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PROBABILITY

Probability theory is nothing but common sense reduced to calculation. — Pierre Laplace, 1812

▶ Probability: quantitative degree of belief.
• an image classifier outputs a probability distribution given an input image.
• a large language model (e.g., chatGPT) outputs a probability distribution over the next word

when making predictions.
• a generative model (VAEs/GANs/diffusion) starts generation from known prior distributions.

▶ Frequentist perspective: probabilities represent long run frequencies of events that can happen
multiple times.
• if we a the coin many times, we expect it to land heads about half the time.

▶ Bayesian perspective: probability is used to quantify our uncertainty or ignorance about something;
hence it is fundamentally related to information rather than repeated trials
• we believe the coin is equally likely to land heads or tails on the next toss.
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RANDOM VARIABLES

▶ Random Variable:
• A variable with potential various random values.
• Distinct from its possible values.

▶ Nature of Random Variables:
• A description of possible states.
• Requires a probability distribution to define likelihood of each state.

▶ Types of Random Variables:
• Discrete Random Variable:

▶ Finite or countably infinite states.
▶ States could be numerical or non-numerical.

• Continuous Random Variable:
▶ Associated with real number values.
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RANDOM VARIABLES
DISCRETE VARIABLES AND PMFS

Discrete Random Variables

Described using a Probability Mass Function (PMF), typically denoted by P. Associates each possible
state with a probability.

PMF Characteristics

▶ Maps a state of a random variable to its probability of occurrence.
▶ PMFs can describe joint probabilities for multiple variables, e.g., P(x, y).
▶ Must satisfy two conditions:

1. 0 ≤ P(x) ≤ 1 for all states x.
2.

∑
x P(x) = 1 (Normalization).

Example 2.1 (Uniform Distribution PMF)

Given a discrete random variable x with k states, a uniform distribution assigns:

P(x = xi) =
1
k

This satisfies the normalization condition since
∑

i
1
k = 1.
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RANDOM VARIABLES
CONTINUOUS VARIABLES AND PDFS

Continuous Random Variables

Probability Density Functions (PDFs) p describe probability distributions for continuous variables:
▶ Domain is all possible states of x.
▶ p(x) ≥ 0 for all x in the domain.
▶

∫
p(x) dx = 1 (Total probability is 1).

Understanding PDFs

▶ PDFs give the probability density, not the probability of specific states.
▶ Probability for an infinitesimal region is p(x) dx.
▶ The probability that x is in a set S is the integral of p(x) over S.

Example 2.2 (Uniform Distribution PDF)

Consider u(x; a, b) for a uniform distribution over [a, b], where a < b:

u(x; a, b) =
{

0 for x /∈ [a, b]
1

b−a for x ∈ [a, b]

This function is always nonnegative and integrates to 1, representing the uniform distribution x ∼ U(a, b).
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PROBABILITY DISTRIBUTIONS
MARGINAL PROBABILITY

Concept of Marginal Probability

The probability distribution over a subset of variables, derived from a joint distribution of multiple variables.

Discrete Random Variables

Given discrete random variables x and y, and the joint distribution P(x, y), the marginal probability P(x)
is calculated as:

∀x ∈ X ,P(x = x) =
∑
y∈Y

P(x = x , y = y)

Continuous Random Variables

For continuous variables, marginal probability is found using integration:

p(x) =
∫

p(x, y) dy

Origin of the Term

The term "marginal" refers to the practice of summing probabilities in a table and writing the totals in the
margins. 6 / 17



PROBABILITY DISTRIBUTIONS
CONDITIONAL PROBABILITY

Definition

The probability of an event given that another event has occurred, denoted as P(y = y | x = x).

Computation Formula

P(y = y | x = x) =
P(y = y , x = x)

P(x = x)

Note: Defined only if P(x = x) > 0.

Understanding Conditional Probability

▶ Not to be confused with the consequences of actions or interventions.
▶ The conditional probability of an event y given x is different from the probability that y would happen

if x were to be caused by some action (called intervention query for causal modeling).
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PROBABILITY DISTRIBUTIONS
THE CHAIN RULE OF CONDITIONAL PROBABILITIES

Chain Rule

A joint probability distribution can be decomposed into conditional probabilities:

P(x(1), . . . , x(n)) = P(x(1))
n∏

i=2

P(x(i)|x(1), . . . , x(i−1))

Application of the Chain Rule

▶ Simplifies the computation of joint distributions.
▶ Derived from the definition of conditional probability.

Example 3.1

Applying the rule to three variables a, b, and c:

P(a, b, c) = P(a|b, c)P(b, c)
P(b, c) = P(b|c)P(c)

P(a, b, c) = P(a|b, c)P(b|c)P(c)
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PROBABILITY DISTRIBUTIONS
INDEPENDENCE AND CONDITIONAL INDEPENDENCE

Independence of Random Variables

Two random variables x and y are independent if:

∀x ∈ X , y ∈ Y , p(x = x , y = y) = p(x = x)p(y = y)

Conditional Independence

x and y are conditionally independent given z if:

∀x ∈ X , y ∈ Y , z ∈ Z , p(x = x , y = y |z = z) = p(x = x |z = z)p(y = y |z = z)

Notation

Independence is denoted by x ⊥ y, while conditional independence given z is denoted by x ⊥ y|z.
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EXPECTATION, VARIANCE AND COVARIANCE
EXPECTATION AND EXPECTED VALUE

Definition

The expectation or expected value of a function f (x) with respect to a distribution P(x) is the mean value
f takes when x is drawn from P.

Computation

For discrete variables:
Ex∼P [f (x)] =

∑
x

P(x)f (x),

For continuous variables:
Ex∼P [f (x)] =

∫
p(x)f (x)dx.

Properties of Expectation

▶ Expectations are linear:

Ex[αf (x) + βg(x)] = αEx[f (x)] + βEx[g(x)],

where α and β are constants.
▶ Notation can be simplified to E[f (x)] when the context is clear. 10 / 17



EXPECTATION, VARIANCE AND COVARIANCE
VARIANCE AND COVARIANCE

Variance

The measure of the spread of a function f (x) of a random variable:

Var(f (x)) = E[(f (x)− E[f (x)])2]

Standard deviation is the square root of the variance.

Covariance

Indicates how two variables f (x) and g(y) linearly relate to each other:

Cov(f (x), g(y)) = E[(f (x)− E[f (x)])(g(y)− E[g(y)])]

Positive (negative) covariance implies a positive (negative) linear relationship.

Correlation

Correlation normalizes covariance to measure the strength of the linear relationship (scale-invariant).

Independence v.s. Covariance

Independence implies zero covariance but not vice versa. Zero covariance does not imply independence.
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EXPECTATION, VARIANCE AND COVARIANCE
VARIANCE AND COVARIANCE

Covariance Matrix

For a random vector x ∈ Rn, the covariance matrix is n × n with:

Cov(xi , xj) = Var(xi , xj)

Diagonal elements represent the variance.
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A BIT OF INFORMATION THEORY
ENTROPY

Definition

Entropy, denoted as H(X), is a measure of the uncertainty or unpredictability in a random variable X.

Shannon Entropy

For a discrete random variable X with possible values {x1, x2, . . . , xn} and probability mass function
P(X), entropy is defined as:

H(X) = −Ex∼P [logP(x)] = −
n∑

i=1

P(xi) logP(xi)

where the logarithm is base 2 for bits.

Interpretation

Entropy quantifies the expected amount of information conveyed by identifying the outcome of X. Higher
entropy implies a more uncertain outcome, while lower entropy implies a more predictable outcome.

Properties of Entropy

▶ H(X) ≥ 0 for all X.
▶ H(X) = 0 if and only if one outcome has a probability of 1 (no uncertainty).
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A BIT OF INFORMATION THEORY
KL DIVERGENCE AND CROSS-ENTROPY

Kullback-Leibler (KL) Divergence

Measures how one probability distribution P diverges from a second, reference probability distribution Q:

DKL(P∥Q) = Ex∼P

[
log

P(x)
Q(x)

]
It represents the extra amount of information needed to code samples from P using a code optimized for
Q.

Properties of KL Divergence

▶ Non-negative: DKL(P∥Q) ≥ 0
▶ Zero if and only if P and Q are the same distribution.
▶ Non-symmetric: DKL(P∥Q) ̸= DKL(Q∥P)
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A BIT OF INFORMATION THEORY
KL DIVERGENCE AND CROSS-ENTROPY

Cross-Entropy

Related to KL divergence, cross-entropy combines the entropy of P with the KL divergence between P
and Q:

H(P,Q) = H(P) + DKL(P∥Q)

Interpretation

Minimizing cross-entropy with respect to Q equates to minimizing the KL divergence, often used in
optimization problems such as training machine learning models.
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A BIT OF INFORMATION THEORY
KL DIVERGENCE AND CROSS-ENTROPY

Example 5.1 (Cross-Entropy and KL Divergence in Image Classification)

In image classification, a model predicts a probability distribution Q over classes for a given image, while
the true distribution P is typically one-hot encoded (1 for the correct class, 0 for others).
Cross-entropy in this context measures the difference between the distributions P and Q:

H(P,Q) = −
∑

c

P(c) logQ(c)

where c indexes over the classes.

Connection to KL Divergence

Cross-entropy decomposes into the sum of the true distribution’s entropy and the KL divergence:

H(P,Q) = H(P) + DKL(P∥Q)

Since H(P) is constant (the true label is fixed), minimizing cross-entropy H(P,Q) with respect to Q is
equivalent to minimizing DKL(P∥Q).
During training, optimizing cross-entropy encourages the model to make predictions Q that match the
true distribution P, effectively reducing the divergence from the true label distribution.
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