
CPEN 455 24W2 TUTORIAL

LINEAR ALGEBRA & MATRIX CALCULUS1

Qi Yan

University of British Columbia

January 20, 2025

1Based on materials from Murphy, 2022; Parr and Howard, 2018.

CONTENTS

1 Linear algebra . 2

1.1 Vector and matrix fundamentals . 2

1.2 Vector norms . 7

2 Matrix calculus . 8
2.1 Notations . 8

2.2 Scalar derivative rules . 9

2.3 Vector calculus and partial derivatives . 11

2.4 Generalization of the Jacobian . 16

2.5 Geometric understanding of Jacobians . 20

2.6 Vector sum reduction . 23

2.7 The Chain rules . 25

3 Common results . 30
3.1 Gradients and Jacobians . 30

3.2 Scalar expansion . 31

3.3 Vector reductions . 32

3.4 Chain rules . 33

4 References . 34

1 / 34

LINEAR ALGEBRA
VECTOR AND MATRIX FUNDAMENTALS

▶ A vector x ∈ Rn is a list of n numbers, usually written as a column vector:

x =


x1

x2
...

xn

 .

▶ xi or x[i] is the i th element of vector x (scalar).
▶ The vector of all ones is denoted 1. The vector of all zeros is denoted 0.
▶ The unit vector ei is a vector of all 0’s, except entry i , which has value 1:

ei = (0, . . . , 0, 1, 0, . . . , 0)

This is also called a one-hot vector.
▶ The dot product w · x is the summation of the element-wise multiplication of the elements:∑

i(wixi) = sum(w ⊗ x). Or, you can look at it as wT x.

2 / 34

LINEAR ALGEBRA
VECTOR AND MATRIX FUNDAMENTALS

A matrix A ∈ Rm×n with m rows and n columns is a 2d array of numbers, arranged as follows:

A =


a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn

 .

If m = n, the matrix is said to be square.
▶ Aij or A[i, j]: the entry of A in the i th row and j th column.
▶ A[i, :]: the i th row and A[:, j]: the j th column.
▶ We treat all vectors as column vectors by default (e.g., A[:, j]).

We can view a matrix as a set of columns stacked along the horizontal axis:

A =

 | | |
A[:, 1] A[:, 2] · · · A[:, n]

| | |

 = [A[:, 1],A[:, 2], · · · ,A[:, n]] .

We can also view a matrix as a set of rows stacked along the vertical axis:

A =


− A[1, :] −
− A[2, :] −

...
− A[m, :] −

 = [A[1, :];A[2, :]; . . . ;A[m, :]].

3 / 34

LINEAR ALGEBRA
VECTOR AND MATRIX FUNDAMENTALS

▶ The transpose of a matrix results from “flipping” the rows and columns. Given a matrix A ∈ Rm×n,
its transpose, written A⊤ ∈ Rn×m, is defined as

(A⊤)[i, j] = A[j, i]

▶ The following properties of transposes are easily verified:

(A⊤)⊤ = A

(AB)⊤ = B⊤A⊤

(A + B)⊤ = A⊤ + B⊤

▶ If a square matrix satisfies A = A⊤, it is called symmetric. We denote the set of all symmetric
matrices of size n as Sn.

▶ I represents the square identity matrix of appropriate dimensions that is zero everywhere but the
diagonal, which contains all ones. We may also use lower script to indicate dimension, e.g., IM .

▶ diag(x) constructs a matrix whose diagonal elements are taken from vector x.

4 / 34

LINEAR ALGEBRA
VECTOR AND MATRIX FUNDAMENTALS

▶ A tensor (in machine learning) is a generalization of a 2d array to higher dimensions. For example,
the entries of a 3d tensor are denoted by A[ijk].

Image credit: Murphy, 2022

▶ The number of dimensions is known as the order or rank of the tensor.

5 / 34

LINEAR ALGEBRA
VECTOR AND MATRIX FUNDAMENTALS

▶ We can reshape a matrix into a vector by stacking its columns on top of each other. This is denoted
by

vec(A) = [A[:, 1]; · · · ;A[:, n]] ∈ Rmn×1

▶ Conversely, we can reshape a vector into a matrix. There are two choices: row-major order (used
by Python/PyTorch) and column-major order (used by Matlab and R).

Image credit: Wikipedia2

2https://en.wikipedia.org/wiki/Row-_and_column-major_order
6 / 34

https://en.wikipedia.org/wiki/Row-_and_column-major_order

LINEAR ALGEBRA
VECTOR NORMS

A norm of a vector ∥x∥ measures of the “length” of the vector. More formally, a norm is any function
f : Rn → R that satisfies 4 properties:
▶ For all x ∈ Rn, f (x) ≥ 0 (non-negativity).
▶ f (x) = 0 if and only if x = 0 (definiteness).
▶ For all x ∈ Rn, t ∈ R, f (tx) = |t |f (x) (absolute value homogeneity).
▶ For all x, y ∈ Rn, f (x + y) ≤ f (x) + f (y) (triangle inequality).

Consider the following common examples:

▶ p-norm ∥x∥p =
(∑n

i=1 |xi |p
)1/p

, for p ≥ 1.

▶ 2-norm ∥x∥2 =
√∑n

i=1 x2
i , also called Euclidean norm. Note that ∥x∥2

2 = x⊤x.

▶ 1-norm ∥x∥1 =
∑n

i=1 |xi |.
▶ Max-norm ∥x∥∞ = maxi |xi |.
▶ 0-norm ∥x∥0 =

∑n
i=1 I(|xi | > 0). This is a pseudo norm, since it does not satisfy homogeneity. It

counts the number of non-zero elements in x.

7 / 34

MATRIX CALCULUS
NOTATIONS

▶ Differentiation d
dx is an operator that maps a function of one parameter to another function. That

means that d
dx f (x) maps f (x) to its derivative with respect to x , which is the same thing as df (x)

dx .

Also, if y = f (x), then dy
dx = df (x)

dx .

▶ The partial derivative of the function with respect to x , ∂f (x)
∂x , performs the usual scalar derivative

holding all other variables constant.
▶ The gradient of f with respect to vector x, ∇f (x), organizes all of the partial derivatives for a specific

scalar function.
∇f (x) =

[
∂f (x)
∂x1

, ∂f (x)
∂x2

, · · · , ∂f (x)
∂xn

]
▶ The Jacobian organizes the gradients of multiple functions into a matrix by stacking them:

J =

[
∇f1(x)
∇f2(x)

]
▶ We will cover more concrete examples later.

8 / 34

MATRIX CALCULUS
SCALAR DERIVATIVE RULES

Rule f (x) Scalar derivative w .r .t . x Example
Constant c 0 d

dx 99 = 0
Multiplication by constant cf c df

dx
d
dx 3x = 3

Power Rule xn nxn−1 d
dx x3 = 3x2

Sum Rule f + g df
dx + dg

dx
d
dx (x

2 + 3x) = 2x + 3
Difference Rule f − g df

dx − dg
dx

d
dx (x

2 − 3x) = 2x − 3
Product Rule fg f dg

dx + g df
dx

d
dx (x

2x) = x2 + x(2x) = 3x2

Chain Rule f (g(x)) df (u)
du

du
dx , let u = g(x) d

dx log(x2) = 1
x2 2x = 2

x

▶ More rules can be found on Wikipedia3.
▶ When a function has a single parameter, f (x), you’ll often see f ′(x) used as shorthands for d

dx f (x).
We recommend against using this notation (f ′(x)) as it does not make clear the variable we’re
taking the derivative with respect to.

3https://en.wikipedia.org/wiki/List_of_derivatives_and_integrals_in_alternative_calculi
9 / 34

https://en.wikipedia.org/wiki/List_of_derivatives_and_integrals_in_alternative_calculi

MATRIX CALCULUS
SCALAR DERIVATIVE RULES

▶ You can think of d
dx as an operator. This helps to simplify complicated derivatives because the

operator is distributive and lets us pull out constants.

Example 2.1 (Viewing d
dx as an operator)

For example, in the following equation, we can pull out the constant 9 and distribute the derivative
operator across the elements in the parentheses.

d
dx

9(x + x2) = 9
d
dx

(x + x2) = 9(1 + 2x) = 9 + 18x

▶ That procedure reduced the derivative of 9(x + x2) to a bit of arithmetic and the derivatives of x and
x2, which are much easier to solve than the original derivative.

10 / 34

MATRIX CALCULUS
VECTOR CALCULUS AND PARTIAL DERIVATIVES

▶ Neural network layers are not single functions of a single parameter, f (x). We care about functions
of multiple parameters such as f (x , y). For example, what is the derivative of f (x , y) = xy?

▶ We compute derivatives with respect to one variable (x or y) at a time, giving us two different partial
derivatives for this two-parameter function (one for x and one for y).

▶ Instead of using operator d
dx , the partial derivative operator is ∂

∂x . So, ∂
∂x xy and ∂

∂y xy are the partial
derivatives of xy ; often, these are just called the partials4.

4For functions of a single parameter, operator ∂
∂x is equivalent to d

dx (for sufficiently smooth functions). However, it’s better to use d
dx to make it clear you’re referring to a scalar derivative.

11 / 34

MATRIX CALCULUS
VECTOR CALCULUS AND PARTIAL DERIVATIVES

▶ The partial derivative with respect to x is just the usual scalar derivative, simply treating any other
variable in the equation as a constant.

Example 2.2 (Partial derivative)

Consider function f (x , y) = 3x2y . The partial derivative with respect to x is written as ∂
∂x 3x2y . There are

three constants from the perspective of ∂
∂x : 3, 2, and y . Therefore, ∂

∂x 3x2y = 3 · 2x · y = 6xy .

The partial derivative with respect to y treats x like a constant: ∂
∂y 3x2y = 3x2 · ∂y

∂y = 3x2 · 1 = 3x2.

12 / 34

MATRIX CALCULUS
VECTOR CALCULUS AND PARTIAL DERIVATIVES

▶ To make it clear we are doing vector calculus and not just multivariate calculus, let’s consider what
we do with the partial derivatives ∂f (x ,y)

∂x and ∂f (x ,y)
∂y (another way to say ∂

∂x f (x , y) and ∂
∂y f (x , y)).

Example 2.3 (Partials and gradients)

Again, consider f (x , y) = 3x2y . Instead of having them just floating around and not organized in any way,
let’s organize them into a horizontal vector. We call this vector the gradient of f (x , y) and write it as:

∇f (x , y) =
[
∂f (x , y)

∂x
,
∂f (x , y)

∂y

]
= [6xy , 3x2]

▶ The gradient of f (x , y) is simply a vector of its partials. Gradients deals with functions that map n
scalar parameters to a single scalar.

13 / 34

MATRIX CALCULUS
VECTOR CALCULUS AND PARTIAL DERIVATIVES

▶ When we move from derivatives of one function to derivatives of many functions, we move from the
world of vector calculus to matrix calculus.

Example 2.4 (Another example on gradients)

Let’s compute partial derivatives for two functions, both of which take two parameters. We can keep the
same f (x , y) = 3x2y from the last section, but let’s also bring in g(x , y) = 2x + y8. The gradient for g has
two entries, a partial derivative for each parameter:

∂g(x , y)
∂x

=
∂

∂x
2x +

∂

∂x
y8 = 2

∂x
∂x

+ 0 = 2 × 1 = 2

and
∂g(x , y)

∂y
=

∂

∂y
2x +

∂

∂y
y8 = 0 + 8y7 = 8y7

giving us gradient ∇g(x , y) = [2, 8y7].

14 / 34

MATRIX CALCULUS
VECTOR CALCULUS AND PARTIAL DERIVATIVES

▶ Gradient vectors organize all of the partial derivatives for a specific scalar function. If we have two
functions, we can also organize their gradients into a matrix by stacking the gradients. When we do
so, we get the Jacobian matrix (or just the Jacobian) where the gradients are rows:

J =

[
∇f (x , y)
∇g(x , y)

]
=

[
∂f (x ,y)

∂x
∂f (x ,y)

∂y
∂g(x ,y)

∂x
∂g(x ,y)

∂y

]
=

[
6yx 3x2

2 8y7

]
▶ Note that there are multiple ways to represent the Jacobian. We are using the so-called numerator

layout but many papers and software will use the denominator layout. This is just transpose of the
numerator layout Jacobian (flip it around its diagonal):[

6yx 3x2

2 8y7

]T

=

[
6yx 2
3x2 8y7

]
▶ We recommend using the numerator layout in your written homework and programming

assignments.

15 / 34

MATRIX CALCULUS
GENERALIZATION OF THE JACOBIAN

▶ To define the Jacobian matrix more generally, let’s combine multiple parameters into a single vector
argument: f (x , y , z) becomes f (x). We assume that all vectors are vertical by default of size n × 1:

x =


x1

x2
...

xn

 .

▶ With multiple scalar-valued functions, we can combine them all into a vector. Let y = f (x) be a
vector of m scalar-valued functions that each take a vector x of length n (f : Rn → Rm).

▶ Each fj function within f returns a scalar just as in the previous section:

y1 = f1(x)

y2 = f2(x)
...

ym = fm(x)

16 / 34

MATRIX CALCULUS
GENERALIZATION OF THE JACOBIAN

Example 2.5 (Jacobians)

For instance, we’d represent f (x , y) = 3x2y and g(x , y) = 2x + y8 from the last section as

y1 = f1(x) = 3x2
1 x2 (substituting x1 for x , x2 for y)

y2 = f2(x) = 2x1 + x8
2

It’s very often the case that m = n because we will have a scalar function result for each element of the x
vector. For example, consider the identity function y = f (x) = x:

y1 = f1(x) = x1

y2 = f2(x) = x2

...

yn = fn(x) = xn

So we have m = n functions and parameters, in this case.

17 / 34

MATRIX CALCULUS
GENERALIZATION OF THE JACOBIAN

▶ Generally speaking, the Jacobian matrix is the collection of all m × n possible partial derivatives (m
rows and n columns), which is the stack of m gradients with respect to x:

∂y
∂x

=


∂f1(x)
∂x

∂f2(x)
∂x
· · ·

∂fm(x)
∂x

 =


∂f1(x)
∂x1

∂f1(x)
∂x2

· · · ∂f1(x)
∂xn

∂f2(x)
∂x1

∂f2(x)
∂x2

· · · ∂f2(x)
∂xn

...
...

. . .
...

∂fm(x)
∂x1

∂fm(x)
∂x2

· · · ∂fm(x)
∂xn


▶ Each ∂fi(x)

∂x is a horizontal n-vector. The width of the Jacobian is n if we’re taking the partial derivative
with respect to x because there are n parameters in x, each potentially changing the function’s value.

▶ Therefore, the Jacobian is always m rows for m equations.

18 / 34

MATRIX CALCULUS
GENERALIZATION OF THE JACOBIAN

Example 2.6 (Jacobian of identity function)

The Jacobian of the identity function f(x) = x, with fi(x) = xi , has n functions and each function has n
parameters held in a single vector x. The Jacobian is, therefore, a square matrix since m = n:

∂y
∂x

=


∂f1(x)
∂x1

∂f1(x)
∂x2

· · · ∂f1(x)
∂xn

∂f2(x)
∂x1

∂f2(x)
∂x2

· · · ∂f2(x)
∂xn

...
...

. . .
...

∂fm(x)
∂x1

∂fm(x)
∂x2

· · · ∂fm(x)
∂xn


(because ∂xi

∂xj
= 0 for i ̸= j) which simplifies to

∂x1
∂x1

0 · · · 0
0 ∂x2

∂x2
· · · 0

...
...

. . .
...

0 0 · · · ∂xn
∂xn

 =


1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

 = I,

where I ∈ Rn×n is the identity matrix with ones down the diagonal.

19 / 34

MATRIX CALCULUS I
GEOMETRIC UNDERSTANDING OF JACOBIANS

Example 2.7 (Geometric meaning of Jacobians)

Consider f(x , y) =
[

u(x , y)
v(x , y)

]
=

[
2x

x + y

]
. Square ABCD is transformed into A′B′C′D′

A =
[

0.5
0.5

]
,B =

[
1.5
0.5

]
,C =

[
1.5
1.5

]
,D =

[
0.5
1.5

]
=⇒ A′ =

[
1.0
1.0

]
,B′ =

[
3.0
2.0

]
,C′ =

[
3.0
3.0

]
,D′ =

[
1.0
2.0

]
.J =

[
2 0
1 1

]

x

y

Original

Transformed

A B

CD

A′

B′

C′

D′

20 / 34

MATRIX CALCULUS
GEOMETRIC UNDERSTANDING OF JACOBIANS

▶ The Jacobian describes such linear transformations when the origin position remains unchanged.
▶ Reconsider the transformation between (x , y) and (u, v) coordinate systems above:[

du
dv

]
= J

[
dx
dy

]
=

[
∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y

]
=

[
2 0
1 1

] [
dx
dy

]
▶ For nonlinear transformations, the Jacobian is a linear approximation in a small region (first order

Taylor series approximation).

21 / 34

MATRIX CALCULUS
GEOMETRIC UNDERSTANDING OF JACOBIANS

▶ Further, Jacobian determinant represents how much the unit area changes during a linear
transformation.

du × dv = | det(J)|(dx × dy)

| det(J)| > 1: expansion; | det(J)| < 1: contraction.
▶ In the above example, area before transformation: 1, after transformation: 2.

x

y

Original

Transformed

22 / 34

MATRIX CALCULUS
VECTOR SUM REDUCTION

▶ Summing up the elements of a vector is an important operation in deep learning, such as the
network loss function, but we can also use it as a way to simplify computing the derivative of vector
dot product and other operations that reduce vectors to scalars.

▶ Consider a general case: y = sum(f (x)) =
∑n

i=1 fi(x). Notice we leave the parameter as a vector x
because each function fi could use all values in the vector, not just xi . The gradient (1 × n Jacobian)
of vector summation is:

∂y
∂x

=

[
∂y
∂x1

,
∂y
∂x2

, . . . ,
∂y
∂xn

]
=

[
∂

∂x1

∑
i

fi(x),
∂

∂x2

∑
i

fi(x), . . . ,
∂

∂xn

∑
i

fi(x)

]

=

[∑
i

∂fi(x)
∂x1

,
∑

i

∂fi(x)
∂x2

, . . . ,
∑

i

∂fi(x)
∂xn

]
(move derivative inside

∑
)

23 / 34

MATRIX CALCULUS
VECTOR SUM REDUCTION

Example 2.8 (Vector sum reduction)

Let’s look at the gradient of the simple y = sum(x). The function inside the summation is just fi(x) = xi

and the gradient is then:

∇y =

[∑
i

∂fi(x)
∂x1

,
∑

i

∂fi(x)
∂x2

, . . . ,
∑

i

∂fi(x)
∂xn

]
=

[∑
i

∂xi

∂x1
,
∑

i

∂xi

∂x2
, . . . ,

∑
i

∂xi

∂xn

]
Because ∂xi

∂xj
= 0 for j ̸= i , we can simplify to:

∇y =

[
∂x1

∂x1
,
∂x2

∂x2
, . . . ,

∂xn

∂xn

]
= [1, 1, . . . , 1] = 1T

Notice that the result is a horizontal vector full of 1s, not a vertical vector, and so the gradient is 1T .

It’s very important to keep the shape of all of your vectors and matrices in order, otherwise it’s
impossible to compute the derivatives of complex functions.

24 / 34

MATRIX CALCULUS
THE CHAIN RULES

▶ We can’t compute partial derivatives of very complicated functions using just the basic matrix
calculus rules we’ve seen so far. For example, we can’t take the derivative of nested expressions like
sum(w + x) directly without reducing it to its scalar equivalent.

▶ The chain rule is conceptually a divide and conquer strategy that breaks complicated expressions
into subexpressions whose derivatives are easier to compute. We can process each simple
subexpression in isolation yet still combine the intermediate results to get the correct overall result.

▶ For example, to compute d
dx sin(x2) = 2x cos(x2), we can break it into d

dx x2 = 2x and
d
du sin(u) = cos(u).

25 / 34

MATRIX CALCULUS
THE CHAIN RULES

▶ Chain rules are typically defined for nested functions, such as y = f (g(x)) for single-variable chain
rules (or using function composition f ◦ g(x)). The formulation of the single-variable chain rule is:

dy
dx

=
dy
du

du
dx

▶ To deploy the single-variable chain rule, follow these steps:
1. Introduce intermediate variables for nested subexpressions. This step normalizes all equations

to single operators or function applications.
2. Compute derivatives of the intermediate variables with respect to their parameters.
3. Combine (chain) all derivatives of intermediate variables by multiplying them together.
4. Substitute intermediate variables back in if any are referenced in the derivative equation.

26 / 34

MATRIX CALCULUS
THE CHAIN RULES

▶ We now discuss the chain rule for vectors of functions and vector variables. We can start by
computing the derivative of a sample vector function with respect to a scalar, y = f (x).

y(x) =
[
y1(x)
y2(x)

]
=

[
f1(x)
f2(x)

]
=

[
ln(x2)
sin(3x)

]
▶ We introduce two intermediate variables, g1 and g2, one for each fi so that y looks like y = f (g(x)):

g(x) =
[
g1(x)
g2(x)

]
=

[
x2

3x

]

fi(g) =
[
f1(g)
f2(g)

]
=

[
ln(g1)
sin(g2)

]
▶ The derivative of vector y w .r .t . scalar x is a vertical vector with elements computed using the

single-variable chain rule:

∂y
∂x

=

[
∂f1(g)
∂g1

∂g1
∂x

∂f1(g)
∂g2

∂g2
∂x

∂f2(g)
∂g1

∂g1
∂x

∂f2(g)
∂g2

∂g2
∂x

]
=

[1
g1

2x + 0
0 + cos(g2)3

]
=

[2
x

3 cos(3x)

]
▶ If we split the ∂fi

∂gj
terms, isolating the ∂gj

∂x terms into a vector, we get a matrix by vector multiplication:

∂y
∂x

=

[
∂f1
∂g1

∂f1
∂g2

∂f2
∂g1

∂f2
∂g2

][
∂g1
∂x
∂g2
∂x

]
=

∂f
∂g

∂g
∂x 27 / 34

MATRIX CALCULUS
THE CHAIN RULES

▶ That means that the Jacobian is the multiplication of two other Jacobians:[
∂f1
∂g1

∂f1
∂g2

∂f2
∂g1

∂f2
∂g2

][
∂g1
∂x
∂g2
∂x

]
=

[1
g1

0
0 cos(g2)

] [
2x
3

]
=

[2
x

3 cos(3x)

]
▶ We get the same answer as the scalar approach. This vector chain rule for vectors of functions

appears to be consistent with the single-variable chain rule. Compare the vector rule:

∂

∂x
f(g(x)) =

∂f
∂g

∂g
∂x

with the single-variable chain rule:
d
dx

f (g(x)) =
df
dg

dg
dx

▶ To make this formula work for multiple parameters or vector x, we just have to change x to vector x in
the equation. The effect is that ∂g

∂x and the resulting Jacobian, ∂f
∂x , are now matrices instead of

vertical vectors. Our complete vector chain rule is:

∂

∂x
f(g(x)) =

∂f
∂g

∂g
∂x

▶ Note: matrix multiply doesn’t commute; order of ∂f
∂g

∂g
∂x matters.

28 / 34

MATRIX CALCULUS
THE CHAIN RULES

▶ In the vector chain rule, the Jacobian contains all possible combinations of fi with respect to gj and gi

with respect to xj . For completeness, here are the two Jacobian components:

∂

∂x
f(g(x)) =

∂f
∂g

∂g
∂x

=


∂f1
∂g1

∂f1
∂g2

. . . ∂f1
∂gk

∂f2
∂g1

∂f2
∂g2

. . . ∂f2
∂gk

...
...

. . .
...

∂fm
∂g1

∂fm
∂g2

. . . ∂fm
∂gk




∂g1
∂x1

∂g1
∂x2

. . . ∂g1
∂xn

∂g2
∂x1

∂g2
∂x2

. . . ∂g2
∂xn

...
...

. . .
...

∂gk
∂x1

∂gk
∂x2

. . . ∂gk
∂xn


where x ∈ Rn,g : Rn → Rk , f : Rk → Rm. The resulting Jacobian is m × n (an m × k matrix
multiplied by a k × n matrix).

▶ Even within this ∂f
∂g

∂g
∂x formula, we can simplify further because, for many applications, the Jacobians

are square (m = n) and the off-diagonal entries are zero.
▶ It is the nature of neural networks that the associated mathematics deals with functions of vectors

not vectors of functions. For example, the ReLU activation function is max(0, x).

29 / 34

COMMON RESULTS
GRADIENTS AND JACOBIANS

▶ The gradient of a function of two variables is a horizontal 2-vector:

∇f (x , y) =
[
∂f (x , y)

∂x
,
∂f (x , y)

∂y

]
▶ The Jacobian of a vector-valued function that is a function of a vector is an m × n (m = |f | and

n = |x|) matrix containing all possible scalar partial derivatives:

∂y
∂x

=


∂f1(x)
∂x1

∂f1(x)
∂x2

· · · ∂f1(x)
∂xn

∂f2(x)
∂x1

∂f2(x)
∂x2

· · · ∂f2(x)
∂xn

...
...

. . .
...

∂fm(x)
∂x1

∂fm(x)
∂x2

· · · ∂fm(x)
∂xn


▶ The Jacobian of the identity function f(x) = x is I.

30 / 34

COMMON RESULTS
SCALAR EXPANSION

▶ Adding scalar z to vector x, y = x + z, is really y = f (x) + g(z) where f (x) = x and g(z) = 1z.

∂

∂x
(x + z) = diag(1) = I

∂

∂z
(x + z) = 1T

▶ Scalar multiplication yields:
∂

∂x
(xz) = Iz

∂

∂z
(xz) = x

31 / 34

COMMON RESULTS
VECTOR REDUCTIONS

▶ The partial derivative of a vector sum with respect to one of the vectors is:

∇xy =

[∑
i

∂fi(x)
∂x1

,
∑

i

∂fi(x)
∂x2

, . . . ,
∑

i

∂fi(x)
∂xn

]

▶ For y = sum(x):
∇xy = 1T

▶ For y = sum(xz) and x ∈ Rn, we get:

∇xy = [z, z, . . . , z] ∈ Rn

∇zy = sum(x)

32 / 34

COMMON RESULTS
CHAIN RULES

▶ Single-variable rule: df
dx = df

du
du
dx

▶ Single-variable (total-derivative) rule: ∂f (u1,...,un)
∂x = ∂f

∂u
du
dx

▶ Vector rule: ∂
∂x f(g(x)) = ∂f

∂g
∂g
∂x

33 / 34

REFERENCES

Murphy, K. P. (2022). Probabilistic machine learning: An introduction. MIT Press.

Parr, T., & Howard, J. (2018).The matrix calculus you need for deep learning. arXiv preprint
arXiv:1802.01528.

34 / 34

	Linear algebra
	Matrix calculus
	Common results
	References
	References

