CPEN 455: Deep Learning

Lecture 9: Large Language Models

Renjie Liao, Qi Yan

University of British Columbia
Winter, Term 2, 2024

Outline

Introduction & Background
* Models
« Tokenization
« Rotary Positional Encoding
« Architecture
« Sampling
« Training & Scaling Law
* Finetuning
* Low Rank Adaptation (LoRA)
* Reinforcement Learning from Human Feedback (RLHF)
e Prompting
« Zero/Few-shot Prompting
« Chain of Thought (CoT) Prompting

Introduction & Background

Language Model (LM) learns a probability distribution over sequences of tokens.
For a vocabulary V' of a set of tokens {1, z2, -+ , v}, the LM learns the joint probability for each
sequence of tokens:

p(z1,...,2L).

Introduction & Background

Language Model (LM) learns a probability distribution over sequences of tokens.
For a vocabulary V' of a set of tokens {1, z2, -+ , v}, the LM learns the joint probability for each
sequence of tokens:

p(z1,...,2L).

Each token can represent a word. For example:

V' = {ate, ball, cheese, mouse, the}
p(the, mouse, ate, the, cheese) = 0.02,
p(the, cheese, ate, the, mouse) = 0.01,
p(mouse, the, the, cheese, ate) = 0.0001,

Introduction & Background

Language Model (LM) learns a probability distribution over sequences of tokens.
For a vocabulary V' of a set of tokens {1, z2, -+ , v}, the LM learns the joint probability for each
sequence of tokens:

p(z1,...,2L).

Each token can represent a word. For example:

V' = {ate, ball, cheese, mouse, the}
p(the, mouse, ate, the, cheese) = 0.02,
p(the, cheese, ate, the, mouse) = 0.01,
p(mouse, the, the, cheese, ate) = 0.0001,

The objective of language modeling is intuitively simple, but it becomes significantly complex as we scale up
the size of the vocabulary and the sequence length.

Just imagine all the possible language and word combinations!

Introduction & Background

Language Model (LM) learns a probability distribution over sequences of tokens.
For a vocabulary V' of a set of tokens {1, z2, -+ , v}, the LM learns the joint probability for each
sequence of tokens:

p(x1,...,xL).

Each token can represent a word. For example:

V' = {ate, ball, cheese, mouse, the}
p(the, mouse, ate, the, cheese) = 0.02,
p(the, cheese, ate, the, mouse) = 0.01,
p(mouse, the, the, cheese, ate) = 0.0001,

The assigned probability indicates two types of knowledge:
1) Syntactic knowledge, which involves reasoning over ungrammatical sequences.
2) World knowledge, which pertains to reasoning over semantic plausibility.

Introduction & Background

Modern Large Language Models (LLMs) are typically autoregressive models, which model the joint
distribution p(z1.1,) using the chain rule of probability:
L

P(QCLL) =]?(371)]?(552 \ 561)]?(953 \ $1,$2) e °p(fE‘L \ 931:L—1) = HP(CEZ | $1:z'—1)

Introduction & Background

Modern Large Language Models (LLMs) are typically autoregressive models, which model the joint
distribution p(z1.1,) using the chain rule of probability:

P(QCLL) =]?(371)]9(362 \ 561)]?(953 \ $1,$2) e ']9(33'L \ 93‘1:1:—1) = HP(CEZ | $1:z'—1)

For example:
p(the, mouse, ate, the, cheese) = p(the)

p(mouse | the)

s

the | the, mouse, ate)

i~

(
(
(ate | the, mouse)
(
(

p(cheese | the, mouse, ate, the).

Introduction & Background

Modern Large Language Models (LLMs) are typically autoregressive models, which model the joint
distribution p(z1.1,) using the chain rule of probability:

P(QCLL) =]?(371)]9(362 \ 561)]?(953 \ $1,$2) e ']9(33'L \ 93‘1:1:—1) = HP(CEZ | $1:z'—1)

For example:
p(the, mouse, ate, the, cheese) = p(the)

p(mouse | the)

s

the | the, mouse, ate)

i~

(
(
(ate | the, mouse)
(
(

p(cheese | the, mouse, ate, the).

Particularly, we learn a conditional probability distribution for the next token:
(T | x1:-1)

We typically use a single feedforward neural network (such as transformers) to model such conditional
distributions.

Introduction & Background

Modern LLMs size has increase more than 5000x in last 4 years.

Image Credit: [1]

@ Amazon-owned @ Anthropic @ Apple @ Chinese © Google @ Meta / Facebook @ Microsoft @ OpenAl @ Other

BOTS — BlenderBot1 @ e o ® 00 © ® . o® .
PLATO-XL ChatcBarg® BingChat™
BlenderBot3

Y Ernie Bot 3.5 GPT-5*
y
Wu Dao 2.0 k \
h
4

GlLaM

h
billion parameters

FRe o

PaLM2

PaLM Mistrallarga
5308 &

N
| Gopher yaone s
. ’ Falcor 1808
PanGu-Alpha
Emie 3.0 Titan SenseChat
175 Billion . - ; - i

. Jurassic-1 .
GPT-3 O (“\1 OPT—IML. Claude 21

LaMDA FLAN

. Galactica IDEFICS

o “ o o &
xlarge NLLB-200 CraMdlelM LlaMa2 g @ Mistral-small
Falcon LLM

GPT-NeoX - AlexaTM ®

¢ o M MM
@@ mGPT ©C e@e Doly20 Orcale@e

GPT-2 & Codex e @

. & *e® @+ O
i @ @ GPT-J @g g [] Alpaca Sail-78 MGIE
BERT TS5 Megatron-11B WelM Atlas
t
pre-2020 2020 7 22 23 2024 TBC
David McCandless, Tom Evans, Paul Barton source: news reports, LifeArchitect.ai
Infarmation is Beautiful // UPDATED 20th Mar 24 * = parameters undisclosed // see the data

10

Introduction & Background

As LLMs get more powerful, will they lead to Artificial General Intelligence (AGI)?

Sparks of Artificial General Intelligence:
Early experiments with GPT-4

Sébastien Bubeck Varun Chandrasekaran Ronen Eldan Johannes Gehrke
Eric Horvitz Ece Kamar Peter Lee Yin Tat Lee Yuanzhi Li Scott Lundberg
Harsha Nori Hamid Palangi Marco Tulio Ribeiro Yi Zhang

Microsoft Research

@OpenAl Research~ APlv ChatGPT~ Safety Company~ Search Logina | Try ChatGPT »

Blog

Planning for
AGI and beyond

Our mission is to ensure that artificial general intelligence—
Al systems that are generally smarter than humans—
benefits all of humanity.

Image Credit: [2, 3, 4]

Article

Solving olympiad geometry without human
demonstrations

https://doi.org/10.1038/s41586-023-06747-5 Trieu H. Trinh"**, Yuhuai Wu', Quoc V. Le', He He? & Thang Luong'™’

Received: 30 April 2023
Accepted: 13 October 2023
Published online: 17 January 2024

Proving mathematical theorems at the olympiad level represents a notable milestone
inhuman-level automated reasoning' *, owing to their reputed difficulty among the
world’s best talents in pre-university mathematics. Current machine-learning
approaches, however, are not applicable to most mathematical domains owing to the
high cost of translating human proofs into machine-verifiable format. The problemis
even worse for geometry because of its unique translation challenges'*, resulting in
severescarcity of training data. We propose AlphaGeometry, a theorem prover for
Euclidean plane geometry that sidesteps the need for human demonstrations by
synthesizing millions of theorems and proofs across different levels of complexity.
AlphaGeometry is a neuro-symbolic system that uses a neural language model,
trained from scratch on our large-scale synthetic data, to guide a symbolic deduction
engine through infinite branching points in challenging problems. On a test set of

30 latest olympiad-level problems, AlphaGeometry solves 25, outperforming the
previous best method that only solves ten problems and approaching the performance
of an average International Mathematical Olympiad (IMO) gold medallist. Notably,
AlphaGeometry produces human-readable proofs, solves all geometry problemsin
the IMO 2000 and 2015 under human expert evaluation and discovers a generalized
version of a translated IMO theoremin 2004.

Open access

|®]Check for updates

11

Outline

Introduction & Background
* Models
« Tokenization
« Rotary Positional Encoding
« Architecture
« Sampling
« Training & Scaling Law
* Finetuning
* Low Rank Adaptation (LoRA)
* Reinforcement Learning from Human Feedback (RLHF)
e Prompting
« Zero/Few-shot Prompting
« Chain of Thought (CoT) Prompting

Tokenization

Recall the previous example on vocabulary:

V = {ate, ball, cheese, mouse, the}

A tokenizer converts string (natural language representations) into machine-readable tokens:

the mouse ate the cheese = [the, mouse, ate, the, cheese

Tokenization

Recall the previous example on vocabulary:
V' = {ate, ball, cheese, mouse, the}
A tokenizer converts string (natural language representations) into machine-readable tokens:
the mouse ate the cheese = [the, mouse, ate, the, cheese
Practical concerns: split by spaces don’t work in general.
1. Some languages don’t have spaces between words.

English: What is machine learning? Chinese: f+ 244188 >] ? Japanese: i F& & (LTI H ?
2. Special cases like hyphenated words (e.g., GPT-4) or contractions (e.g., don t).

Tokenization

Recall the previous example on vocabulary:
V' = {ate, ball, cheese, mouse, the}
A tokenizer converts string (natural language representations) into machine-readable tokens:

the mouse ate the cheese = [the, mouse, ate, the, cheese

Practical concerns: split by spaces don’t work in general.

1. Some languages don’t have spaces between words.
English: What is machine learning? Chinese: ft A2#1g&=>] ? Japanese: #M=F& & [FOI TI M ?
2. Special cases like hyphenated words (e.g., GPT-4) or contractions (e.g., don t).

We need a more principled approach to tokenization, ensuring that we have neither too many nor too few tokens,
with each token representing a linguistically meaningful unit.

Tokenization

Here we introduce byte pair encoding (BPE) algorithm, which is one of the most popular tokenizers and has been
used in OpenAl’s products such as GPT-4.

1: Input: A training corpus composed of character sequences.
Initialization: Treat each character as an individual token. Establish ini-
tial vocabulary V as the set of distinct characters.
while V' needs expansion do
Identify the most frequently co-occurring pair of elements x, 2’ € V.
Replace every instance of z, 2’ with a new symbol xz’.
Add the new symbol zx’ to V.
end while

.

Tokenization

Example of BPE learning:

Step1:[t,h,e, _,c,ar], [t he _.,cat][the _,ra,t]

Step 2: [th,e, _,,C,a,1], [th,e, _,cC, at],[the, _, 1 a, t] (th occurs 3x)
Step 3: [the, ., c, a,r], [the, _., C, a, t], [the, _., 1, &, t] (the occurs 3x)
Step 4: [the, _., ca, r], [the, _., ca, t], [the, _., I, &, t] (ca occurs 2x)

Tokenization

Example of BPE learning:

Step1:[t,h,e, _,c,ar], [t he _.,cat][the _,ra,t]

Step 2: [th,e, _,,C,a,1], [th,e, _,cC, at],[the, _, 1 a, t] (th occurs 3x)
Step 3: [the, ., c, a,r], [the, _., C, a, t], [the, _., 1, &, t] (the occurs 3x)
Step 4: [the, _., ca, r], [the, _., ca, t], [the, _., I, &, t] (ca occurs 2x)

Results:

« Updated vocabulary: [a, c, e, h, t, 1, ca, th, the]

» The merges that we made (important for applying the tokenizer):
t, h =th
th, e =the
C,a =ca

In practice, we run BPE on the byte level encoding of all Unicode characters to handle multilingual tasks.
Example in Chinese:

4K [gloss: today]
[X62, x11, 4e, ca]

Tokenization

Off-the-shelf BPE has a vocabulary size of 50K.

Example of open-sourced BPE from OpenAl:

Large language models are one of the most significant inventions of this
decade.

Clear Show example

Tokens Characters

14 80

Large language models are one of the most significant inventions of this

decade.

Image Credit: [5]

19

Outline

Introduction & Background
* Models
« Tokenization
« Rotary Positional Encoding
« Architecture
« Sampling
« Training & Scaling Law
* Finetuning
* Low Rank Adaptation (LoRA)
* Reinforcement Learning from Human Feedback (RLHF)
e Prompting
« Zero/Few-shot Prompting
« Chain of Thought (CoT) Prompting

Rotary Positional Encoding

Recall the sinusoidal positional encoding for transformer:

0 ¥ ¥ 100 120

60 20
|

PE(pos,zz') = S’l:n(pOs/]_OOOOzi/dmodez)

0

s j
s

R ||||

: 'I:'IJIIIIJ "] I

PE(pos,2i1) = cos(pos/ 100002i/dmodel)

21
Image Credit: [6]

Rotary Positional Encoding

Problems with Positional Encoding:

 Fixed sinusoidal embeddings can theoretically handle sequences of arbitrary lengths. However, models
often underperform when sequence lengths greatly differ from those in the training data.

» [t only encodes the absolute position of a token within a sequence.

Rotary Positional Encoding

Problems with Positional Encoding:

 Fixed sinusoidal embeddings can theoretically handle sequences of arbitrary lengths. However, models
often underperform when sequence lengths greatly differ from those in the training data.

» [t only encodes the absolute position of a token within a sequence.
Rotary Positional Embeddings (RoPE) [24] are proposed to address such limitations:
|t encodes absolute position with a rotation matrix

|t encodes the explicit relative position dependency in self-attention

Rotary Positional Encoding

1. Encode absolute position with a rotation matrix:

(cosmbf; —sinmb; 0 0 0 0 \
sinmf; cosmb; 0 0 0 0
0 0 cosmby —sinmb, 0 0
Rd@ = 0 0 sinmf, cosmbs 0 0
0 0 0 0 oo cosmby, —sinmbg)o

\ 0 0 0 0 o sinmbg g Cosmed/2)

Rotary Positional Encoding

1. Encode absolute position with a rotation matrix:

(cosmbf; —sinmb; 0 0 0 0 \
sinmf; cosmb; 0 0 0 0
0 0 cosmby —sinmb, 0 0
Rd@ = 0 0 sinmf, cosmbs 0 0
0 0 0 0 oo cosmby, —sinmbg)o
\ 0 0 0 0 oo osinmbge cosmbg) o)

2. Apply rotation to token embedding:
fiawy(@m,m) = RE , Wi 13T

Rotary Positional Encoding

1. Encode absolute position with a rotation matrix:

(cosmbf; —sinmb; 0 0 0 0 \
sinmf; cosmb; 0 0 0 0
0 0 cosmby —sinmb, 0 0
Rd@ = 0 0 sinmf, cosmbs 0 0
0 0 0 0 oo cosmby, —sinmbg)o
\ 0 0 0 0 oo osinmbge cosmbg) o)

2. Apply rotation to token embedding:
fiawy(@m,m) = RE , Wi 13T

The inner product within the self-attention encodes the relative position:

qkn = (Rd@,quwm)T(Rd@,anwn) = wTWqR%,n—kawn

Rotary Positional Encoding

Image Credit: [24]

r -- .
1 | m 1
: onstant X 2 \ :
i 8
] i
= - R
: % xz) P— . —) :
: jery / Key X 1 xl ! Key :
H 2
g v
L A s B .. Iy onm—— :
AN
Enhanced] LI, 1
Transformer [[|]+~ [.| 2
with (TR - - - (T 3 —
S i RO s
Position |:|___|:|:| oo 0] 1IN
embedding (T[T -+~ (I 6
Query / Key Position Position Encoded Query / Key

27

Rotary Positional Encoding

Code of RoPE:

1 import numpy as np
2 def rotary_positional_embedding(position, d_model):

3 freqs = np.exp(np.linspace(0., -1., d_model // 2) * np.log(10000.))
4 angles = position * freqgs

5 rotary_matrix = np.stack([np.sin(angles), np.cos(angles)], axis=-1)
6 return rotary_matrix.reshape(-1, d_model)

ROPE rotates each token's embedding based on its position in the sequence.

Imagine the RoPE is like a clock with multiple hands. Each hand rotates at a different speed (different
frequencies). Every token in your sequence corresponds to a specific clock hand.

Impact on dot-product in attention: closer positions -> closer angles -> higher dot product -> higher relevance.

Outline

Introduction & Background
* Models
« Tokenization
« Rotary Positional Encoding
« Architecture
« Sampling
« Training & Scaling Law
* Finetuning
* Low Rank Adaptation (LoRA)
* Reinforcement Learning from Human Feedback (RLHF)
e Prompting
« Zero/Few-shot Prompting
« Chain of Thought (CoT) Prompting

Architecture

Modern LLMs architectures are based on transformers.

Output
Probabilities

s N
Add & Norm
Feed
Forward
F 3
—
4)\ l Add & Norm |<ﬁ
r—>| Add & Norm | =
Multi-Head
Feed Attention N x
Forward g g
F 3
~—
Nx Add & Norm
r—>| Add & Norm |
Masked
Multi-Head Multi-Head
Attention Attention
* F 5 } ‘ F 3 }
| .

\ J g J/
Positional _9 E' Positional
Encoding Encoding

Input Output
Embedding Embedding
Inputs Outputs

(shifted right)

Image Credit: [7]

Architecture

Type 1: encoder-only.

These LMs generate contextual embeddings from given inputs.

T1:L = ¢(:U1:L)7
where ¢ : VI — R¥>*L is the embedding function for input tokens.

Use of encoder-only LMs:

« Sentiment analysis
[[CLS], the, movie, was, great| = positive.

» Natural language inference
[[CLS], all, animals, breathe, [SEP], cats, breathe] = entailment.

Advantage: bidirectional context embeddings for each token in the input sequence.
Limit: cannot directly generate text and require specific training objectives.

Architecture

Type 1: encoder-only.

Image Credit: [8]

Input sentence: The curious kitten deftly climbed the bookshelf

|

€ Pick 15% of the words randomly

N

The curious kitten deftly climbed the bookshelf

/

Q e 80% of the time, replace with [MASK] token
* 10% of the time, replace with random token (e.g. ate)
* 10% of the time, keep unchanged

Modified sentence: The curious kitten deftly [MASK] the bookshelf

33

Architecture

Type 2: decoder-only.

They are standard autoregressive LMSs that generate both contextual embedding and a conditional
distribution for next token.
T1 = O(21:4), D(Tiv1 |).

Use of decoder-only LMs:

» Text autocomplete ,
[[CLS], the, movie, was| = great

Advantage: natural text generation.
Limit: unidirectional context embedding depending on the left part %1:i—1,

Architecture

Type 3: encoder-decoder.

They use bidirectional contextual embeddings and can naturally generate next token as output.

r1.r, = O(z1.0),p(Y1:L | ¢(1:1))-

Use of decoder-only LMs:
» Table-to-text generation

[name, :, Clowns, —, eat Type, :, coffee, shop] = [Clowns, is, a, coffee, shop].

Advantage: bidirectional context embeddings; natural generation of text.
Limit: require specific training objectives.

S S <NSe|N> S e e D{SEIN>
e — m <— <NSEN> q:_. - .m <+ MOM
HOM « 3 < oz7j9siageN oM <+ O < 9z9siogen
oz)esiegen + 0O <« <pueis> 971851909 «— 0O <« <ueIs>
5 o« piom o <+ plom
8 «Aq B «Aqg
© < piom S« piom
W« oejsues) w

< 9je|suel]

o T e

~ 5 - <iSeN> HOM <« 5 dony
. — .m <+ <SEN> Jan} <+ .m <— HOM
4= Q0 OfsEN> HOM <+ O <« azjesisgen
9Z)9SIa(eN — 0O < <ueis> 9ZloslogeN «— A <« <ye)s>
ﬂ < pPlOm ﬂ < plom
.W <« Aq .m «— Ag
© <« piom O « piom
L L

< aje|suel|

" «— 9le|suel|

Architecture
Type 3: encoder-decoder

Image Credit: [8]

Architecture

Powerful conversional LLMs (e.g., ChatGPT, LLaMA) are mainly driven by decoder-only models.

Image Credit: [8]

Original transformer

Encoder

Decoder

Microsoft DeBERTa (2020)
BERT (2018
Google
“~_ ALBERT 520202
Meta RoBERTa (2019)

GPT-J (2021

Eleuther Al GPT-NeoX (2022)

GPT-NeoX 2.0 (2023)

CodeX (2021)

InstructGPT (2022

Meta

Meta BART (2020)
Encoder-Decoder 4 Flan-T5 (2022)
_Google Flan-UL2 (2023)
_ T5(2022)

37

Outline

Introduction & Background
* Models
« Tokenization
« Rotary Positional Encoding
« Architecture
« Sampling
« Training & Scaling Law
* Finetuning
* Low Rank Adaptation (LoRA)
* Reinforcement Learning from Human Feedback (RLHF)
e Prompting
« Zero/Few-shot Prompting
« Chain of Thought (CoT) Prompting

Sampling

Suppose we train a decoder-only LLM like GPT-3, how can we generate next token one by one?

Sampling

Suppose we train a decoder-only LLM like GPT-3, how can we generate next token one by one?

* Greedy Sampling
« Beam Search
 Top-K

* Nucleus Sampling

Greedy Sampling

Denoting the model as Py (X;|X~¢), we “sample” the token with maximum conditional probability:

Algorithm 1 Greedy Sampling

1: Special start token xq, vocabulary V', sequence length T

2: S = [:130]

3: fort<+ 1to T do

4: r; = argmax,cy P (Xi=v| X =9)

5 S =[S, x¢] > Concatenate the new token
6: end for
7: return S

Beam Search

Image Credit: [9]

42

Beam Search

Denoting the model as Py(X;|X <), we have

Algorithm 2 Beam Search
1: Special start token xy, beam size B, vocabulary V', sequence length T

2: § = {l:z:o], e [a;ol}

B
3: fort <+ 1to 71 do
& O={}
5 for i <1 to B do
6: N =argsort, ., Py (Xy=v]| Xy = S[i)) > Descending order
7 for j < 1 to B do > Take top B tokens
8 C = CU{[S]i], VIN[j]]]} > Concatenate with existing sequence
9: end for
10: end for
11: C = argsort..o Po(X<t = c) > Descending order
12: S={C[C[jllli=1,...,B} > Take top B subsequences
13: end for

14: return S

Top-K Sampling

Denoting the model as Py(X;| X), we restrict the support to top-K candidate tokens:

LY
i

s

candidate tokens

sample

K=5

Likelihood

clipped tail

Image Credit: [10]

Top-K Sampling

Denoting the model as Py(X;| X <¢), we have

Algorithm 3 Top-K Sampling

1: Special start token xq, vocabulary V', support size K, sequence length T’

2: S = [ZCQ]

3: fort < 1to T do

4 N =argsort,c.y Po(Xi=v]| Xy =09) > Descending order
5: for i + 1 to K do VAT

o P& = VNI X< = 5) = zﬁii(Pet<xt=[v[[f]\]f|[j]ﬁ§c<t)=s>

7 end for

8 Tt ~~ p

9: S =[S, x¢] > Concatenate the new token
10: end for

11: return S

Nucleus (Top-P) Sampling

Following top-K sampling, nucleus sampling [11] dynamically changes K so that their probabilities sum
exceeds some threshold:

A - The sun rises in the

candidate tokens

sample

K=5

Likelihood

clipped tail

e

Image Credit: [10]

Nucleus (Top-P) Sampling

Denoting the model as Py(X;| X <¢), we have

Algorithm 4 Nucleus Sampling

—_

. Special start token xg, vocabulary V', threshold p € (0, 1), sequence length

T
2: § = [SU()]
3: fort+ 1to T do
4: N =argsort,cy Pp(Xe=v| X =9) > Descending order
5 K=ming Y. Pp(Xe=VIN[]]| Xct =8) > p
6: for i <1 to K do P (XY N[X 1)
7 P (Xt — V[N[ZH ‘ X<t — S) — Z;K:j Pgt(Xt:V[N[j]]<|,tX<t:S)
8: end for
9: Ty ~ P
10: S =[S, x¢] > Concatenate the new token
11: end for
12: return S

Outline

Introduction & Background
* Models
« Tokenization
« Rotary Positional Encoding
« Architecture
« Sampling
e Training & Scaling Law
* Finetuning
* Low Rank Adaptation (LoRA)
* Reinforcement Learning from Human Feedback (RLHF)
e Prompting
« Zero/Few-shot Prompting
« Chain of Thought (CoT) Prompting

_oss Function

We train decoder-only LLMs (e.g., GPT3 [12]) to predict the next token by minimizing negative log
likelihood:

B T
i i 1 i
L(Q):EZ:_logpe(wT’mT—lﬂ'“vwﬂ:EZZ log po(xt|zt {,...,x})

1=1 =1 t=1

_oss Function

We train decoder-only LLMs (e.g., GPT3 [12]) to predict the next token by minimizing negative log
likelihood:

B B T
i i i 1 i i
L(9) = 5 Z = —logpg(x’r, @i _1,...,27) = = ZZ—logpg(acth:t_l,...,a)l)

1=1 =1 t=1

For encoder-only and encoder-decoder LLMSs (e.g., BERT [13], BART [14], and T5 [15]), they do
mostly masked language modeling, i.e., predicting the masked tokens:

Objective [nputs Targets

Prefix language modeling Thank you for inviting me to your party last week .

BERT-style Devlin et al. (2018) Thank you <M> <M> me to your party apple week . (original text)

Deshuffling party me for your to . last fun you inviting week Thank (original text)

MASS-style Song et al. (2019) Thank you <M> <M> me to your party <M> week . (original text)

Li.d. noise, replace spans Thank you <X> me to your party <¥> week . <X> for inviting <Y> last <Z>

[.i.d. noise, drop tokens Thank you me to your party week . for inviting last

Random spans Thank you <X> to <Y> week . <X> for inviting me <Y> your party last <Z>

50
Image Credit: [15]

Scaling Law

Hyperparameter tuning for LLMs has a huge cost!

Scaling law [16, 17] allows fast prediction of model performances, e.g., validation loss L, from the
dataset size D, computational cost C, and the number of parameters N.

7
6.
0w 2]
N
S
o
= 3]
L = (Cyin/2.3 - 108)=0-050
2 T T T T
1079 1077 10-° 103 1071 10!

Compute
PF-days, non-embedding

Image Credit: [17]

Scaling Law

Hyperparameter tuning for LLMs has a huge cost!

Scaling law [16, 17] allows fast prediction of model performances, e.g., validation loss L, from the
dataset size D, computational cost C, and the number of parameters N.

7 4.2
6 L= (D/5.4-1013)0.095
3.9
0 °]
% 3.6
— 4
17 3.3
2 3]
3.0
L = (Cmin/2.3 - 108)70:050
2 : : : : 2.71 . :
10-° 10-7 1075 10°3% 107! 10! 108 109
Compute Dataset Size
PF-days, non-embedding tokens

Image Credit: [17]

Scaling Law

Hyperparameter tuning for LLMs has a huge cost!

Scaling law [16, 17] allows fast prediction of model performances, e.g., validation loss L, from the
dataset size D, computational cost C, and the number of parameters N.

7 4.2
6 L =(D/5.4-1013)7009 | 5.6 L =(N/8.8-1013)0-076
3.9
4.8
2> »
9] 4.0
9 4]
? 3.3 3.2
2 3]
3.0
2.41
L = (Cmin/2.3 - 108)70:050
2 : : : : 2.7 . . : : :
10-° 10-7 1075 10°3% 107! 10! 108 109 10° 107 109
Compute Dataset Size Parameters
PF-days, non-embedding tokens non-embedding

53
Image Credit: [17]

Scaling Law

Hyperparameter tuning for LLMs has a huge cost!

Scaling law [16, 17] allows fast prediction of model performances, e.g., validation loss L, from the
dataset size D, computational cost C, and the number of parameters N.

Test Loss

L = (Cmin/2.3-108)70:050

2

10-° 107 105 10-3 10-!

Compute
PF-days, non-embedding

10!

4.2 1

3.91

3.6 1

3.31

3.0

2.71

L=(D/5.4-10%3)700%

108 109
Dataset Size
tokens

5.6 1
4.8 1

4.0

3.2

2.4

L=(N/8.8-1013)70076

105 107 109
Parameters
non-embedding

Power law y = ax* appears as straight lines in log-log plot!

Image Credit: [17]

54

Scaling Law

Many factors, e.g., the architecture, could affect the scaling law.

Test Loss

L = (Cin/2.3 - 108)70:050

i0-° 107 105 10-3 10-!

Compute
PF-days, non-embedding

Image Credit: [17]

10!

Validation Loss

[=257 -0

10"

Compute (PetaFLOP/s-days)

107 10° 10°

10

11

10

10

~10

10

10

10

10

10

Parameters

55

Scaling Law

Many factors, e.g., the architecture, could affect the scaling law.

11

GPT 3 (175B)

-10
6.
» 9
51) 10
7 e E,
S 4 5 8 £
+— "(E _10 ®
3 S 5
= 3 © o
> 7
10
L = (Cryn/2.3 - 108)~0-050
2 6
10~ 10-7 10-° 10~3 10-! 10! 10
Compute 7 [=357 - ooe
5
PF-days, non-embeddin 1.5 _ _ S 10
y g 10° 10" 107 10° 10° 10*

Compute (PetaFLOP/s-days) e

Image Credit: [17]

Scaling Law

Many factors, e.g., the architecture, could affect the scaling law. But the exponent seems quite stable!

11

GPT 3 (175B)

10
6.
) .9
51) 10 -
7 3 o
S 4 5 8 £
+— "(B' _10 ®
0 © ©
2 3 g Q.
10"
L = (Cpin/2.3 - 108)£0-050)
2 6
10 107 10~ 10-3 10-! 10! 10
Compute L =2.57 - cEe0g)
5
PF-days, non-embeddin 1.5 _ _ S 10
y g 10° 10" 107 10° 10° 10*

Compute (PetaFLOP/s-days) o

Image Credit: [17]

Outline

Introduction & Background
* Models
« Tokenization
« Rotary Positional Encoding
« Architecture
« Sampling
« Training & Scaling Law
* Finetuning
 Low Rank Adaptation (LoRA)
* Reinforcement Learning from Human Feedback (RLHF)
e Prompting
« Zero/Few-shot Prompting
« Chain of Thought (CoT) Prompting

Low Rank Adaptation (LoORA)

Fine-tuning LLMs is computationally expensive!

When adapting LLMSs to a specific task, pre-trained
LLMs have a low "'intrinsic dimension” [18]

Low Rank Adaptation (LORA)

Fine-tuning LLMs is computationally expensive!

When adapting LLMSs to a specific task, pre-trained
LLMs have a low "intrinsic dimension™ [18]

LoRA [19] thus learns a low-rank weight update:

Image Credit: [19]

We=Waz+ AWz
= Wax + BAx

Pretrained
Weights

Low Rank Adaptation (LORA)

Fine-tuning LLMs is computationally expensive!

h
When adapting LLMs to a specific task, pre-trained a EE':I %

N

LLMs have a low "intrinsic dimension™ [18]

LoRA [19] thus learns a low-rank weight update: Pretrained
Weights r Learnable

Wae=Wz+ AWz
= Wax + BAx W erd>d

Frozen /

61

Image Credit: [19]

Outline

Introduction & Background
* Models
« Tokenization
« Rotary Positional Encoding
« Architecture
« Sampling
« Training & Scaling Law
* Finetuning
* Low Rank Adaptation (LoRA)
» Reinforcement Learning from Human Feedback (RLHF)
e Prompting
« Zero/Few-shot Prompting
« Chain of Thought (CoT) Prompting

Reinforcement Learning from Human Feedback (RLHF)

Fine-tuning LLMs with RLHF [e.g., 20] can align them with human values!

Reinforcement Learning from Human Feedback (RLHF)

Fine-tuning LLMs with RLHF [e.g., 20] can align them with human values!

It involves three steps: Train Language Model
Prompts & Text Dataset

* Pretraininga LLM Initial Language Model

)@

A4

S [[[Iy [|
S I [[e |

H e

Human Augmented
Text (Optional)

e.g., one curate a preferable text dataset

Image Credit: [21]

Reinforcement Learning from Human Feedback (RLHF)

Fine-tuning LLMs with RLHF [e.g., 20] can align them with human values!

It |nVOIVeS thl’ee StepS Prompts Dataset

.. Reward (Preference)
* Pretraininga LLM Model
« Training a reward model rrainon ¢ 8o o

{sample, reward} pairs

Sample many prompts

o OpenAl uses 175B LM and 6B reward model l ‘ l l l l l l

Outputs are ranked
(relative, ELO, etc.)

o Anthropic used LM and reward models from Initial Language Model Lorem ipsum dolor 7
108 to 525 oo |t = [L

o DeepMind uses 70B Chinchilla models for $ oo ponee auam ele j—y |
both LM and reward e vemausmane || .

e v na_uman Scoring §

Generated text

Image Credit: [21]

Reinforcement Learning from Human Feedback (RLHF)

Fine-tuning LLMs with RLHF [e.g., 20] can align them with human values!

Prompts Dataset

It involves three steps:

* PretrainingaLLM v A dog .
/" Tuned Language)
° Training a reward model Initial Language Model Model (RL PO'ICy)
’ » :_‘ : ﬁ\ @ Reinforcement Learning
8 Qe % / Update (e.g. PPO)
- _ - - Q jji._. A >}
* Fine-tuning LLM with RL $81s o 979 10 0+V,J(0)
r =rg — AL, DxL sl
y: a furry mammal y: man’s best friend > £ @ :: & o 7
\, Z y, 2 5.07/4 ’
RL policy generates text, and that text is fed into the \< J«
initial model to produce its relative probabilities for 2 B
the KL pena|ty —AkL DKL (pro(ylm) I Trbase(y|$)) S 4
KL prediction shift penalty
ro(ylz)

66
Image Credit: [21]

Outline

Introduction & Background
* Models
« Tokenization
« Rotary Positional Encoding
« Architecture
« Sampling
« Training & Scaling Law
* Finetuning
* Low Rank Adaptation (LoRA)
* Reinforcement Learning from Human Feedback (RLHF)
e Prompting
« Zero/Few-shot Prompting
« Chain of Thought (CoT) Prompting

Prompting

Prompts are the input to LLMs, of which the quality significantly affects the output of LLMs.

Designing effective prompts to instruct LLMSs to perform a desired task is often referred to as prompt engineering.

Zero/Few-shot Prompting

Prompts are the input to LLMs, of which the quality significantly affects the output of LLMs.

Designing effective prompts to instruct LLMSs to perform a desired task is often referred to as prompt engineering.

Zero/Few-shot prompting:

| Zero-shot, standard
|

Q: While shopping for music online, Janet bought & country albums and 2 pop
albums. Each album came with a lyric sheet and had 9 songs. How many songs
did Janet buy total?

A

In

The answer is xxx

Out

Ask it directly!

69
Image Credit: [22]

Zero/Few-shot Prompting

Prompts are the input to LLMs, of which the quality significantly affects the output of LLMs.
Designing effective prompts to instruct LLMSs to perform a desired task is often referred to as prompt engineering.

Zero/Few-shot prompting:

Few-shot, standard

: Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3
Zero-shot. standard i tennis balls. How many tennis balls does he have now?
’ In |1 A: The answer is 11.

Q: While shopping for music online, Janet bought & country albums and 2 pop
albums. Each album came with a lyric sheet and had 9 songs. How many songs
did Janet buy total?

A Q: While shopping for music online, Janat bought 6 country albums and 2 pop
albums, Each album came with a lyric sheet and had 9 songs. How many songs
did Janet buy total?

A

In per task example = N

Out The answer is xxx

Out | The answer is xex

Ask it directly!

70
Image Credit: [22]

Zero/Few-shot Prompting

Prompts are the input to LLMs, of which the quality significantly affects the output of LLMs.
Designing effective prompts to instruct LLMSs to perform a desired task is often referred to as prompt engineering.

Zero/Few-shot prompting:

Few-shot, standard

: Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3
Zero-shot. standard i tennis balls. How many tennis balls does he have now?
’ In |1 A: The answer is 11.

Q: While shopping for music online, Janet bought & country albums and 2 pop
albums. Each album came with a lyric sheet and had 9 songs. How many songs
did Janet buy total?

A Q: While shopping for music online, Janat bought 6 country albums and 2 pop
albums, Each album came with a lyric sheet and had 9 songs. How many songs
did Janet buy total?

A

In per task example = N

Out The answer is xxx

Out | The answer is xex

Ask it directly!
Ask with some guiding examples!

71
Image Credit: [22]

Outline

Introduction & Background
* Models
« Tokenization
« Rotary Positional Encoding
« Architecture
« Sampling
« Training & Scaling Law
* Finetuning
* Low Rank Adaptation (LoRA)
* Reinforcement Learning from Human Feedback (RLHF)
e Prompting
« Zero/Few-shot Prompting
« Chain of Thought (CoT) Prompting

Image Credit: [23]

Standard Prompting

| Modelinput |

Q: Roger has 5 tennis balls. He buys 2 more cans of
tennis balls. Each can has 3 tennis balls. How many
tennis balls does he have now?

A: The answer is 11.

Q: The cafeteria had 23 apples. If they used 20 to
make lunch and bought 6 more, how many apples

e N

do they have?)

-

Chain-of-Thought (CoT) Prompting

CoT prompting [23] enables complex reasoning capabilities through intermediate reasoning steps:

Chain-of-Thought Prompting

Q: Roger has 5 tennis balls. He buys 2 more cans of
tennis balls. Each can has 3 tennis balls. How many
tennis balls does he have now?

A:
The answer is 11.

Q: The cafeteria had 23 apples. If they used 20 to
make lunch and bought 6 more, how many apples

A: The answer is 27. x j

do they have?

- J

3

A:

answer is 9.

73

Chain-of-Thought (CoT) Prompting

CoT prompting [23] enables complex reasoning capabilities through intermediate reasoning steps:

Zero-shot CoT

Few-shot CoT

2 While shopping for music online, Janet bought 6 country albums and 2 pop
albums. Each album came with a lyric sheet and had 9 songs. How many songs did
Janet buy total?

A Let's think step by step.

Janet bought & country albums and 2 pop albums. That is a total of 8 albums. Each
album has 9 songs. So 8 * 9 =72, The answer is 72

Image Credit: [22]

(1: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3
tennis balls. How many tennis balls does ha have now?

A: Roger started with 5 balls. 2 cans of 3 tennis balls each is 6 tennis balls. 5 + 6 =
11. The answer is 11.

per task chain of thought example x N

2: While shopping for music online, Janet bought & country albums and 2 pop
albums, Each album came with a lyric sheet and had 9 songs. How many songs did
Janet buy total?

A

Janet bought 6 country albums and 2 pop albums. That is a total of 8 albums. Each
album has 9 songs. So B9 =72, The answer is 72

74

References

[1] https://informationisbeautiful.net/visualizations/the-rise-of-generative-ai-large-language-models-lims-like-chatgpt/

[2] Bubeck, S., Chandrasekaran, V., Eldan, R., Gehrke, J., Horvitz, E., Kamar, E., Lee, P, Lee, Y.T,, Li, Y., Lundberg, S. and
Nori, H., 2023. Sparks of artificial general intelligence: Early experiments with gpt-4. arXiv preprint arXiv:2303.12712.

[3] Trinh, T.H., Wu, Y., Le, Q.V., He, H. and Luong, T., 2024. Solving olympiad geometry without human demonstrations.
Nature, 625(7995), pp.476-482.

[4] https://openai.com/blog/planning-for-agi-and-beyond

[5] https://platform.openai.com/tokenizer
[6] https://lilianweng.github.io/lil-log/2020/04/07/the-transformer-family.htmi

[7] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L. and Polosukhin, I., 2017. Attention
is all you need. In Advances in neural information processing systems (pp. 5998-6008).

[8] https://magazine.sebastianraschka.com/p/understanding-encoder-and-decoder

[9] https://www.baeldung.com/cs/beam-search

[10] https://www.megaputer.com/mastering-language-models-a-deep-dive-into-input-parameters/

[11] Holtzman, A., Buys, J., Du, L., Forbes, M. and Choi, Y., 2019. The curious case of neural text degeneration. arXiv
preprint arXiv:1904.09751.

75

https://informationisbeautiful.net/visualizations/the-rise-of-generative-ai-large-language-models-llms-like-chatgpt/
https://openai.com/blog/planning-for-agi-and-beyond
https://platform.openai.com/tokenizer
https://lilianweng.github.io/lil-log/2020/04/07/the-transformer-family.html
https://magazine.sebastianraschka.com/p/understanding-encoder-and-decoder
https://www.baeldung.com/cs/beam-search
https://www.megaputer.com/mastering-language-models-a-deep-dive-into-input-parameters/

References

[12] Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A. and
Agarwal, S., 2020. Language models are few-shot learners. Advances in neural information processing systems, 33, pp.1877-1901.

[13] Devlin, J., Chang, M.W.,, Lee, K. and Toutanova, K., 2018. Bert: Pre-training of deep bidirectional transformers for language
understanding. arXiv preprint arXiv:1810.04805.

[14] Lewis, M., Liu, Y., Goyal, N., Ghazvininejad, M., Mohamed, A., Levy, O., Stoyanov, V. and Zettlemoyer, L., 2019. Bart:
Denoising sequence-to-sequence pre-training for natural language generation, translation, and comprehension. arXiv preprint
arXiv:1910.13461.

[15] Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., Matena, M., Zhou, Y., Li, W. and Liu, P.J., 2020. Exploring the limits of
transfer learning with a unified text-to-text transformer. Journal of machine learning research, 21(140), pp.1-67.

[16] Hestness, J., Narang, S., Ardalani, N., Diamos, G., Jun, H., Kianinejad, H., Patwary, M.M.A., Yang, Y. and Zhou, Y., 2017. Deep
learning scaling is predictable, empirically. arXiv preprint arXiv:1712.00409.

[17] Kaplan, J., McCandlish, S., Henighan, T., Brown, T.B., Chess, B., Child, R., Gray, S., Radford, A., Wu, J. and Amodei, D., 2020.
Scaling laws for neural language models. arXiv preprint arXiv:2001.08361.

[18] Aghajanyan, A., Zettlemoyer, L. and Gupta, S., 2020. Intrinsic dimensionality explains the effectiveness of language model fine-
tuning. arXiv preprint arXiv:2012.13255.

[19] Hu, E.J., Shen, Y., Wallis, P., Allen-Zhu, Z., Li, Y., Wang, S., Wang, L. and Chen, W., 2021. Lora: Low-rank adaptation of large
language models. arXiv preprint arXiv:2106.09685.

[20] https://huggingface.co/blog/rIhf

https://huggingface.co/blog/rlhf

References

[21] Ziegler, D.M., Stiennon, N., Wu, J., Brown, T.B., Radford, A., Amodei, D., Christiano, P. and Irving, G., 1909. Fine-
tuning language models from human preferences. arXiv 2019. arXiv preprint arXiv:1909.08593.

[22] Kojima, T., Gu, S.S., Reid, M., Matsuo, Y. and Iwasawa, Y., 2022. Large language models are zero-shot reasoners.
Advances in neural information processing systems, 35, pp.22199-22213.

[23] Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E., Le, Q.V. and Zhou, D., 2022. Chain-of-thought
prompting elicits reasoning in large language models. Advances in neural information processing systems, 35, pp.24824-

24837.

[24] Su, J., Ahmed, M., Lu, Y., Pan, S., Bo, W. and Liu, Y., 2024. Roformer: Enhanced transformer with rotary position
embedding. Neurocomputing, 568, p.127063.

Questions?

	Slide 1: CPEN 455: Deep Learning Lecture 9: Large Language Models
	Slide 2: Outline
	Slide 3: Introduction & Background
	Slide 4: Introduction & Background
	Slide 5: Introduction & Background
	Slide 6: Introduction & Background
	Slide 7: Introduction & Background
	Slide 8: Introduction & Background
	Slide 9: Introduction & Background
	Slide 10: Introduction & Background
	Slide 11: Introduction & Background
	Slide 12: Outline
	Slide 13: Tokenization
	Slide 14: Tokenization
	Slide 15: Tokenization
	Slide 16: Tokenization
	Slide 17: Tokenization
	Slide 18: Tokenization
	Slide 19: Tokenization
	Slide 20: Outline
	Slide 21: Rotary Positional Encoding
	Slide 22: Rotary Positional Encoding
	Slide 23: Rotary Positional Encoding
	Slide 24: Rotary Positional Encoding
	Slide 25: Rotary Positional Encoding
	Slide 26: Rotary Positional Encoding
	Slide 27: Rotary Positional Encoding
	Slide 29: Rotary Positional Encoding
	Slide 30: Outline
	Slide 31: Architecture
	Slide 32: Architecture
	Slide 33: Architecture
	Slide 34: Architecture
	Slide 35: Architecture
	Slide 36: Architecture
	Slide 37: Architecture
	Slide 38: Outline
	Slide 39: Sampling
	Slide 40: Sampling
	Slide 41: Greedy Sampling
	Slide 42: Beam Search
	Slide 43: Beam Search
	Slide 44: Top-K Sampling
	Slide 45: Top-K Sampling
	Slide 46: Nucleus (Top-P) Sampling
	Slide 47: Nucleus (Top-P) Sampling
	Slide 48: Outline
	Slide 49: Loss Function
	Slide 50: Loss Function
	Slide 51: Scaling Law
	Slide 52: Scaling Law
	Slide 53: Scaling Law
	Slide 54: Scaling Law
	Slide 55: Scaling Law
	Slide 56: Scaling Law
	Slide 57: Scaling Law
	Slide 58: Outline
	Slide 59: Low Rank Adaptation (LoRA)
	Slide 60: Low Rank Adaptation (LoRA)
	Slide 61: Low Rank Adaptation (LoRA)
	Slide 62: Outline
	Slide 63: Reinforcement Learning from Human Feedback (RLHF)
	Slide 64: Reinforcement Learning from Human Feedback (RLHF)
	Slide 65: Reinforcement Learning from Human Feedback (RLHF)
	Slide 66: Reinforcement Learning from Human Feedback (RLHF)
	Slide 67: Outline
	Slide 68: Prompting
	Slide 69: Zero/Few-shot Prompting
	Slide 70: Zero/Few-shot Prompting
	Slide 71: Zero/Few-shot Prompting
	Slide 72: Outline
	Slide 73: Chain-of-Thought (CoT) Prompting
	Slide 74: Chain-of-Thought (CoT) Prompting
	Slide 75: References
	Slide 76: References
	Slide 77: References
	Slide 78: Questions?

