
CPEN 455: Deep Learning

Lecture 3: Multilayer Perceptron

Renjie Liao

University of British Columbia

Winter, Term 2, 2024



Outline

• Multilayer Perceptron (MLP)

• Linear Layer

• Nonlinear Activation

• Batch Normalization

• Dropout

• Build a Deep MLP



Outline

• Multilayer Perceptron (MLP)

• Linear Layer

• Nonlinear Activation

• Batch Normalization

• Dropout

• Build a Deep MLP



Linear Layer

Consider the following linear layer of a single output unit:

𝑥1

𝑥2

𝑥𝑁

𝑦

…
…



Linear Layer

Consider the following linear layer of a single output unit:

𝑥1

𝑥2

𝑥𝑁

𝑦

…
…



Linear Layer

Consider the following linear layer of a single output unit:

𝑥1

𝑥2

𝑥𝑁

𝑦

…
…



Linear Layer

Consider the following linear layer of a single output unit:

𝑥1

𝑥2

𝑥𝑁

𝑦

…
…



Linear Layer

What if we have multiple output units?

𝑥1

𝑥2

𝑥𝑁

𝑦1

…
…

𝑦𝑀

…
…



Linear Layer

What if we have multiple output units?

𝑥1

𝑥2

𝑥𝑁

𝑦1

…
…

𝑦𝑀

…
…



Linear Layer

What if we have multiple output units?

𝑥1

𝑥2

𝑥𝑁

𝑦1

…
…

𝑦𝑀

…
…



Linear Layer

What if we have multiple output units? What about bias?

𝑥1

𝑥2

𝑥𝑁

𝑦1

…
…

𝑦𝑀

…
…

𝑏1

𝑏𝑀

+

+



Linear Layer

What if we have multiple output units? What about bias?

𝑥1

𝑥2

𝑥𝑁

𝑦1

…
…

𝑦𝑀

…
…

𝑏1

𝑏𝑀

+

+



Linear Layer

What if we have multiple output units? What about bias?

We can compactly rewrite it via homogeneous coordinates. 

𝑥1

𝑥2

𝑥𝑁

𝑦1

…
…

𝑦𝑀

…
…

𝑏1

𝑏𝑀

+

+



Linear Layer

What if we have multiple output units? What about bias?

We can compactly rewrite it via homogeneous coordinates. 

𝑥1

𝑥2

𝑥𝑁

𝑦1

…
…

𝑦𝑀

…
…

𝑏1

𝑏𝑀

+

+



Linear Layer

What if we have multiple output units? What about bias?

We can compactly rewrite it via homogeneous coordinates. 

𝑥1

𝑥2

𝑥𝑁

𝑦1

…
…

𝑦𝑀

…
…

𝑏1

𝑏𝑀

+

+



Outline

• Multilayer Perceptron (MLP)

• Linear Layer

• Nonlinear Activation

• Batch Normalization

• Dropout

• Build a Deep MLP



Nonlinear Activation

To make neural networks become nonlinear models, we often apply element-wise nonlinear 

activation functions.
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Nonlinear Activation

To make neural networks become nonlinear models, we often apply element-wise nonlinear 

activation functions.

People would clarify it if the nonlinear 

activation is not element-wise.
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Nonlinear Activation

To make neural networks become nonlinear models, we often apply element-wise nonlinear 

activation functions.

• Sigmoid

• Tanh

• Softplus [1]

• Rectified Linear Units (ReLU) [2]

• Parametric rectified linear unit (PReLU) [3]

• Exponential linear unit (ELU) [4]
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Nonlinear Activation

There also exists non-element-wise nonlinear activation functions.

• Softmax

• Maxout [5]

• Cummax [6]

Softmax followed by cumulative sum
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Batch Normalization

Internal Covariate Shift [7]: the change in the distribution of network activations due to the change in network 

parameters during training

Reduce Internal Covariate Shift  Improve the training (e.g., converge faster, generalize better)

Batch Normalization (BN) is a technique to achieve the goal!

Intuition:

 1) If the internal activations are properly normalized, the neural network tends to be more stable

      Think about a sequence of linear layers where activations could easily blow up or vanish

 2) Normalizing the activations tends to better leverage the nonlinearity

       Normalizing pre-activations helps avoid the saturation region of nonlinear activation function
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Batch Normalization

Suppose we have a batch of activations

In practice, to account for the dynamically changing weights and stochastic data, we use running mean and variance:

BN can be generalized to convolutional neural networks (CNNs). We will cover that in the future.

is a hyperparameter
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Dropout

Suppose we have a batch of activations

We can make them stochastic by randomly turning some units off

Mathematically, we create a matrix mask                            as follows

Then we perform element-wise product (a.k.a. Hadamard product)
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Dropout

What does Dropout [8] do to the neural networks?

It turns off a random subset of units, thus blocking a 

random subset of paths!

Every sample gets its own sub-network, thus being less 

likely to overfit.
…
…
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Dropout

How can we perform testing with Dropout?

We can compute the expected output for each unit!  

Recall

We can compute the expectation as
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Putting Pieces Together

Now we learn linear layers, nonlinear activations, batch normalization (BN), dropout, how can we build a deep MLP? 

Let us first build a block: 

Then we can build a deep MLP:

Linear BN
Nonlinear

Activation
Dropout

optional

=

…….Input OutputLinear
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