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Motivating Applications of Graphs

• Molecules

Image Credit: [1]

• Multi-edges exist

• Nodes have types

• Edges have types



Motivating Applications of Graphs

• Social Networks

Image Credit: [2]

Link Prediction



Motivating Applications of Graphs

• Network-based Recommendations

Food Discovery

Image Credit: [3]



Motivating Applications of Graphs

• Citation Networks

Image Credit: [4]



Motivating Applications of Graphs

• Phylogenetic Tree

A phylogenetic tree based on rRNA genes 

showing the three life domains

Image Credit: [5]



Motivating Applications of Graphs

• Protein-Protein Interactions (PPIs)

Schizophrenia PPI

Image Credit: [6]



Motivating Applications of Graphs

• Epidemic Networks

Image Credit: [7]
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Deep Learning on Graphs

Graph Representations

 
• Connectivity

1. Adjacency List: G = (V, E)

V = {1,2,3,4}, E = {(1,2), (1,4), (4,3)}
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Graph Representations

 
• Connectivity

1. Adjacency List: G = (V, E)

2. Adjacency Matrix: A (sometimes we have weights)
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Graph Representations

 
• Connectivity

1. Adjacency List: G = (V, E)

2. Adjacency Matrix: A (sometimes we have weights)

• Feature

1. Node Feature: X

2. Edge Feature

3. Graph Feature
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Deep Learning on Graphs

Graph Representations

 
• Connectivity

1. Adjacency List: G = (V, E)

2. Adjacency Matrix: A (sometimes we have weights)

• Feature

1. Node Feature: X

2. Edge Feature

3. Graph Feature

0 1 0 1

1 0 0 0

0 0 0 1

1 0 1 0

1 2 3 4

1
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3

4

V = {1,2,3,4}, E = {(1,2), (1,4), (4,3)}

Graph Data = (A, X)
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Deep Learning on Graphs

Permutation 

    

    V = [1,2,3,4]  => V’ = [2,1,3,4]

    E = [(1,2), (1,4), (4,3)] => E’ = [(2,1), (2,4), (4,3)] 

V = [1,2,3,4], E = [(1,2), (1,4), (4,3)]
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    V = [1,2,3,4]  => V’ = [2,1,3,4]

    E = [(1,2), (1,4), (4,3)] => E’ = [(2,1), (2,4), (4,3)] 

V = [1,2,3,4], E = [(1,2), (1,4), (4,3)]

0 1 0 1

1 0 0 0

0 0 0 1

1 0 1 0

1 2 3 4

1

2

3

4

0 1 0 0

1 0 0 1

0 0 0 1

0 1 1 0

1 2 3 4

1

2

3

4

0 1 0 0

1 0 0 0

0 0 1 0

0 0 0 1

1 2 3 4

1

2

3

4

Permutation Matrix

0 1 0 1

1 0 0 0

0 0 0 1

1 0 1 0

1 2 3 4

1

2

3

4

Original Adj Matrix

0 1 0 0

1 0 0 0

0 0 1 0

0 0 0 1

1 2 3 4

1

2

3

4

Transposed

Permutation Matrix

=

Permuted Adj Matrix

Permute Rows Permute Columns



1

4 2

3

Deep Learning on Graphs

Permutation 
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Deep Learning on Graphs

Permutation 

    

    V = [1,2,3,4]  => V’ = [2,1,3,4]

    E = [(1,2), (1,4), (4,3)] => E’ = [(2,1), (2,4), (4,3)] 
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V’ = [2,1,3,4], E’ = [(2,1), (2,4), (4,3)]

Graph Isomorphism:

A bijection f between the vertex sets of G1 and G2 such that any two 

vertices u and v of G1 are adjacent iff f(u) and f(v) are adjacent in G2.
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Permutation 
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Deep Learning on Graphs

Permutation 

    

    V = [1,2,3,4]  => V’ = [4,3,2,1]

    E = [(1,2), (1,4), (4,3)] => E’ = [(4,3), (4,1), (1,2)] 
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Deep Learning on Graphs

Permutation 

    

    V = [1,2,3,4]  => V’ = [4,3,2,1]

    E = [(1,2), (1,4), (4,3)] => E’ = [(4,3), (4,1), (1,2)] 
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V = [1,2,3,4], E = [(1,2), (1,4), (4,3)]

V’ = [4,3,2,1], E’ = [(4,3), (4,1), (1,2)]
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Graph Automorphism:

A permutation σ of the vertex set V, such that the pair of vertices (u,v) form 

an edge iff the pair (σ(u),σ(v)) also form an edge.

 



Deep Learning on Graphs

Permutation Invariance & Equivariance 

Graph Data (A, X),    Model

 

 Invariance:

 

 Equivariance:
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Deep Learning on Graphs

Key Challenges:
• Unordered Neighbors



Deep Learning on Graphs

Key Challenges:
• Unordered Neighbors



Deep Learning on Graphs

Key Challenges:
• Unordered Neighbors
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Deep Learning on Graphs

Key Challenges:
• Unordered Neighbors
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Deep Learning on Graphs

Key Challenges:
• Unordered Neighbors

• Varying Neighborhood Sizes

• Varying Graph Partitions
Pooling

Pooling
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Deep Learning on Graphs

Graph Neural Networks (GNNs) 

• Neural networks that can process general graph structured data

• First proposed in 2008 [8] and dates back to Recursive Neural Networks (mainly processing trees) in 90s [9]

• In fact, Boltzmann Machines [10] (fully connected graphs with binary units) in 80s can be viewed as GNNs

• Most of GNNs (if not all) can be incorporated by the Message Passing paradigm [11]

• GNNs have been independently studied in signal processing community under Graph Signal Processing

• The study of GNNs and other related models are also called Geometric Deep Learning
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Graph Neural Networks (GNNs)

Input Encoding

1. Node Feature 
• If it is unavailable, use 1-of-K, random, index/size encoding of node index)

2. Edge Feature
• Feed it to message network

3. Graph Feature
• Treat it as a super node in your graph

• Feed graph feature to readout layer
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Graph Neural Networks (GNNs)

Message 

Passing
…Message 

Passing

Input Encoding Message Passing Layers/Steps

Steps: share message passing module (Recurrent Networks)

Layers: do not share message passing module (Feedforward Networks)



Graph Neural Networks (GNNs)

Message 

Passing
…

Node/Edge/Graph

Readout

Message 

Passing

Input Encoding Message Passing Layers/Steps

Predictions



Outline

• Applications of Graphs

• Background

• Challenges of Deep Learning on Graphs

• GNNs

• Overview

• Message Passing

• Message Passing Architectures

• Readout

• Implementation

• Relationship w. Transformers

58



Node State 

Message Passing in GNNs

(t+1)-th message passing step/layer 
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Message Passing in GNNs

• Parallel Schedule!



Aggregated Message

Node State 

Message Network

Message

Compute 

Messages

State Update Network

Updated Node State

Update 

Representation

(t+1)-th message passing step/layer 

Message Passing in GNNs

• Parallel Schedule!

• Other schedules [12] are possible and could 

improve performance in certain tasks!
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Instantiations:

1. Compute Messages

2. Aggregate Messages

3. Update Node Representations

Message Passing in GNNs
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Edge Feature
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Readout in GNNs 

Instantiations:

1. Node Readout

2. Edge Readout

3. Graph Readout
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Instantiations:

1. Node Readout

2. Edge Readout

3. Graph Readout

Edge Feature

Graph Feature



Outline

• Applications of Graphs

• Background

• Challenges of Deep Learning on Graphs

• GNNs

• Overview

• Message Passing

• Message Passing Architectures

• Readout

• Implementation

• Relationship w. Transformers

88



Implementations

1. Although graph could be very sparse, we should maximally exploit dense operators since 
they are efficient on GPUs!

2. Parallel message passing is very GPU friendly!



Implementations

1. Although graph could be very sparse, we should maximally exploit dense operators since 
they are efficient on GPUs!

2. Parallel message passing is very GPU friendly!

Tips:

• Use adjacency list representation

• Compute messages for all edges in parallel

• Compute aggregations for all nodes in parallel

• Compute updates for all nodes in parallel
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Relationships with Transformer

Image Credit: [16, 17]



Relationships with Transformer

Image Credit: [16, 17]

0



Relationships with Transformer

Image Credit: [16, 17]

• Attention can be viewed as the weighted 

adjacency matrix of a fully connected graph!

0



Relationships with Transformer

Image Credit: [16, 17]

• Attention can be viewed as the weighted 

adjacency matrix of a fully connected graph!

• Transformers (esp. encoder) can be viewed as 

GNNs applied to fully connected graphs!

0



Encode Graph Structures in Transformers

Image Credit: [17]

• Apply the adjacency matrix as a mask to the attention and renormalize it, like Graph 

Attention Networks (GAT) [18]

• Encode connectivities/distances as bias of the attention [19]
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