
Introduction to
PyTorch

CPEN 455 Tutorial 3

Jan 27, 2025

Qi Yan
Acknowledgment: Muchen Li

Outline

• Introduction
• Tensor & Tensor Operations
• Dataset & Dataloaders
• Build the model
• Model Optimization

PyTorch [1] is a deep learning framework (free and open-sourced under the
modified BSD license) based on the Torch library, originally developed by Meta AI
and now part of the Linux Foundation umbrella.

Many pieces of deep learning software are built on top of PyTorch, including Tesla
Autopilot, Uber's Pyro, Hugging Face's Transformers, PyTorch Lightning, and
Catalyst.

Pytorch is getting Popular

[1] Image Credit: https://hackernoon.com/pytorch-vs-tensorflow-who-has-more-pre-trained-deep-learning-models

Pytorch is getting Popular

[1] Image Credit: https://hackernoon.com/pytorch-vs-tensorflow-who-has-more-pre-trained-deep-learning-models

DL Frameworks

DL Frameworks

[2] Image Credit: https://www.cs.princeton.edu/courses/archive/fall19/cos484/lectures/pytorch.pdf

Why Pytorch

• It’s easy to use.

• It’s Pythonic and flexible (easy to customize and extend).

• It’s your best friend in deep learning projects.

Why Pytorch

• It’s easy to use.

• It’s Pythonic and flexible (easy to customize and extend).

• It’s your best friend in deep learning projects.

• And you’ll need it in your assignment anyway ;)

DL Frameworks Bring Peace of Mind

• GPU Acceleration

[4] Image Credit: https://developer.nvidia.com/blog/cuda-refresher-cuda-programming-model/

DL Frameworks Bring Peace of Mind

• GPU Acceleration

[4] Image Credit: https://developer.nvidia.com/blog/cuda-refresher-cuda-programming-model/

CUDA

DL Frameworks Bring Peace of Mind

• GPU Acceleration

[4] Image Credit: https://developer.nvidia.com/blog/cuda-refresher-cuda-programming-model/

CUDA

DL Frameworks Bring Peace of Mind

• Autograd: A reverse
automatic differentiation
system.

[5] Image Credit: https://pytorch.org/blog/overview-of-pytorch-autograd-engine/

DL Frameworks

[3] Image Credit: https://hackernoon.com/pytorch-vs-tensorflow-who-has-more-pre-trained-deep-learning-models

Installing Pytorch

• On your own device:
• Use Anconda/MiniConda to manage
• conda install pytorch -c pytorch
• https://docs.conda.io/projects/miniconda/en/latest/

• Google Colab:
• Jupyter notebook Management
• !pip3 install torch
• https://colab.google/

Write Code

• Use Whatever Editor you like

• Jupyter Lab/Jupyter NoteBook
• Interactive coding session
• Install: pip/conda install jupyter
• Run: jupyter notebook –port 8888
• Visit at localhost:8888

• Debug pytorch code just like debugging any python code

Overview

Fundamental Concepts of PyTorch:
• Tensors
• Autograd
• Modular structure
• Models / Layers
• Datasets & Dataloader

Dataset

M
odel

O
ptim

izer

Test Result /
Visualizations

1. Tensors

• Tensors are a specialized data structure that are very similar to arrays and
matrices. In PyTorch, we use tensors to encode the inputs and outputs of a model,
as well as the model’s parameter

• Tensors are similar to NumPy’s ndarrays, except that tensors can run on GPUs or
other hardware accelerators.

https://numpy.org/

1. Tensors

1.1 Creating a Tensor
1.2 Attribute of Tensors
• Shape, Device and datatype

1.3 Operation on Tensors
• Move between devices
• Indexing & Slicing
• Stack & Concatenation
• Algorithmic operations (Tensor products)

1. Creating a Tensor

• Directly from Data

[5] Code Credit: https://pytorch.org/tutorials/beginner/basics/tensorqs_tutorial.html

1. Creating a Tensor

• Directly from Data

• With Random / Constant Value

[5] Code Credit: https://pytorch.org/tutorials/beginner/basics/tensorqs_tutorial.html

1.2 Attribute of Tensors

• Data type, Shape and Device

[5] Code Credit: https://pytorch.org/tutorials/beginner/basics/tensorqs_tutorial.html

1.2 Attribute of Tensors

• Data type, Shape and Device

[5] Code Credit: https://pytorch.org/tutorials/beginner/basics/tensorqs_tutorial.html

requires_grad: a flag for whether the tensor is a parameter to be updated

1.3 Operations

• There is over 100 tensor operations, including arithmetic, linear
algebra (e.g. matrix manipulation transposing, indexing, slicing),
sampling).

1.3 Operations: Move between devices

• By default tensors are created on CPU, one can move tensor explicitly
to GPU for future operations:

• In the case of multiple GPUs, you should specify the CUDA id like
“cuda:1”, otherwise, “cuda” default to GPU 0.

[5] Code Credit: https://pytorch.org/tutorials/beginner/basics/tensorqs_tutorial.html

1.3 Operations: Index & Slicing

• Pytorch support a lot of APIs available in Numpy. E.g. You can index
and slice tensor exactly like numpy arrays:

[5] Code Credit: https://pytorch.org/tutorials/beginner/basics/tensorqs_tutorial.html

Tips 1.1 Mastering Indexing

• Basic Indexing
• Single element indexing
• Dimensional indexing tools: ’:’, ’…’
• Slicing and striding: x[start:end:stride]

• Advance Indexing
• Integer array indexing
• Boolean array indexing

• Demo

[6] https://numpy.org/doc/stable/user/basics.indexing.html

Tips 1.2: Master the Shape of your Tensor

• Mastering the shape of your tensor can be the most crucial to get your
code right. In practice, we need to get tensor into right shape before
we can apply certain functions on it.

• .view() .reshape() .contiguous()
• .permute() .transpose() .repeat()
• .squeeze() .unsqueeze()

• Demo

1.3 Operations: Concatenation

• You can use torch.cat to concatenate a sequence of tensors along a
given dimension. See also torch.stack

[5] Code Credit: https://pytorch.org/tutorials/beginner/basics/tensorqs_tutorial.html

1.3 Operations: Arithmetic operations

[5] Code Credit: https://pytorch.org/tutorials/beginner/basics/tensorqs_tutorial.html

1.3 Operations: Arithmetic operations

[5] Code Credit: https://pytorch.org/tutorials/beginner/basics/tensorqs_tutorial.html

Tips 1.3 Avoid Loops

• Loops can be easy to implement but is very inefficient.
• You should avoid using loops as much as you can and try to use

pytorch provided API to get around. Let the optimized backend library
plays its role.

[7] Vectorization in numpy https://www.scaler.com/topics/np-vectorize/

Tips 1.3 Avoid Loops

• Loops can be easy to implement but is very inefficient.
• You should avoid using loops as much as you can and try to use

pytorch provided API to get around. Let the optimized backend library
plays its role.
• Vectorization:

Example 1: To calculate a dot product between Vector X and Vector Y
 Use torch.dot(X, Y) instead of a for loop.

Example 2: Batch Matrix Multiplication A: k*m*n. B: k*n*l
 Use torch.bmm(A, B) instead of doing torch.mm() k times.

[7] Vectorization in numpy https://www.scaler.com/topics/np-vectorize/

1.3 Operations

Check out more operations at

https://pytorch.org/docs/stable/torch.html

2. Dataset & Dataloaders

• Data is of crucial importance in deep learning. We want to handle it
well and reduce the overhead of the dl system.
• torch.utils.data.DataLoader
• torch.utils.data.Dataset

Dataset DataLoader

M
odel

2.1 Dataset: A Example

• Image Dataset: FashionMNIST

annotations_file

[8] Image Credit: https://pytorch.org/tutorials/beginner/basics/data_tutorial.html

2.1 Dataset: A Example

[8] Image Credit: https://pytorch.org/tutorials/beginner/basics/data_tutorial.html

Store data
Meta data as
attributed

2.1 Dataset: A Example

[8] Image Credit: https://pytorch.org/tutorials/beginner/basics/data_tutorial.html

Returns
number of
samples

2.1 Dataset: A Example

[8] Image Credit: https://pytorch.org/tutorials/beginner/basics/data_tutorial.html

Get the idx th
sample

Read Image
data and label

2.1 Dataset: A Example

[8] Image Credit: https://pytorch.org/tutorials/beginner/basics/data_tutorial.html

Apply
transform to
data. E.g.
Normalization/
Augmentation

• The Dataset retrieves our dataset’s features and labels one sample at a time.
• While training a model, we typically want to pass samples in “minibatches”,

reshuffle the data at every epoch to reduce model overfitting, and use
Python’s multiprocessing to speed up data retrieval.
• DataLoader is an iterable that abstracts this complexity for us in an easy API.

2.1 Dataset: A Example

[8] Image Credit: https://pytorch.org/tutorials/beginner/basics/data_tutorial.html

2.1 Dataset: A Example

[8] Image Credit: https://pytorch.org/tutorials/beginner/basics/data_tutorial.html

Tips 2.1 What’s happening in dataloader

Wait, what exactly do dataloader do?
• Data Loading Order:
• Determine the order to sample data. (e.g. shuffling given a particular seed.) In

the multi-gpu distributed training case. It also coordinate to avoid repeat
samples between different process.

• Parallel Sampling:
• Reading data sequentially can be a bad idea. Dataloader fork num_worker of

subprocesses to enable parallel sampling

[8] Image Credit: https://pytorch.org/docs/stable/data.html#torch.utils.data.DataLoader

Tips 2.1 What’s happening in dataloader

• Batching data:
• This is done by the collate_fn (collate function), which 1. collate tensor

memory for sampled data and 2. concatenate the tensors to be a single batch
data. You can create your own collate_fn to handle different structure of data.

• Accelerate data loading:
• This can be done by pin_memory and prefetch_factor

[8] Image Credit: https://pytorch.org/docs/stable/data.html#torch.utils.data.DataLoader

Recap

• Tensor operations
• Index, Slice, Stride, Concatenate, reshape

•Dataset and DataLoader Module
• Building Model
•Model Optimization

Next Time

• More Model Optimization
• Automatic Gradient
• Build Training and Testing Loop

