CPEN 455: Deep Learning

Lecture 8: Transformers

Renjie Liao

University of British Columbia Winter, Term 2, 2024

Outline

- Applications and Challenges of Sequence Modeling
- Transformers
 - Positional Encoding
 - Encoder
 - Multi-head Self-Attention
 - Decoder
- Limitations & Variants
 - Pre-norm vs. Post-norm
 - Vision Transformer
 - Swin Transformer

Outline

- Applications and Challenges of Sequence Modeling
- Transformers
 - Positional Encoding
 - Encoder
 - Multi-head Self-Attention
 - Decoder
- Limitations & Variants
 - Pre-norm vs. Post-norm
 - Vision Transformer
 - Swin Transformer

• Language Models

• Language Models

• Machine Translation

Key Challenges:

• Varying-sized input sequences

Key Challenges:

- Varying-sized input sequences
- Orders "may" be crucial for cognition

Aoccdrnig to a rscheearch at Cmabrigde Uinervtisy, it deosn't mttaer in waht oredr the ltteers in a wrod are, the olny iprmoetnt tihng is taht the frist and lsat ltteer be at the rghit pclae. The rset can be a toatl mses and you can sitll raed it wouthit porbelm. Tihs is bcuseae the huamn mnid deos not raed ervey lteter by istlef, but the wrod as a wlohe.

Key Challenges:

- Varying-sized input sequences
- Orders "may" be crucial for cognition

Aoccdrnig to a rscheearch at Cmabrigde Uinervtisy, it deosn't mttaer in waht oredr the ltteers in a wrod are, the olny iprmoetnt tihng is taht the frist and lsat ltteer be at the rghit pclae. The rset can be a toatl mses and you can sitll raed it wouthit porbelm. Tihs is bcuseae the huamn mnid deos not raed ervey lteter by istlef, but the wrod as a wlohe.

• Complex statistical dependencies (e.g. long-range ones)

Key Challenges:

- Varying-sized input sequences
- Orders "may" be crucial for cognition

Aoccdrnig to a rscheearch at Cmabrigde Uinervtisy, it deosn't mttaer in waht oredr the ltteers in a wrod are, the olny iprmoetnt tihng is taht the frist and lsat ltteer be at the rghit pclae. The rset can be a toatl mses and you can sitll raed it wouthit porbelm. Tihs is bcuseae the huamn mnid deos not raed ervey lteter by istlef, but the wrod as a wlohe.

• Complex statistical dependencies (e.g. long-range ones)

Transformer [5]

Outline

- Applications and Challenges of Sequence Modeling
- Transformers
 - Positional Encoding
 - Encoder
 - Multi-head Self-Attention
 - Decoder
- Limitations & Variants
 - Pre-norm vs. Post-norm
 - Vision Transformer
 - Swin Transformer

Outline

- Applications and Challenges of Sequence Modeling
- Transformers
 - Positional Encoding
 - Encoder
 - Multi-head Self-Attention
 - Decoder
- Limitations & Variants
 - Pre-norm vs. Post-norm
 - Vision Transformer
 - Swin Transformer

Input Encoding

Input Embedding

Positional Encoding

$$PE_{(pos,2i)} = sin(pos/10000^{2i/d_{model}})
onumber \ PE_{(pos,2i+1)} = cos(pos/10000^{2i/d_{model}})$$

Positional Encoding

$$egin{aligned} PE_{(pos,2i)} &= sin(pos/10000^{2i/d_{model}}) \ PE_{(pos,2i+1)} &= cos(pos/10000^{2i/d_{model}}) \end{aligned}$$

Outline

- Applications and Challenges of Sequence Modeling
- Transformers
 - Positional Encoding
 - Encoder
 - Multi-head Self-Attention
 - Decoder
- Limitations & Variants
 - Pre-norm vs. Post-norm
 - Vision Transformer
 - Swin Transformer

Encoder

Outline

- Applications and Challenges of Sequence Modeling
- Transformers
 - Positional Encoding
 - Encoder
 - Multi-head Self-Attention
 - Decoder
- Limitations & Variants
 - Pre-norm vs. Post-norm
 - Vision Transformer
 - Swin Transformer

	Hi	how	are	you
Hi	98	27	10	12
how	27	89	31	67
are	10	31	91	54
you	12	67	54	92

	Hi	how	are	you
Hi	98	27	10	12
how	27	89	31	67
are	10	31	91	54
you	12	67	54	92

Why square root?

Layer Norm & Residual Connection

$$\mu_{i} = \frac{1}{K} \sum_{k=1}^{K} x_{i,k}$$
$$\sigma_{i}^{2} = \frac{1}{K} \sum_{k=1}^{K} (x_{i,k} - \mu_{i})^{2}$$
$$\hat{x}_{i,k} = \frac{x_{i,k} - \mu_{i}}{\sqrt{\sigma_{i}^{2} + \epsilon}}$$
$$y_{i} = \gamma \hat{x}_{i} + \beta \equiv \text{LN}_{\gamma,\beta}(x_{i})$$

Outline

- Applications and Challenges of Sequence Modeling
- Transformers
 - Positional Encoding
 - Encoder
 - Multi-head Self-Attention
 - Decoder
- Limitations & Variants
 - Pre-norm vs. Post-norm
 - Vision Transformer
 - Swin Transformer

Decoder

HI,

how

are

you?

For certain applications like language models, decoder should be autoregressive!

Masked Multi-Head Attention

Prevent attending from future!

Masked Multi-Head Attention

Masked Scores

-inf

0.6

0.3

0.3

-inf

-inf

-inf

0.3

-inf

0.6

0.3

0.7

0.1

am { fine }

0.1

0.3

0.2

0.6

0.3

int

-inf

Masked Multi-Head Attention

Hugging Face Demos

https://transformer.huggingface.co/

Write With Transformer

Get a modern neural network to auto-complete your thoughts.

This web app, built by the Hugging Face team, is the official demo of the (transformers repository's text generation capabilities.

Outline

- Applications and Challenges of Sequence Modeling
- Transformers
 - Positional Encoding
 - Encoder
 - Multi-head Self-Attention
 - Decoder

• Limitations & Variants

- Pre-norm vs. Post-norm
- Vision Transformer
- Swin Transformer

Limitations

- O(L^2) time/memory cost for self-attention
- How can we incorporate prior knowledge into attention rather than having a fully connected attention?
 - Encourage sparse attention
 - Inject known graph structures
 -

Outline

- Applications and Challenges of Sequence Modeling
- Transformers
 - Positional Encoding
 - Encoder
 - Multi-head Self-Attention
 - Decoder
- Limitations & Variants
 - Pre-norm vs. Post-norm
 - Vision Transformer
 - Swin Transformer

Pre-Norm vs. Post-Norm

Where to place the Layer Normalization?

Pre-Norm vs. Post-Norm

Where to place the Layer Normalization?

• Gradient norm in the Post-Norm Transformer is large for parameters near the output and will be likely to decay as the layer gets closer to input

Pre-Norm vs. Post-Norm

Where to place the Layer Normalization?

- Gradient norm in the Post-Norm Transformer is large for parameters near the output and will be likely to decay as the layer gets closer to input
- Training the Pre-Norm Transformer does not rely on the learning rate warm-up stage and can be trained much faster than the Post-Norm

Outline

- Applications and Challenges of Sequence Modeling
- Transformers
 - Positional Encoding
 - Encoder
 - Multi-head Self-Attention
 - Decoder
- Limitations & Variants
 - Pre-norm vs. Post-norm
 - Vision Transformer
 - Swin Transformer

Extensions: Vision Transformer

Outline

- Applications and Challenges of Sequence Modeling
- Transformers
 - Positional Encoding
 - Encoder
 - Multi-head Self-Attention
 - Decoder
- Limitations & Variants
 - Pre-norm vs. Post-norm
 - Vision Transformer
 - Swin Transformer

Standard MSA

Attention for each patch is computed against all patches, resulting in quadratic complexity

Standard MSA

Attention for each patch is computed against all patches, resulting in quadratic complexity

Window-based MSA

Attention for each patch is only computed within its own window (drawn in red). Window size is 2x2 in this example.

Window-based MSA

Attention for each patch is only computed within its own window (drawn in red). Window size is 2x2 in this example.

Shifted Window MSA

Step 1: Shift window by a factor of M/2, where M = window size

Step 2: For efficient batch computation, move patches into empty slots to create a complete window. This is known as 'cyclic shift' in the paper.

Shifted Window MSA

Step 1: Shift window by a factor of M/2, where M = window size

Step 2: For efficient batch computation, move patches into empty slots to create a complete window. This is known as 'cyclic shift' in the paper.

References

- [1] http://web.stanford.edu/class/cs224n/
- [2] <u>https://jalammar.github.io/illustrated-transformer/</u>
- [3] <u>https://www.mrc-cbu.cam.ac.uk/people/matt.davis/cmabridge</u>
- [4] <u>https://towardsdatascience.com/illustrated-guide-to-transformers-step-by-step-explanation-f74876522bc0</u>

[5] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł. and Polosukhin, I., 2017. Attention is all you need. In Advances in neural information processing systems (pp. 5998-6008).

- [6] <u>https://jalammar.github.io/illustrated-transformer/</u>
- [7] <u>https://towardsdatascience.com/illustrated-guide-to-transformers-step-by-step-explanation-f74876522bc0</u>
- [8] <u>https://lilianweng.github.io/lil-log/2020/04/07/the-transformer-family.html</u>
- [9] https://theaisummer.com/transformer/
- [10] <u>https://transformer.huggingface.co/</u>

[11] Xiong, R., Yang, Y., He, D., Zheng, K., Zheng, S., Xing, C., Zhang, H., Lan, Y., Wang, L. and Liu, T., 2020, November. On layer normalization in the transformer architecture. In International Conference on Machine Learning (pp. 10524-10533). PMLR.

[12] Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S. and Uszkoreit, J., 2020. An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929.

References

[13] <u>https://github.com/lucidrains/vit-pytorch</u>

[14] <u>https://towardsdatascience.com/a-comprehensive-guide-to-swin-transformer-64965f89d14c</u>

[15] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S. and Guo, B., 2021. Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings of the IEEE/CVF International Conference on Computer Vision (pp. 10012-10022).

Questions?