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Either input or output could be continuous or discrete scalars, vectors, tensors, sets, sequences, graphs, …

    E.g. regression

        classification
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Let us review some key concepts and assumptions (mainly about supervised learning like classification and regression) 

in statistical learning theory, which was initially developed by Vladimir Vapnik, e.g., [1].

2) Model and Loss

We introduce a model (a.k.a., hypothesis)                  with learnable parameters     

N.B.: hyperparameters are fixed and not learnable

It belongs to a hypothesis class 

E.g. all linear models with weight norm no larger than 1     

Loss is denoted as

Generalization error (a.k.a., risk or expected loss) is 

Training error (a.k.a., empirical risk or training loss) is

Monte Carlo 

Estimation
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Statistical Learning Setup

Let us review some key concepts and assumptions (mainly about supervised learning like classification and regression) 

in statistical learning theory, which was initially developed by Vladimir Vapnik, e.g., [1].

3) Learning

Ideally, we want to find a model in the hypothesis class that minimizes the risk:

But since risk is incomputable (why?), we can approximate it via

This learning framework is called empirical risk minimization (ERM)!

A learning algorithm can be viewed as 

a mapping that maps a training dataset, 

initial parameters, and hyperparameters 

to “optimal” parameters:
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• Inference Algorithm

The term “inference” has been used in many contexts, hence being very confusing. 

1) “Inference” in DL and many ML areas:

It typically means the computational process from input to output, e.g., the forward pass of a feedforward neural network

2) “Inference” or “probabilistic inference” in graphical models:

It typically means computing the marginal probability or the maximum a posterior (MAP) estimation

3) Statistical inference in statistics:

 It typically means estimating the parameters of the model, which is called learning/training in DL/ML

For our linear models, inference is just:

For other models in DL/ML, e.g., deep energy based models, one may need both of first two!
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• Learning Algorithm

Since learning is an optimization problem, a learning algorithm is just an optimization algorithm.

1) Gradient-based learning algorithms:

o 1st order gradient method, e.g., stochastic gradient descent (SGD)

o 2nd order gradient method, e.g., Newton’s method 

……

2) Gradient-free learning algorithms:

o Genetic algorithms

o Random search, e.g., simulated annealing 

……
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In linear regression, we have

Therefore, with MSE loss, the learning problem is

We can equivalently (why?) rewrite it as
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• Learning Algorithm

To use gradient descent (GD) or stochastic gradient descent (SGD), we first need to derive the gradient

What is a gradient?

Loss is typically a scalar, parameters can be viewed as a vector, the gradient is defined as 

where           is the i-th element (scalar) of weight and       is a zero vector except that the i-th element is 1.

This definition (central difference version) is useful for checking the correctness of gradient implementation!
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• Learning Algorithm

To use gradient descent (GD) or stochastic gradient descent (SGD), we first need to derive the gradient

The definition does not help much in getting the analytical form of the gradient.

We learn from calculus about how to derive gradient via basic derivatives and their rules:
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Write in a compact vector form:

If N is too large, we can randomly sample a 

smaller subset (a.k.a. mini-batch) to 

compute the gradient.
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Linear Regression

• Learning Algorithm

Similarly, we can obtain the partial derivative                   (do it by yourself)

Then we can perform the gradient descent algorithms

learning rate / step size

• If we use full training dataset to compute the gradient per step, then it is called (batch) gradient descent

• If we use random mini-batch data to compute the gradient per step, then it is called stochastic gradient descent 
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• Learning Algorithm

Similarly, we can obtain the partial derivative                   (do it by yourself)

Then we can perform the gradient descent algorithms

Is the model at the last step necessarily the best?
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• Validation and Testing

The goal of ML is to learn a model on observed data so that it can generalize well to unseen data.

To facilitate this goal, we typically split a dataset into train/validation(a.k.a. develop)/test subsets

1) During training, you can use training set to train your model, e.g., GD to train linear regression

2) We can tune hyperparameters and select the best model based on the validation performance, e.g., we can 

evaluate models on the validation set every 100 steps and return the model with the best validation metric.

3) We should never use test set to select the model since it is cheating!

If your dataset is of a small size, then you can use k-fold cross-validation.
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Image Credit: [2]

Underfitting:

Model is too simple to fit the data

Overfitting:

Model is too complicate, perfectly fits the 

data, but does not generalize 

There exists benign overfitting (i.e., 

complicated models perfectly fit and 

generalize well) in deep learning (cf. [32])!
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Image Credit: [2]

As the degree (complexity) increases, the 

variance of the model tends to increase, and 

the bias tends to decrease! 
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Recall

Our training dataset

Expected label/output

Our learned model

Expected learned model  

Learning algorithm depends on 

training dataset, initial 

parameters, and hyperparameters
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• Validation and Testing: Bias vs. Variance Tradeoff

Decomposition of expected generalization error:

So far, we have

Putting together

Variance: Captures how much your classifier changes if you train on a different training set. How "over-specialized" is your classifier to a 

particular training set (overfitting)? If we have the best possible model for our training data, how far off are we from the average classifier?

Bias: What is the inherent error that you obtain from your classifier even with infinite training data? This is due to your classifier being "biased" 

to a particular kind of solution (e.g. linear classifier). In other words, bias is inherent to your model.

Noise: How big is the data-intrinsic noise? This error measures ambiguity due to your data distribution and feature representation. You can never 

beat this, it is an aspect of the data.

Credit & More Info: https://www.cs.cornell.edu/courses/cs4780/2018fa/lectures/lecturenote12.html

https://www.cs.cornell.edu/courses/cs4780/2018fa/lectures/lecturenote12.html
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Decomposition of expected generalization error:

Image Credit: http://scott.fortmann-roe.com/docs/BiasVariance.html

This classic bias-variance tradeoff can 

not explain deep learning as the model 

complexity measure is hard to find, e.g., 

#parameters is clearly not the right one! 

http://scott.fortmann-roe.com/docs/BiasVariance.html
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Linear Models for Classification

Suppose we’d like to do a binary classification with a linear model

We can construct a threshold classifier (a discontinuous Heaviside step function) as

The classification accuracy (can be rewritten using 0-1 loss) is 

How can we perform gradient descent to learn the model?

Answer: continuous approximation!
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For the threshold classifier (a discontinuous Heaviside step function),

we can approximate it with a logistic sigmoid function

This outputs a probability!
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The non-differentiable 0-1 loss for classification is, 

Since the sigmoid outputs a probability, we can use cross-entropy (CE) to approximate the 0-1 loss.

In particular, for two distributions (p, q) of a categorical (discrete) random variable (RV) with K states, CE is defined as,

For discrete RVs, it is non-negative and becomes smaller when p and q are closer.

Compared to 0-1 loss, it provides a finer measure, e.g., a 60% wrong answer is better than than a 90% wrong answer.

Since we have binary states, the CE loss reduces to

It is called logits and the whole model is 

called logistic regression
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What if we’d like to do multiclass classification:

We typically use 1-of-K encoding for the output:

By doing so, we can conveniently use the cross-entropy as the loss. 

But we can not use sigmoid as the output anymore. Why?

Instead, we can use the softmax function, which outputs a valid probability distribution of a categorical RV with K states,

It is called logits and the whole model is 

called multiclass logistic regression
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Linear Models for Classification

We can write the cross-entropy as

log-sum-exp permits numerically-efficient (avoid overflow/underflow) implementation since 

In practice, the softmax+cross-entropy is implemented via this log-sum-exp trick!

This is the log-sum-exp operator!

It approximates maximum operator.



More About Softmax

Softmax is an approximation to the argmax. 



More About Softmax

Softmax is an approximation to the argmax. 

To see this, we can change the base of the power

Then softmax becomes



More About Softmax

Softmax is an approximation to the argmax. 

To see this, we can change the base of the power

Then softmax becomes

We have



More About Softmax

Softmax is an approximation to the argmax. 

To see this, we can change the base of the power

Then softmax becomes

We have

Therefore, softmax should 

actually be called softargmax!
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More About Softmax

Softmax is an approximation to the argmax. 

To see this, we can change the base of the power

Then softmax becomes

We have

Why? Use the same trick we used in the log_sum_exp function.

Also,

     is often called as temperature.
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