
Renjie Liao, Qi Yan

University of British Columbia

Winter, Term 2, 2024

CPEN 455: Deep Learning

Lecture 9: Large Language Models

Outline

• Introduction & Background

• Models

• Tokenization

• Rotary Positional Encoding

• Architecture

• Sampling

• Training & Scaling Law

• Finetuning

• Low Rank Adaptation (LoRA)

• Reinforcement Learning from Human Feedback (RLHF)

• Prompting

• Zero/Few-shot Prompting

• Chain of Thought (CoT) Prompting

2

Introduction & Background

Language Model (LM) learns a probability distribution over sequences of tokens.

For a vocabulary of a set of tokens , the LM learns the joint probability for each

sequence of tokens:

3

Introduction & Background

Language Model (LM) learns a probability distribution over sequences of tokens.

For a vocabulary of a set of tokens , the LM learns the joint probability for each

sequence of tokens:

Each token can represent a word. For example:

4

Introduction & Background

Language Model (LM) learns a probability distribution over sequences of tokens.

For a vocabulary of a set of tokens , the LM learns the joint probability for each

sequence of tokens:

Each token can represent a word. For example:

The objective of language modeling is intuitively simple, but it becomes significantly complex as we scale up

the size of the vocabulary and the sequence length.

Just imagine all the possible language and word combinations!

5

Introduction & Background

Language Model (LM) learns a probability distribution over sequences of tokens.

For a vocabulary of a set of tokens , the LM learns the joint probability for each

sequence of tokens:

Each token can represent a word. For example:

The assigned probability indicates two types of knowledge:

1) Syntactic knowledge, which involves reasoning over ungrammatical sequences.

2) World knowledge, which pertains to reasoning over semantic plausibility.

6

Introduction & Background

Modern Large Language Models (LLMs) are typically autoregressive models, which model the joint

distribution using the chain rule of probability:

7

Introduction & Background

Modern Large Language Models (LLMs) are typically autoregressive models, which model the joint

distribution using the chain rule of probability:

For example:

8

Introduction & Background

Modern Large Language Models (LLMs) are typically autoregressive models, which model the joint

distribution using the chain rule of probability:

For example:

Particularly, we learn a conditional probability distribution for the next token:

We typically use a single feedforward neural network (such as transformers) to model such conditional

distributions.

9

Introduction & Background

Modern LLMs size has increase more than 5000x in last 4 years.

Image Credit: [1]
10

Introduction & Background

As LLMs get more powerful, will they lead to Artificial General Intelligence (AGI)?

Image Credit: [2, 3, 4]
11

Outline

• Introduction & Background

• Models

• Tokenization

• Rotary Positional Encoding

• Architecture

• Sampling

• Training & Scaling Law

• Finetuning

• Low Rank Adaptation (LoRA)

• Reinforcement Learning from Human Feedback (RLHF)

• Prompting

• Zero/Few-shot Prompting

• Chain of Thought (CoT) Prompting

12

Tokenization

Recall the previous example on vocabulary:

A tokenizer converts string (natural language representations) into machine-readable tokens:

13

Tokenization

Recall the previous example on vocabulary:

A tokenizer converts string (natural language representations) into machine-readable tokens:

Practical concerns: split by spaces don’t work in general.

1. Some languages don’t have spaces between words.

 English: What is machine learning? Chinese: 什么是机器学习？ Japanese: 機械学習とは何ですか？
2. Special cases like hyphenated words (e.g., GPT-4) or contractions (e.g., don’t).

14

Tokenization

Recall the previous example on vocabulary:

A tokenizer converts string (natural language representations) into machine-readable tokens:

Practical concerns: split by spaces don’t work in general.

1. Some languages don’t have spaces between words.

 English: What is machine learning? Chinese: 什么是机器学习？ Japanese: 機械学習とは何ですか？
2. Special cases like hyphenated words (e.g., GPT-4) or contractions (e.g., don’t).

We need a more principled approach to tokenization, ensuring that we have neither too many nor too few tokens,

with each token representing a linguistically meaningful unit.

15

Tokenization

Here we introduce byte pair encoding (BPE) algorithm, which is one of the most popular tokenizers and has been

used in OpenAI’s products such as GPT-4.

16

Tokenization

Example of BPE learning:

Step 1: [t, h, e, ␣, c, a, r], [t, h, e, ␣, c, a, t], [t, h, e, ␣, r, a, t]

Step 2: [th, e, ␣, c, a, r], [th, e, ␣, c, a, t], [th, e, ␣, r, a, t] (th occurs 3x)

Step 3: [the, ␣, c, a, r], [the, ␣, c, a, t], [the, ␣, r, a, t] (the occurs 3x)

Step 4: [the, ␣, ca, r], [the, ␣, ca, t], [the, ␣, r, a, t] (ca occurs 2x)

…

17

Tokenization

Example of BPE learning:

Step 1: [t, h, e, ␣, c, a, r], [t, h, e, ␣, c, a, t], [t, h, e, ␣, r, a, t]

Step 2: [th, e, ␣, c, a, r], [th, e, ␣, c, a, t], [th, e, ␣, r, a, t] (th occurs 3x)

Step 3: [the, ␣, c, a, r], [the, ␣, c, a, t], [the, ␣, r, a, t] (the occurs 3x)

Step 4: [the, ␣, ca, r], [the, ␣, ca, t], [the, ␣, r, a, t] (ca occurs 2x)

…

Results:

• Updated vocabulary: [a, c, e, h, t, r, ca, th, the]

• The merges that we made (important for applying the tokenizer):

 t, h ⇒ th

 th, e ⇒ the

 c, a ⇒ ca

In practice, we run BPE on the byte level encoding of all Unicode characters to handle multilingual tasks.

Example in Chinese:

今天 [gloss: today]

[x62, x11, 4e, ca]

18

Tokenization

Off-the-shelf BPE has a vocabulary size of 50K.

Example of open-sourced BPE from OpenAI:

Image Credit: [5]
19

Outline

• Introduction & Background

• Models

• Tokenization

• Rotary Positional Encoding

• Architecture

• Sampling

• Training & Scaling Law

• Finetuning

• Low Rank Adaptation (LoRA)

• Reinforcement Learning from Human Feedback (RLHF)

• Prompting

• Zero/Few-shot Prompting

• Chain of Thought (CoT) Prompting

20

Rotary Positional Encoding

Recall the sinusoidal positional encoding for transformer:

i

p
o
s

Image Credit: [6]
21

Rotary Positional Encoding

Problems with Positional Encoding:

• Fixed sinusoidal embeddings can theoretically handle sequences of arbitrary lengths. However, models

often underperform when sequence lengths greatly differ from those in the training data.

• It only encodes the absolute position of a token within a sequence.

22

Rotary Positional Encoding

Problems with Positional Encoding:

• Fixed sinusoidal embeddings can theoretically handle sequences of arbitrary lengths. However, models

often underperform when sequence lengths greatly differ from those in the training data.

• It only encodes the absolute position of a token within a sequence.

Rotary Positional Embeddings (RoPE) [24] are proposed to address such limitations:

• It encodes absolute position with a rotation matrix

• It encodes the explicit relative position dependency in self-attention

23

1. Encode absolute position with a rotation matrix:

Rotary Positional Encoding

24

1. Encode absolute position with a rotation matrix:

2. Apply rotation to token embedding:

Rotary Positional Encoding

25

1. Encode absolute position with a rotation matrix:

2. Apply rotation to token embedding:

The inner product within the self-attention encodes the relative position:

Rotary Positional Encoding

26

Rotary Positional Encoding

27
Image Credit: [24]

Rotary Positional Encoding

Code of RoPE:

RoPE rotates each token's embedding based on its position in the sequence.

Imagine the RoPE is like a clock with multiple hands. Each hand rotates at a different speed (different

frequencies). Every token in your sequence corresponds to a specific clock hand.

Impact on dot-product in attention: closer positions -> closer angles -> higher dot product -> higher relevance.

29

Outline

• Introduction & Background

• Models

• Tokenization

• Rotary Positional Encoding

• Architecture

• Sampling

• Training & Scaling Law

• Finetuning

• Low Rank Adaptation (LoRA)

• Reinforcement Learning from Human Feedback (RLHF)

• Prompting

• Zero/Few-shot Prompting

• Chain of Thought (CoT) Prompting

30

Architecture

Modern LLMs architectures are based on transformers.

Image Credit: [7]
31

Architecture

Type 1: encoder-only.

These LMs generate contextual embeddings from given inputs.

where is the embedding function for input tokens.

Use of encoder-only LMs:

• Sentiment analysis

• Natural language inference

Advantage: bidirectional context embeddings for each token in the input sequence.

Limit: cannot directly generate text and require specific training objectives.

32

Architecture

Type 1: encoder-only.

Image Credit: [8]
33

Architecture

Type 2: decoder-only.

They are standard autoregressive LMs that generate both contextual embedding and a conditional

distribution for next token.

Use of decoder-only LMs:

• Text autocomplete

Advantage: natural text generation.

Limit: unidirectional context embedding depending on the left part .

34

Architecture

Type 3: encoder-decoder.

They use bidirectional contextual embeddings and can naturally generate next token as output.

Use of decoder-only LMs:

• Table-to-text generation

Advantage: bidirectional context embeddings; natural generation of text.

Limit: require specific training objectives.

35

Architecture

Type 3: encoder-decoder.

Image Credit: [8]
36

Architecture

Powerful conversional LLMs (e.g., ChatGPT, LLaMA) are mainly driven by decoder-only models.

Image Credit: [8]
37

Outline

• Introduction & Background

• Models

• Tokenization

• Rotary Positional Encoding

• Architecture

• Sampling

• Training & Scaling Law

• Finetuning

• Low Rank Adaptation (LoRA)

• Reinforcement Learning from Human Feedback (RLHF)

• Prompting

• Zero/Few-shot Prompting

• Chain of Thought (CoT) Prompting

38

Sampling

Suppose we train a decoder-only LLM like GPT-3, how can we generate next token one by one?

39

Sampling

Suppose we train a decoder-only LLM like GPT-3, how can we generate next token one by one?

• Greedy Sampling

• Beam Search

• Top-K

• Nucleus Sampling

……

40

Greedy Sampling

Denoting the model as , we “sample” the token with maximum conditional probability:

41

Beam Search

Image Credit: [9]
42

Beam Search

Denoting the model as , we have

43

Top-K Sampling

Denoting the model as , we restrict the support to top-K candidate tokens:

Image Credit: [10]
44

Top-K Sampling

Denoting the model as , we have

45

Nucleus (Top-P) Sampling

Following top-K sampling, nucleus sampling [11] dynamically changes K so that their probabilities sum

exceeds some threshold:

Image Credit: [10]
46

Nucleus (Top-P) Sampling

Denoting the model as , we have

47

Outline

• Introduction & Background

• Models

• Tokenization

• Rotary Positional Encoding

• Architecture

• Sampling

• Training & Scaling Law

• Finetuning

• Low Rank Adaptation (LoRA)

• Reinforcement Learning from Human Feedback (RLHF)

• Prompting

• Zero/Few-shot Prompting

• Chain of Thought (CoT) Prompting

48

Loss Function

We train decoder-only LLMs (e.g., GPT3 [12]) to predict the next token by minimizing negative log

likelihood:

49

Loss Function

We train decoder-only LLMs (e.g., GPT3 [12]) to predict the next token by minimizing negative log

likelihood:

For encoder-only and encoder-decoder LLMs (e.g., BERT [13], BART [14], and T5 [15]), they do

mostly masked language modeling, i.e., predicting the masked tokens:

Image Credit: [15]
50

Scaling Law

Hyperparameter tuning for LLMs has a huge cost!

Scaling law [16, 17] allows fast prediction of model performances, e.g., validation loss L, from the

dataset size D, computational cost C, and the number of parameters N.

Dataset Size
tokens

Parameters
non-embedding

Compute
PF-days, non-embedding

T
e

s
t

L
o

s
s

Image Credit: [17]
51

Scaling Law

Hyperparameter tuning for LLMs has a huge cost!

Scaling law [16, 17] allows fast prediction of model performances, e.g., validation loss L, from the

dataset size D, computational cost C, and the number of parameters N.

Dataset Size
tokens

Parameters
non-embedding

Compute
PF-days, non-embedding

T
e

s
t

L
o

s
s

Image Credit: [17]
52

Scaling Law

Hyperparameter tuning for LLMs has a huge cost!

Scaling law [16, 17] allows fast prediction of model performances, e.g., validation loss L, from the

dataset size D, computational cost C, and the number of parameters N.

Dataset Size
tokens

Parameters
non-embedding

Compute
PF-days, non-embedding

T
e

s
t

L
o

s
s

Image Credit: [17]
53

Scaling Law

Hyperparameter tuning for LLMs has a huge cost!

Scaling law [16, 17] allows fast prediction of model performances, e.g., validation loss L, from the

dataset size D, computational cost C, and the number of parameters N.

Dataset Size
tokens

Parameters
non-embedding

Compute
PF-days, non-embedding

T
e

s
t

L
o

s
s

Power law 𝑦 = 𝑎𝑥𝑘 appears as straight lines in log-log plot!

Image Credit: [17]
54

Scaling Law

Many factors, e.g., the architecture, could affect the scaling law.

Dataset Size
tokens

Parameters
non-embedding

Compute
PF-days, non-embedding

T
e
s
t

L
o

s
s

Image Credit: [17]
55

Scaling Law

Many factors, e.g., the architecture, could affect the scaling law.

GPT 3 (175B)

Dataset Size
tokens

Parameters
non-embedding

Compute
PF-days, non-embedding

T
e
s
t

L
o

s
s

Image Credit: [17]
56

Scaling Law

Many factors, e.g., the architecture, could affect the scaling law. But the exponent seems quite stable!

GPT 3 (175B)

Dataset Size
tokens

Parameters
non-embedding

Compute
PF-days, non-embedding

T
e
s
t

L
o

s
s

Image Credit: [17]
57

Outline

• Introduction & Background

• Models

• Tokenization

• Rotary Positional Encoding

• Architecture

• Sampling

• Training & Scaling Law

• Finetuning

• Low Rank Adaptation (LoRA)

• Reinforcement Learning from Human Feedback (RLHF)

• Prompting

• Zero/Few-shot Prompting

• Chain of Thought (CoT) Prompting

58

Low Rank Adaptation (LoRA)

Fine-tuning LLMs is computationally expensive!

When adapting LLMs to a specific task, pre-trained

LLMs have a low ``intrinsic dimension” [18]

59

Low Rank Adaptation (LoRA)

Fine-tuning LLMs is computationally expensive!

When adapting LLMs to a specific task, pre-trained

LLMs have a low ``intrinsic dimension” [18]

LoRA [19] thus learns a low-rank weight update: Pretrained
Weights

𝑊 ∈ℝ𝑑×𝑑

x

h

𝐵 = 0

𝐴 = 𝒩(0,𝜎2)

𝑑

𝑟

Pretrained
Weights

𝑊 ∈ℝ𝑑×𝑑

x

f(x)

𝑑

Image Credit: [19]
60

Low Rank Adaptation (LoRA)

Fine-tuning LLMs is computationally expensive!

When adapting LLMs to a specific task, pre-trained

LLMs have a low ``intrinsic dimension” [18]

LoRA [19] thus learns a low-rank weight update: Pretrained
Weights

𝑊 ∈ℝ𝑑×𝑑

x

h

𝐵 = 0

𝐴 = 𝒩(0,𝜎2)

𝑑

𝑟

Pretrained
Weights

𝑊 ∈ℝ𝑑×𝑑

x

f(x)

𝑑

Frozen

Learnable

Image Credit: [19]
61

Outline

• Introduction & Background

• Models

• Tokenization

• Rotary Positional Encoding

• Architecture

• Sampling

• Training & Scaling Law

• Finetuning

• Low Rank Adaptation (LoRA)

• Reinforcement Learning from Human Feedback (RLHF)

• Prompting

• Zero/Few-shot Prompting

• Chain of Thought (CoT) Prompting

62

Reinforcement Learning from Human Feedback (RLHF)

Fine-tuning LLMs with RLHF [e.g., 20] can align them with human values!

63

Reinforcement Learning from Human Feedback (RLHF)

Fine-tuning LLMs with RLHF [e.g., 20] can align them with human values!

It involves three steps:

• Pretraining a LLM

e.g., one curate a preferable text dataset

Image Credit: [21]
64

Reinforcement Learning from Human Feedback (RLHF)

Fine-tuning LLMs with RLHF [e.g., 20] can align them with human values!

It involves three steps:

• Pretraining a LLM

• Training a reward model

o OpenAI uses 175B LM and 6B reward model

o Anthropic used LM and reward models from

10B to 52B

o DeepMind uses 70B Chinchilla models for

both LM and reward

Image Credit: [21]
65

Reinforcement Learning from Human Feedback (RLHF)

Fine-tuning LLMs with RLHF [e.g., 20] can align them with human values!

It involves three steps:

• Pretraining a LLM

• Training a reward model

• Fine-tuning LLM with RL

RL policy generates text, and that text is fed into the

initial model to produce its relative probabilities for

the KL penalty

Image Credit: [21]
66

Outline

• Introduction & Background

• Models

• Tokenization

• Rotary Positional Encoding

• Architecture

• Sampling

• Training & Scaling Law

• Finetuning

• Low Rank Adaptation (LoRA)

• Reinforcement Learning from Human Feedback (RLHF)

• Prompting

• Zero/Few-shot Prompting

• Chain of Thought (CoT) Prompting

67

Prompting

Prompts are the input to LLMs, of which the quality significantly affects the output of LLMs.

Designing effective prompts to instruct LLMs to perform a desired task is often referred to as prompt engineering.

68

Zero/Few-shot Prompting

Prompts are the input to LLMs, of which the quality significantly affects the output of LLMs.

Designing effective prompts to instruct LLMs to perform a desired task is often referred to as prompt engineering.

Zero/Few-shot prompting:

Ask it directly!

Image Credit: [22]
69

Zero/Few-shot Prompting

Prompts are the input to LLMs, of which the quality significantly affects the output of LLMs.

Designing effective prompts to instruct LLMs to perform a desired task is often referred to as prompt engineering.

Zero/Few-shot prompting:

Ask it directly!

Image Credit: [22]
70

Zero/Few-shot Prompting

Prompts are the input to LLMs, of which the quality significantly affects the output of LLMs.

Designing effective prompts to instruct LLMs to perform a desired task is often referred to as prompt engineering.

Zero/Few-shot prompting:

Ask it directly!

Ask with some guiding examples!

Image Credit: [22]
71

Outline

• Introduction & Background

• Models

• Tokenization

• Rotary Positional Encoding

• Architecture

• Sampling

• Training & Scaling Law

• Finetuning

• Low Rank Adaptation (LoRA)

• Reinforcement Learning from Human Feedback (RLHF)

• Prompting

• Zero/Few-shot Prompting

• Chain of Thought (CoT) Prompting

72

Chain-of-Thought (CoT) Prompting

CoT prompting [23] enables complex reasoning capabilities through intermediate reasoning steps:

Image Credit: [23]
73

Chain-of-Thought (CoT) Prompting

CoT prompting [23] enables complex reasoning capabilities through intermediate reasoning steps:

Image Credit: [22]
74

References

[1] https://informationisbeautiful.net/visualizations/the-rise-of-generative-ai-large-language-models-llms-like-chatgpt/

[2] Bubeck, S., Chandrasekaran, V., Eldan, R., Gehrke, J., Horvitz, E., Kamar, E., Lee, P., Lee, Y.T., Li, Y., Lundberg, S. and
Nori, H., 2023. Sparks of artificial general intelligence: Early experiments with gpt-4. arXiv preprint arXiv:2303.12712.

[3] Trinh, T.H., Wu, Y., Le, Q.V., He, H. and Luong, T., 2024. Solving olympiad geometry without human demonstrations.
Nature, 625(7995), pp.476-482.

[4] https://openai.com/blog/planning-for-agi-and-beyond

[5] https://platform.openai.com/tokenizer

[6] https://lilianweng.github.io/lil-log/2020/04/07/the-transformer-family.html

[7] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł. and Polosukhin, I., 2017. Attention
is all you need. In Advances in neural information processing systems (pp. 5998-6008).

[8] https://magazine.sebastianraschka.com/p/understanding-encoder-and-decoder

[9] https://www.baeldung.com/cs/beam-search

[10] https://www.megaputer.com/mastering-language-models-a-deep-dive-into-input-parameters/

[11] Holtzman, A., Buys, J., Du, L., Forbes, M. and Choi, Y., 2019. The curious case of neural text degeneration. arXiv
preprint arXiv:1904.09751.

75

https://informationisbeautiful.net/visualizations/the-rise-of-generative-ai-large-language-models-llms-like-chatgpt/
https://openai.com/blog/planning-for-agi-and-beyond
https://platform.openai.com/tokenizer
https://lilianweng.github.io/lil-log/2020/04/07/the-transformer-family.html
https://magazine.sebastianraschka.com/p/understanding-encoder-and-decoder
https://www.baeldung.com/cs/beam-search
https://www.megaputer.com/mastering-language-models-a-deep-dive-into-input-parameters/

References

[12] Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A. and
Agarwal, S., 2020. Language models are few-shot learners. Advances in neural information processing systems, 33, pp.1877-1901.

[13] Devlin, J., Chang, M.W., Lee, K. and Toutanova, K., 2018. Bert: Pre-training of deep bidirectional transformers for language
understanding. arXiv preprint arXiv:1810.04805.

[14] Lewis, M., Liu, Y., Goyal, N., Ghazvininejad, M., Mohamed, A., Levy, O., Stoyanov, V. and Zettlemoyer, L., 2019. Bart:
Denoising sequence-to-sequence pre-training for natural language generation, translation, and comprehension. arXiv preprint
arXiv:1910.13461.

[15] Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., Matena, M., Zhou, Y., Li, W. and Liu, P.J., 2020. Exploring the limits of
transfer learning with a unified text-to-text transformer. Journal of machine learning research, 21(140), pp.1-67.

[16] Hestness, J., Narang, S., Ardalani, N., Diamos, G., Jun, H., Kianinejad, H., Patwary, M.M.A., Yang, Y. and Zhou, Y., 2017. Deep
learning scaling is predictable, empirically. arXiv preprint arXiv:1712.00409.

[17] Kaplan, J., McCandlish, S., Henighan, T., Brown, T.B., Chess, B., Child, R., Gray, S., Radford, A., Wu, J. and Amodei, D., 2020.
Scaling laws for neural language models. arXiv preprint arXiv:2001.08361.

[18] Aghajanyan, A., Zettlemoyer, L. and Gupta, S., 2020. Intrinsic dimensionality explains the effectiveness of language model fine-
tuning. arXiv preprint arXiv:2012.13255.

[19] Hu, E.J., Shen, Y., Wallis, P., Allen-Zhu, Z., Li, Y., Wang, S., Wang, L. and Chen, W., 2021. Lora: Low-rank adaptation of large
language models. arXiv preprint arXiv:2106.09685.

[20] https://huggingface.co/blog/rlhf

76

https://huggingface.co/blog/rlhf

References

[21] Ziegler, D.M., Stiennon, N., Wu, J., Brown, T.B., Radford, A., Amodei, D., Christiano, P. and Irving, G., 1909. Fine-
tuning language models from human preferences. arXiv 2019. arXiv preprint arXiv:1909.08593.

[22] Kojima, T., Gu, S.S., Reid, M., Matsuo, Y. and Iwasawa, Y., 2022. Large language models are zero-shot reasoners.
Advances in neural information processing systems, 35, pp.22199-22213.

[23] Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E., Le, Q.V. and Zhou, D., 2022. Chain-of-thought
prompting elicits reasoning in large language models. Advances in neural information processing systems, 35, pp.24824-
24837.

[24] Su, J., Ahmed, M., Lu, Y., Pan, S., Bo, W. and Liu, Y., 2024. Roformer: Enhanced transformer with rotary position
embedding. Neurocomputing, 568, p.127063.

77

Questions?

78

	Slide 1: CPEN 455: Deep Learning Lecture 9: Large Language Models
	Slide 2: Outline
	Slide 3: Introduction & Background
	Slide 4: Introduction & Background
	Slide 5: Introduction & Background
	Slide 6: Introduction & Background
	Slide 7: Introduction & Background
	Slide 8: Introduction & Background
	Slide 9: Introduction & Background
	Slide 10: Introduction & Background
	Slide 11: Introduction & Background
	Slide 12: Outline
	Slide 13: Tokenization
	Slide 14: Tokenization
	Slide 15: Tokenization
	Slide 16: Tokenization
	Slide 17: Tokenization
	Slide 18: Tokenization
	Slide 19: Tokenization
	Slide 20: Outline
	Slide 21: Rotary Positional Encoding
	Slide 22: Rotary Positional Encoding
	Slide 23: Rotary Positional Encoding
	Slide 24: Rotary Positional Encoding
	Slide 25: Rotary Positional Encoding
	Slide 26: Rotary Positional Encoding
	Slide 27: Rotary Positional Encoding
	Slide 29: Rotary Positional Encoding
	Slide 30: Outline
	Slide 31: Architecture
	Slide 32: Architecture
	Slide 33: Architecture
	Slide 34: Architecture
	Slide 35: Architecture
	Slide 36: Architecture
	Slide 37: Architecture
	Slide 38: Outline
	Slide 39: Sampling
	Slide 40: Sampling
	Slide 41: Greedy Sampling
	Slide 42: Beam Search
	Slide 43: Beam Search
	Slide 44: Top-K Sampling
	Slide 45: Top-K Sampling
	Slide 46: Nucleus (Top-P) Sampling
	Slide 47: Nucleus (Top-P) Sampling
	Slide 48: Outline
	Slide 49: Loss Function
	Slide 50: Loss Function
	Slide 51: Scaling Law
	Slide 52: Scaling Law
	Slide 53: Scaling Law
	Slide 54: Scaling Law
	Slide 55: Scaling Law
	Slide 56: Scaling Law
	Slide 57: Scaling Law
	Slide 58: Outline
	Slide 59: Low Rank Adaptation (LoRA)
	Slide 60: Low Rank Adaptation (LoRA)
	Slide 61: Low Rank Adaptation (LoRA)
	Slide 62: Outline
	Slide 63: Reinforcement Learning from Human Feedback (RLHF)
	Slide 64: Reinforcement Learning from Human Feedback (RLHF)
	Slide 65: Reinforcement Learning from Human Feedback (RLHF)
	Slide 66: Reinforcement Learning from Human Feedback (RLHF)
	Slide 67: Outline
	Slide 68: Prompting
	Slide 69: Zero/Few-shot Prompting
	Slide 70: Zero/Few-shot Prompting
	Slide 71: Zero/Few-shot Prompting
	Slide 72: Outline
	Slide 73: Chain-of-Thought (CoT) Prompting
	Slide 74: Chain-of-Thought (CoT) Prompting
	Slide 75: References
	Slide 76: References
	Slide 77: References
	Slide 78: Questions?

