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Introduction & Background

Language Model (LM) learns a probability distribution over sequences of tokens.

For a vocabulary     of a set of tokens                             , the LM learns the joint probability for each 

sequence of tokens:
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Introduction & Background

Language Model (LM) learns a probability distribution over sequences of tokens.

For a vocabulary     of a set of tokens                             , the LM learns the joint probability for each 

sequence of tokens:

Each token can represent a word. For example:

The objective of language modeling is intuitively simple, but it becomes significantly complex as we scale up 

the size of the vocabulary and the sequence length. 

Just imagine all the possible language and word combinations!
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Introduction & Background

Language Model (LM) learns a probability distribution over sequences of tokens.

For a vocabulary     of a set of tokens                             , the LM learns the joint probability for each 

sequence of tokens:

Each token can represent a word. For example:

The assigned probability indicates two types of knowledge:

1) Syntactic knowledge, which involves reasoning over ungrammatical sequences.

2) World knowledge, which pertains to reasoning over semantic plausibility.

6



Introduction & Background

Modern Large Language Models (LLMs) are typically autoregressive models, which model the joint 

distribution               using the chain rule of probability: 
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Introduction & Background

Modern Large Language Models (LLMs) are typically autoregressive models, which model the joint 

distribution               using the chain rule of probability: 

For example:

Particularly, we learn a conditional probability distribution for the next token:

We typically use a single feedforward neural network (such as transformers) to model such conditional 

distributions.
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Introduction & Background

Modern LLMs size has increase more than 5000x in last 4 years. 

Image Credit: [1]
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Introduction & Background

As LLMs get more powerful, will they lead to Artificial General Intelligence (AGI)?

Image Credit: [2, 3, 4]
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Tokenization

Recall the previous example on vocabulary:

A tokenizer converts string (natural language representations) into machine-readable tokens:
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Tokenization

Recall the previous example on vocabulary:

A tokenizer converts string (natural language representations) into machine-readable tokens:

Practical concerns: split by spaces don’t work in general.

1. Some languages don’t have spaces between words.

 English: What is machine learning? Chinese: 什么是机器学习？ Japanese: 機械学習とは何ですか？
2. Special cases like hyphenated words (e.g.,  GPT-4) or contractions (e.g., don’t).
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Tokenization

Recall the previous example on vocabulary:

A tokenizer converts string (natural language representations) into machine-readable tokens:

Practical concerns: split by spaces don’t work in general.

1. Some languages don’t have spaces between words.

 English: What is machine learning? Chinese: 什么是机器学习？ Japanese: 機械学習とは何ですか？
2. Special cases like hyphenated words (e.g.,  GPT-4) or contractions (e.g., don’t).

We need a more principled approach to tokenization, ensuring that we have neither too many nor too few tokens, 

with each token representing a linguistically meaningful unit.
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Tokenization

Here we introduce byte pair encoding (BPE) algorithm, which is one of the most popular tokenizers and has been 

used in OpenAI’s products such as GPT-4.
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Tokenization

Example of BPE learning: 

Step 1: [t, h, e, ␣, c, a, r], [t, h, e, ␣, c, a, t], [t, h, e, ␣, r, a, t]

Step 2: [th, e, ␣, c, a, r], [th, e, ␣, c, a, t], [th, e, ␣, r, a, t] (th occurs 3x)

Step 3: [the, ␣, c, a, r], [the, ␣, c, a, t], [the, ␣, r, a, t] (the occurs 3x)

Step 4: [the, ␣, ca, r], [the, ␣, ca, t], [the, ␣, r, a, t] (ca occurs 2x)

…
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Tokenization

Example of BPE learning: 

Step 1: [t, h, e, ␣, c, a, r], [t, h, e, ␣, c, a, t], [t, h, e, ␣, r, a, t]

Step 2: [th, e, ␣, c, a, r], [th, e, ␣, c, a, t], [th, e, ␣, r, a, t] (th occurs 3x)

Step 3: [the, ␣, c, a, r], [the, ␣, c, a, t], [the, ␣, r, a, t] (the occurs 3x)

Step 4: [the, ␣, ca, r], [the, ␣, ca, t], [the, ␣, r, a, t] (ca occurs 2x)

…

Results:

• Updated vocabulary: [a, c, e, h, t, r, ca, th, the]

• The merges that we made (important for applying the tokenizer):

 t, h ⇒ th

 th, e ⇒ the

 c, a ⇒ ca

In practice, we run BPE on the byte level encoding of all Unicode characters to handle multilingual tasks.

Example in Chinese:

今天 [gloss: today]

[x62, x11, 4e, ca]
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Tokenization

Off-the-shelf BPE has a vocabulary size of 50K.

Example of open-sourced BPE from OpenAI:

Image Credit: [5]
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Rotary Positional Encoding

Recall the sinusoidal positional encoding for transformer:

i

p
o
s

Image Credit: [6]
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Rotary Positional Encoding

Problems with Positional Encoding:

• Fixed sinusoidal embeddings can theoretically handle sequences of arbitrary lengths. However, models 

often underperform when sequence lengths greatly differ from those in the training data.

• It only encodes the absolute position of a token within a sequence.
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Rotary Positional Encoding

Problems with Positional Encoding:

• Fixed sinusoidal embeddings can theoretically handle sequences of arbitrary lengths. However, models 

often underperform when sequence lengths greatly differ from those in the training data.

• It only encodes the absolute position of a token within a sequence.

Rotary Positional Embeddings (RoPE) [24] are proposed to address such limitations:

• It encodes absolute position with a rotation matrix

• It encodes the explicit relative position dependency in self-attention
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1. Encode absolute position with a rotation matrix:

Rotary Positional Encoding
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1. Encode absolute position with a rotation matrix:

2. Apply rotation to token embedding:

Rotary Positional Encoding
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1. Encode absolute position with a rotation matrix:

2. Apply rotation to token embedding:

The inner product within the self-attention encodes the relative position: 

Rotary Positional Encoding
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Rotary Positional Encoding

27
Image Credit: [24]



Rotary Positional Encoding

Code of RoPE:

RoPE rotates each token's embedding based on its position in the sequence. 

Imagine the RoPE is like a clock with multiple hands. Each hand rotates at a different speed (different 

frequencies). Every token in your sequence corresponds to a specific clock hand.

Impact on dot-product in attention: closer positions -> closer angles -> higher dot product -> higher relevance.
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Architecture

Modern LLMs architectures are based on transformers.

Image Credit: [7]
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Architecture

Type 1: encoder-only.

These LMs generate contextual embeddings from given inputs.

where                               is the embedding function for input tokens. 

Use of encoder-only LMs:

• Sentiment analysis

• Natural language inference

Advantage: bidirectional context embeddings for each token in the input sequence.

Limit: cannot directly generate text and require specific training objectives.
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Architecture

Type 1: encoder-only.

Image Credit: [8]
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Architecture

Type 2: decoder-only.

They are standard autoregressive LMs that generate both contextual embedding and a conditional 

distribution for next token.

Use of decoder-only LMs:

• Text autocomplete

Advantage: natural text generation.

Limit: unidirectional context embedding depending on the left part           .
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Architecture

Type 3: encoder-decoder.

They use bidirectional contextual embeddings and can naturally generate next token as output.

Use of decoder-only LMs:

• Table-to-text generation

Advantage: bidirectional context embeddings; natural generation of text.

Limit: require specific training objectives.
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Architecture

Type 3: encoder-decoder.

Image Credit: [8]
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Architecture

Powerful conversional LLMs (e.g., ChatGPT, LLaMA) are mainly driven by decoder-only models.

Image Credit: [8]
37



Outline

• Introduction & Background

• Models

• Tokenization

• Rotary Positional Encoding

• Architecture

• Sampling

• Training & Scaling Law

• Finetuning

• Low Rank Adaptation (LoRA)

• Reinforcement Learning from Human Feedback (RLHF)

• Prompting

• Zero/Few-shot Prompting

• Chain of Thought (CoT) Prompting

38



Sampling

Suppose we train a decoder-only LLM like GPT-3, how can we generate next token one by one?

39



Sampling

Suppose we train a decoder-only LLM like GPT-3, how can we generate next token one by one?

• Greedy Sampling

• Beam Search

• Top-K

• Nucleus Sampling

……
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Greedy Sampling

Denoting the model as                         , we “sample” the token with maximum conditional probability: 
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Beam Search

Image Credit: [9]
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Beam Search

Denoting the model as                        , we have
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Top-K Sampling

Denoting the model as                        , we restrict the support to top-K candidate tokens:

Image Credit: [10]
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Top-K Sampling

Denoting the model as                        , we have
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Nucleus (Top-P) Sampling

Following top-K sampling, nucleus sampling [11] dynamically changes K so that their probabilities sum 

exceeds some threshold:

Image Credit: [10]
46



Nucleus (Top-P) Sampling

Denoting the model as                        , we have
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Loss Function

We train decoder-only LLMs (e.g., GPT3 [12]) to predict the next token by minimizing negative log 

likelihood:
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Loss Function

We train decoder-only LLMs (e.g., GPT3 [12]) to predict the next token by minimizing negative log 

likelihood:

For encoder-only and encoder-decoder LLMs (e.g., BERT [13], BART [14], and T5 [15]), they do 

mostly masked language modeling, i.e., predicting the masked tokens:

Image Credit: [15]
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Scaling Law

Hyperparameter tuning for LLMs has a huge cost!

Scaling law [16, 17] allows fast prediction of model performances, e.g., validation loss L, from the 

dataset size D, computational cost C, and the number of parameters N. 

Dataset Size 
tokens

Parameters 
non-embedding

Compute 
PF-days, non-embedding

T
e

s
t 

L
o

s
s

Image Credit: [17]
51



Scaling Law

Hyperparameter tuning for LLMs has a huge cost!

Scaling law [16, 17] allows fast prediction of model performances, e.g., validation loss L, from the 

dataset size D, computational cost C, and the number of parameters N. 

Dataset Size 
tokens

Parameters 
non-embedding

Compute 
PF-days, non-embedding

T
e

s
t 

L
o

s
s

Image Credit: [17]
52



Scaling Law

Hyperparameter tuning for LLMs has a huge cost!

Scaling law [16, 17] allows fast prediction of model performances, e.g., validation loss L, from the 

dataset size D, computational cost C, and the number of parameters N. 

Dataset Size 
tokens

Parameters 
non-embedding

Compute 
PF-days, non-embedding

T
e

s
t 

L
o

s
s

Image Credit: [17]
53



Scaling Law

Hyperparameter tuning for LLMs has a huge cost!

Scaling law [16, 17] allows fast prediction of model performances, e.g., validation loss L, from the 

dataset size D, computational cost C, and the number of parameters N. 

Dataset Size 
tokens

Parameters 
non-embedding

Compute 
PF-days, non-embedding

T
e

s
t 

L
o

s
s

Power law 𝑦 = 𝑎𝑥𝑘 appears as straight lines in log-log plot!

Image Credit: [17]
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Scaling Law

Many factors, e.g., the architecture, could affect the scaling law. 

Dataset Size 
tokens

Parameters 
non-embedding

Compute 
PF-days, non-embedding
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Image Credit: [17]
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Scaling Law

Many factors, e.g., the architecture, could affect the scaling law. 

GPT 3 (175B)
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Image Credit: [17]
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Scaling Law

Many factors, e.g., the architecture, could affect the scaling law. But the exponent seems quite stable! 

GPT 3 (175B)
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tokens

Parameters 
non-embedding
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T
e
s
t 

L
o

s
s

Image Credit: [17]
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Low Rank Adaptation (LoRA)

Fine-tuning LLMs is computationally expensive!

When adapting LLMs to a specific task, pre-trained 

LLMs have a low ``intrinsic dimension” [18]
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Low Rank Adaptation (LoRA)

Fine-tuning LLMs is computationally expensive!

When adapting LLMs to a specific task, pre-trained 

LLMs have a low ``intrinsic dimension” [18]

LoRA [19] thus learns a low-rank weight update: Pretrained 
Weights

𝑊 ∈ℝ𝑑×𝑑

x

h

𝐵 = 0

𝐴 = 𝒩(0,𝜎2 )

𝑑

𝑟

Pretrained 
Weights

𝑊 ∈ℝ𝑑×𝑑

x

f(x)

𝑑

Image Credit: [19]
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Low Rank Adaptation (LoRA)

Fine-tuning LLMs is computationally expensive!

When adapting LLMs to a specific task, pre-trained 

LLMs have a low ``intrinsic dimension” [18]

LoRA [19] thus learns a low-rank weight update: Pretrained 
Weights

𝑊 ∈ℝ𝑑×𝑑

x

h

𝐵 = 0

𝐴 = 𝒩(0,𝜎2 )

𝑑

𝑟

Pretrained 
Weights

𝑊 ∈ℝ𝑑×𝑑

x

f(x)

𝑑

Frozen

Learnable

Image Credit: [19]
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Reinforcement Learning from Human Feedback (RLHF)

Fine-tuning LLMs with RLHF [e.g., 20] can align them with human values! 
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Reinforcement Learning from Human Feedback (RLHF)

Fine-tuning LLMs with RLHF [e.g., 20] can align them with human values! 

It involves three steps:

• Pretraining a LLM 

e.g., one curate a preferable text dataset

Image Credit: [21]
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Reinforcement Learning from Human Feedback (RLHF)

Fine-tuning LLMs with RLHF [e.g., 20] can align them with human values! 

It involves three steps:

• Pretraining a LLM

• Training a reward model

o OpenAI uses 175B LM and 6B reward model 

o Anthropic used LM and reward models from 

10B to 52B

o DeepMind uses 70B Chinchilla models for 

both LM and reward

Image Credit: [21]
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Reinforcement Learning from Human Feedback (RLHF)

Fine-tuning LLMs with RLHF [e.g., 20] can align them with human values! 

It involves three steps:

• Pretraining a LLM

• Training a reward model

• Fine-tuning LLM with RL 

RL policy generates text, and that text is fed into the 

initial model to produce its relative probabilities for 

the KL penalty

Image Credit: [21]
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Prompting

Prompts are the input to LLMs, of which the quality significantly affects the output of LLMs.

Designing effective prompts to instruct LLMs to perform a desired task is often referred to as prompt engineering.
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Zero/Few-shot Prompting

Prompts are the input to LLMs, of which the quality significantly affects the output of LLMs.

Designing effective prompts to instruct LLMs to perform a desired task is often referred to as prompt engineering.

Zero/Few-shot prompting:

Ask it directly!

Image Credit: [22]
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Zero/Few-shot Prompting

Prompts are the input to LLMs, of which the quality significantly affects the output of LLMs.

Designing effective prompts to instruct LLMs to perform a desired task is often referred to as prompt engineering.

Zero/Few-shot prompting:

Ask it directly!

Image Credit: [22]
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Zero/Few-shot Prompting

Prompts are the input to LLMs, of which the quality significantly affects the output of LLMs.

Designing effective prompts to instruct LLMs to perform a desired task is often referred to as prompt engineering.

Zero/Few-shot prompting:

Ask it directly!

Ask with some guiding examples!

Image Credit: [22]
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Chain-of-Thought (CoT) Prompting

CoT prompting [23] enables complex reasoning capabilities through intermediate reasoning steps:

Image Credit: [23]
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Chain-of-Thought (CoT) Prompting

CoT prompting [23] enables complex reasoning capabilities through intermediate reasoning steps:

Image Credit: [22]
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