1]



• The forward process allows sampling of     at arbitrary timestep    in 
tractable, closed form:

• The noise schedule is designed such that                                      .

Forward Process
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Image credit: [1]



Forward Process

• The re-parametrization trick.
• Blackboard time!
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Noise Schedule
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Reverse Process
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Reverse Process
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Reverse Process
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Reverse Process
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Reverse Process
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Reverse Process

• We predict the mean and covariance of added Gaussian noise.
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Reverse Process

• How to generate data?
• Sample 
• Iteratively sample from the reversed Markov chain

• But                     is unknown and intractable!

• Luckily, if we condition on the data, we arrive at something tractable
• That is to say, we have a closed-form posterior distribution. Yay!               
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ELBO

• Connection with Variational Autoencoders
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ELBO

• Connection with Variational Autoencoders

30



ELBO

• Connection with Variational Autoencoders
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ELBO
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Intractable!

Markov Chain

Logarithmic rules

Telescoping products



Parameterizing DDPM

• KL divergence has a simple form between Gaussians.
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Parameterizing DDPM

• KL divergence has a simple form between Gaussians.

• Recall the re-parameterization of the forward process
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Parameterizing DDPM

• KL divergence has a simple form between Gaussians.

• Recall the re-parameterization of the forward process
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Parameterizing DDPM

• KL divergence has a simple form between Gaussians.

• Recall the re-parameterization of the forward process

• Trainable network predicts the noise mean.
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Parameterizing DDPM

• KL divergence has a simple form between Gaussians.

• Recall the re-parameterization of the forward process

• Trainable network predicts the noise mean.
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Parameterizing DDPM

• KL divergence has a simple form between Gaussians.

• Recall the re-parameterization of the forward process

• Trainable network predicts the noise mean.

• Final objective:
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Simplified Training Objective
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Simplified Training Objective

•      adjusts the weights for correct maximum likelihood estimation.
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Simplified Training Objective

•      adjusts the weights for correct maximum likelihood estimation.
• In DDPM, the training objective gets simplified to:

41



Training and Inference

42
Ref: [5]



Generated Samples
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Image credit: [5]
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Noise vs Data Prediction

• DDPM noise estimation loss:

45

Lsimple = Ex0,ϵ,t

[

∥ϵ− ϵθ (xt, t)∥2
]

= Ex0,ϵ,t
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√
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Noise vs Data Prediction

• DDPM noise estimation loss:

• Recall the forward process:
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Lsimple = Ex0,ϵ,t
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]

= Ex0,ϵ,t

[

∥

∥

∥

∥

xt −
√
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Noise vs Data Prediction

• DDPM noise estimation loss:

• Recall the forward process:

• Let’s use x0 centered parameterization:
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Lsimple = Ex0,ϵ,t

[
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√
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Noise vs Data Prediction

• DDPM data estimation loss:

• Here, we show a simplified objective. See more discussion in [5].
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Inference: guided conditional generation

• Goal: generation with conditions (controllability)

50
Image credit: [6]

Unconditional generation Class-conditional generation



Inference: guided conditional generation

• Goal: generation with conditions (controllability)

51
Image credit: [7, 8]

Text-to-Image generation Visual cue-based generation



Inference: guided conditional generation

• Naïve approach: explicit training using the data-condition pairs
• Generative modeling objective:

     through denoiser network:

52

q(x | y)

(x,y)

ϵθ(xt, t,y)



Inference: guided conditional generation

• Naïve approach: explicit training using the data-condition pairs
• Generative modeling objective:

     through denoiser network:

• Caveats: 
• Data scarcity: what if one condition appears rarely in the dataset? 
• Flexibility: control “strength” of conditioning?

53

q(x | y)

(x,y)

ϵθ(xt, t,y)



Inference: classifier guidance

• Can we steer the generation controllably using another neural net?
• Bayes’ rule:

54

∇xt
log q(xt|y) = ∇xt

log q(xt) +∇xt
log q(y|xt)−∇xt

log q(y)

q(xt|y) =
q(xt)q(y|xt)

q(y)

Ref: [9]



Inference: classifier guidance

• Can we steer the generation controllably using another neural net?
• Bayes’ rule:

55

Uncond. distribution Classifier objective

∇xt
log q(xt|y) = ∇xt

log q(xt) +∇xt
log q(y|xt)−∇xt

log q(y)

Cond. distribution

q(xt|y) =
q(xt)q(y|xt)

q(y)

Ref: [9]



Inference: classifier guidance

• Can we steer the generation controllably using another neural net?
• Bayes’ rule:

• Take gradient w.r.t. data:
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∇xt
log q(xt|y) = ∇xt

log q(xt) +∇xt
log q(y|xt)−✭

✭
✭
✭

✭✭∇xt
log q(y)

∇xt
log q(xt|y) = ∇xt
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log q(y|xt)

q(xt|y) =
q(xt)q(y|xt)

q(y)

Ref: [9]

Uncond. distribution Classifier objective

∇xt
log q(xt|y) = ∇xt

log q(xt) +∇xt
log q(y|xt)−∇xt

log q(y)

Cond. distribution



Inference: classifier guidance

• Some background on score function:

• Think about gradient ascent

• Gaussian distribution score function:

57
Ref: [10]

If x ∼ N (µ,σ2
I), then ∇x log q(x) = ∇x

(

−
1

2σ2
(x− µ)2
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= −
x− µ

σ2
= −

ϵ

σ
, ϵ ∼ N (0, I)

s(x) := ∇x log q(x)



Inference: classifier guidance

• Some background on score function:

• Think about gradient ascent

• Gaussian distribution score function:

• Denoising score matching (DSM) [10]:

58
Ref: [10]
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Inference: classifier guidance

• Can we steer the generation controllably using another neural net?
• Putting things together:

• First term:

• Second term:

• Gradient of a classifier

59

∇xt
log q(xt|y) = ∇xt

log q(xt) +∇xt
log q(y|xt)

∇xt
log q(xt) ≈ −

ϵθ(xt, t)√
1− ᾱt

∇xt
log q(y|xt) = ∇xt

log fφ(y|xt)



Inference: classifier guidance

• Can we steer the generation controllably using another neural net?
• Classifier guidance:

• Modified denoising process:

60

∇xt
log q(xt|y) = ∇xt

log q(xt) +∇xt
log q(y|xt)

≈ −
1√

1− ᾱt

ϵθ(xt, t) +∇xt
log fφ(y|xt)

= −
1√

1− ᾱt

(ϵθ(xt, t)−
√
1− ᾱt∇xt

log fφ(y|xt))

ϵ̄θ(xt, t) = ϵθ(xt, t)−
√
1− ᾱt w∇xt

log fφ(y|xt)

Ref: [9]



Inference: classifier guidance
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Image credit: [9]
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Inference: classifier-free guidance

• Drawbacks of classifier guidance

• Classifier must be separately trained, but it is usually not trained on the noisy data.
• Computing gradient in the denoising process is slow.

63

ϵ̄θ(xt, t) = ϵθ(xt, t)−
√
1− ᾱt w∇xt

log fφ(y|xt)



Inference: classifier-free guidance

• Drawbacks of classifier guidance

• Classifier must be separately trained, but it is usually not trained on the noisy data.
• Computing gradient in the denoising process is slow.

• Classifier-free guidance (CFG) uses a single neural net for both purposes.

64

ϵ̄θ(xt, t) = ϵθ(xt, t)−
√
1− ᾱt w∇xt

log fφ(y|xt)

Unconditional: ∇xt
log q(xt) = −

ϵθ(xt, t, y = ∅)√
1− ᾱt

Conditional: ∇xt
log q(xt|y) = −

ϵθ(xt, t, y)√
1− ᾱt

Ref: [11]



Inference: classifier-free guidance

• Drawbacks of classifier guidance

• Classifier must be separately trained, but it is usually not trained on the noisy data.
• Computing gradient in the denoising process is slow.

• Classifier-free guidance (CFG) uses a single neural net for both purposes.
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ϵ̄θ(xt, t) = ϵθ(xt, t)−
√
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log fφ(y|xt)
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log p(xt|y)−∇xt
log p(xt)

= −
1√

1− ᾱt
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ϵθ(xt, t, y)− ϵθ(xt, t, y = ∅)
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= ϵθ(xt, t, y) + w
(

ϵθ(xt, t, y)− ϵθ(xt, t)
)

= (w + 1)ϵθ(xt, t, y)− wϵθ(xt, t)

Ref: [11]



Inference: classifier-free guidance

• Drawbacks of classifier guidance

• Classifier must be separately trained, but it is usually not trained on the noisy data.
• Computing gradient in the denoising process is slow.

• Classifier-free guidance (CFG) uses a single neural net for both purposes.
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ϵ̄θ(xt, t) = ϵθ(xt, t)−
√
1− ᾱt w∇xt

log fφ(y|xt)

∇xt
log p(y|xt) = ∇xt

log p(xt|y)−∇xt
log p(xt)

= −
1√

1− ᾱt

(

ϵθ(xt, t, y)− ϵθ(xt, t, y = ∅)
)

ϵ̄θ(xt, t, y) = ϵθ(xt, t, y)−
√
1− ᾱt w∇xt

log p(y|xt)

= ϵθ(xt, t, y) + w
(

ϵθ(xt, t, y)− ϵθ(xt, t)
)

= (w + 1)ϵθ(xt, t, y)− wϵθ(xt, t)

Guidance scale 

Ref: [11]



Inference: classifier-free guidance

67
Image credit: [11]
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Inference: DDIM

• Sampling for-loop is slow.

69
Image credit: [4]



Inference: DDIM

• Let’s skip some steps in the middle!

70
Image credit: [12]



Inference: DDIM

• Let’s skip some steps in the middle!

• Recall the data prediction formulation:

• We can jump to data prediction and jump back to arbitrary noisy step.
• This is called denoising diffusion implicit model (DDIM).

71
Image credit: [12]

x̂0 =
xt −

√

1− ᾱt ϵθ(xt, t)
√

ᾱt



Inference: DDIM

• We can jump to data prediction and jump back to arbitrary noisy step.

72

Algorithm 1: Fewer-Steps DDIM Sampling

1: xT ∼ N (0, I)
2: for s from S to 1 do

3: t← τs
4: t′ ← τs−1

5: ϵ̂← ϵθ(xt, t)
6: x̂0 ← 1√

ᾱt

(

xt −
√
1− ᾱtϵ̂

)

7: xt′ ←
√
ᾱt′ x̂0 +

√
1− ᾱt′ ϵ̂

8: end for

9: return x̂0

[1, . . . , T ] =⇒ [τ0 = 0, . . . , τS = T ], e.g., τ = [0, 10, 20, 30, . . . , 1000]



Inference: DDIM

• Application: StableDiffusion v1.5 at huggingface.co 

73
Image credit: [13]
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Score Matching & Score-based Models

• Recall the aforementioned denoising score matching (DSM) [10]:

• Here, we introduce DSM within the DDPM objective. What if we train score-
based models from scratch?

75
Ref: [10]

q(xt|x0) ∼ N (
√
ᾱtx0, (1− ᾱt)I)

∇xt
log q(xt) = Eq(x0)q(xt|x0) [∇xt

log q(xt | x0)]

≈ −
ϵθ(xt, t)√
1− ᾱt



Score Matching & Score-based Models

• Score matching objective:

• Interpretation of score function: the direction where data likelihood increases.

76
Ref: [17, 18]

s(x) := ∇x log q(x)



Score Matching & Score-based Models

• What if we train score-based models from scratch (using DSM)?

77
Ref: [17, 18]

qσi
(x̃|x0) ∼ N (x0,σ

2
i I)

∇x̃ log qσi
(x̃) = Eq(x0)qσi

(x̃|x0) [∇x̃ log qσi
(x̃|x0)]

≈ −sθ(x̃,σi)

where σmin = σ1 < σ2 < · · · < σN = σmax



Score Matching & Score-based Models

• What if we train score-based models from scratch (using DSM)?

• Training:

78

L =

N
∑

i=1

σ2
i Eq(x0)Eqσi

(x̃|x0)

[

∥sθ(x̃,σi)−∇x̃ log qσi
(x̃ | x0)∥

2
2

]

qσi
(x̃|x0) ∼ N (x0,σ

2
i I)

∇x̃ log qσi
(x̃) = Eq(x0)qσi

(x̃|x0) [∇x̃ log qσi
(x̃|x0)]

≈ −sθ(x̃,σi)

where σmin = σ1 < σ2 < · · · < σN = σmax

Ref: [17, 18]



Score Matching & Score-based Models

• Sampling:

79

Algorithm 1 Langevin MCMC Sampling from Score-Based Model

1: Input: Number of noise scales N , step sizes {ϵi}Ni=1
, number of MCMC

steps M , score model sθ(x,σ)
2: Initialize: x0

N
∼ N (0,σ2

N
I)

3: for i = N,N − 1, . . . , 1 do ◃ Loop over noise scales
4: for m = 1 to M do ◃ Langevin MCMC at one noise level
5: Sample zm

i
∼ N (0, I)

6: xm
i
← xm−1

i
+ ϵisθ(x

m−1

i
,σi) +

√
2ϵiz

m
i

7: end for

8: if i > 1 then

9: x0

i−1
← xM

i

10: end if

11: end for

12: Output: Sample xM
1
∼ pσmin

(x)

Ref: [17, 18]



Score Matching & Score-based Models

• Sampling:

80
Ref: [17, 18]
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Score SDEs

• What happens if we generalize the number of noise scales to infinity?

82

qσi
(x̃|x0) ∼ N (x0,σi

2
I)

Ref: [17, 18, 19]



Score SDEs

• What happens if we generalize the number of noise scales to infinity?

83
Ref: [17, 18, 19]



Score SDEs

• We use stochastic differential equation (SDEs) to represent the forward process:

• SDE solutions                    follow the distributions of         , which are analogous 
to           in the vanilla score-based models.
•            tractable prior
•            data distribution

84
Ref: [17, 18, 19]

Drift term
(deterministic)

Diffusion term
(stochastic)

Wiener process

{x(t)}t∈[0,T ]

pσi
(x)

pt(x)

pT (x)

p0(x)

dx = f(x, t)dt+ g(t)dw



Score SDEs

• We use stochastic differential equation (SDEs) to represent the forward process:

• Reverse-time SDE corresponds to the sampling process:

85

dx = f(x, t)dt+ g(t)dw

Ref: [17, 18, 19]

dx = [f(x, t)− g2(t)∇x log pt(x)]dt+ g(t)dw

Score function



Score SDEs

• We use stochastic differential equation (SDEs) to represent the forward process:

• Reverse-time SDE corresponds to the sampling process:

• Training (based on forward SDEs):

86

dx = f(x, t)dt+ g(t)dw

Ref: [17, 18, 19]

dx = [f(x, t)− g2(t)∇x log pt(x)]dt+ g(t)dw

Et∈U(0,T )Ept(x)[λ(t)∥∇x log pt(x)− sθ(x, t)∥
2
2]

Denoising score matching 
(or other variants)



Score SDEs

• We use stochastic differential equation (SDEs) to represent the forward process:

• Reverse-time SDE corresponds to the sampling process:

• Training (based on forward SDEs):

• Neural reverse SDE:

87

dx = f(x, t)dt+ g(t)dw

Ref: [17, 18, 19]

dx = [f(x, t)− g2(t)∇x log pt(x)]dt+ g(t)dw

Et∈U(0,T )Ept(x)[λ(t)∥∇x log pt(x)− sθ(x, t)∥
2
2]

dx = [f(x, t)− g2(t)sθ(x, t)]dt+ g(t)dw



Score SDEs

• Sampling (based on reverse SDEs):

• Numerical solver design space:
• Euler-Maruyama
• Adaptive step size
• High-order SDE solver

88
Ref: [17, 18, 19]

dx = [f(x, t)− g2(t)sθ(x, t)]dt+ g(t)dw

∆x← [f(x, t)− g2(t)sθ(x, t)]∆t+ g(t)
√

|∆t|zt

x← x+∆x, t← t+∆t, zt ∼ N (0, I)



Score SDEs

• Sampling (based on reverse SDEs):

• Transforming SDEs into probability flow ODEs (without noise):

• Both share the same marginal distributions
• ODEs allow for exact log-likelihood evaluation.

89
Ref: [17, 18, 19]

dx = [f(x, t)− g2(t)sθ(x, t)]dt+ g(t)dw

dx =

[

f(x, t)−
1

2
g2(t)∇x log pt(x)

]

dt

{pt(x)}t∈[0,T ]
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