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Deep Learning for Sequences

• Language Models

Image Credit: [1]
4



Deep Learning for Sequences

• Language Models

• Machine Translation

Image Credit: [1, 2]
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Deep Learning for Sequences

Key Challenges:

• Varying-sized input sequences
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Deep Learning for Sequences

Key Challenges:

• Varying-sized input sequences

• Orders “may” be crucial for cognition

Image Credit: [3]

Aoccdrnig to a rscheearch at Cmabrigde Uinervtisy, it deosn't mttaer in waht oredr the ltteers in a 
wrod are, the olny iprmoetnt tihng is taht the frist and lsat ltteer be at the rghit pclae. The rset can be 
a toatl mses and you can sitll raed it wouthit porbelm. Tihs is bcuseae the huamn mnid deos not raed 
ervey lteter by istlef, but the wrod as a wlohe.
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Key Challenges:
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• Complex statistical dependencies (e.g. long-range ones)
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Deep Learning for Sequences

Key Challenges:

• Varying-sized input sequences

• Orders “may” be crucial for cognition

• Complex statistical dependencies (e.g. long-range ones)

Aoccdrnig to a rscheearch at Cmabrigde Uinervtisy, it deosn't mttaer in waht oredr the ltteers in a 
wrod are, the olny iprmoetnt tihng is taht the frist and lsat ltteer be at the rghit pclae. The rset can be 
a toatl mses and you can sitll raed it wouthit porbelm. Tihs is bcuseae the huamn mnid deos not raed 
ervey lteter by istlef, but the wrod as a wlohe.

Transformer [5]
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Transformers

Image Credit: [6]
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Transformers
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Transformers

Image Credit: [5, 6]
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Image Credit: [5, 6]
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Image Credit: [5, 6]
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Image Credit: [5, 6]
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Transformers

Image Credit: [5, 6]
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Input Encoding

Image Credit: [5]
20



Input Embedding

Image Credit: [5, 7]
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Positional Encoding

Image Credit: [5, 7]
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Positional Encoding

Image Credit: [8]
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Encoder

Image Credit: [5, 7]
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Multi-Head Attention

Image Credit: [5, 9]
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Multi-Head Attention

Image Credit: [5, 7]
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Multi-Head Attention

Image Credit: [5, 7]
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Multi-Head Attention

Image Credit: [5, 7]
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Multi-Head Attention

Image Credit: [5, 7]
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Multi-Head Attention

Image Credit: [5, 7]

Why square root?
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Multi-Head Attention

Image Credit: [5, 7]
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Multi-Head Attention

Image Credit: [5, 7]
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Layer Norm & Residual Connection

Image Credit: [5, 7]
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Decoder

Image Credit: [5, 7]

For certain applications like language 

models, decoder should be autoregressive!
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Masked Multi-Head Attention

Image Credit: [5, 7]

Prevent attending from future!
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Masked Multi-Head Attention

Image Credit: [5, 7]
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Masked Multi-Head Attention

Image Credit: [5, 7]
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Hugging Face Demos

Image Credit: [10]

https://transformer.huggingface.co/
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Limitations

Image Credit: [5]

• O(L^2) time/memory cost for self-attention

• How can we incorporate prior knowledge into attention 
rather than having a fully connected attention? 

• Encourage sparse attention

• Inject known graph structures

• ……
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Pre-Norm vs. Post-Norm

Image Credit: [11]

Post-Norm Pre-Norm

Where to place the Layer Normalization?
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Pre-Norm vs. Post-Norm

Image Credit: [11]

Post-Norm Pre-Norm

Where to place the Layer Normalization?

• Gradient norm in the Post-Norm 

Transformer is large for parameters 

near the output and will be likely to 

decay as the layer gets closer to input
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Pre-Norm vs. Post-Norm

Image Credit: [11]

Post-Norm Pre-Norm

Where to place the Layer Normalization?

• Gradient norm in the Post-Norm 

Transformer is large for parameters 

near the output and will be likely to 

decay as the layer gets closer to input 

• Training the Pre-Norm Transformer 

does not rely on the learning rate 

warm-up stage and can be trained 

much faster than the Post-Norm
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Extensions: Vision Transformer

Image Credit: [12, 13]
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Extensions: Swin Transformer

Image Credit: [14]
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Extensions: Swin Transformer

Image Credit: [14]
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Extensions: Swin Transformer

Image Credit: [14, 15]
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Extensions: Swin Transformer

Image Credit: [15]
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