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 Autograd
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 Check gradient
* Demo

 Build your model
e Init__ & forward function
* Linear Layer: a case study



* Model Optimization
* Loss function
« Optimizer

* Training & Testing Loop
« What to expect

e Save & Load the model
e Test the model

« Hyper Parameters Tuning



5. Model Optimization: LosS

Loss function measures the degree of dissimilarity of obtained result
from our network output to the target value, and it Is the loss function
that we want to minimize during training.



5. Model Optimization: LosS

MSE Loss:

MSE = %i(y —Yi)2.

1=1

Negative Log Likelihood for N class Classification:

- Zi\le yclog(pc)

yc = flag(y==c)

[1] Check out Various Loss functions here: https://pytorch.org/docs/stable/nn.html#loss-functions
[2] Read More About Cross Entropy Loss: https://wandb.ai/sauravmaheshkar/cross-entropy/reports/\What-Is-Cross-Entropy-L oss-A-Tutorial-With-Code--VmlldzoxMDASN T Mx

[3] https://en.wikipedia.org/wiki/Cross-entropy


https://pytorch.org/docs/stable/nn.html
https://wandb.ai/sauravmaheshkar/cross-entropy/reports/What-Is-Cross-Entropy-Loss-A-Tutorial-With-Code--VmlldzoxMDA5NTMx

5. Model Optimization: Optimizer

Optimization is the process of adjusting model parameters to reduce
model error in each training step. Optimization algorithms define how
this process is performed (in this example we use Stochastic Gradient
Descent). All optimization logic is encapsulated in the optimizer object.

optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)

[4] Check out different optimizers implemented in pytorch: https://pytorch.org/docs/stable/optim.html
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5. Model Optimization: Optimizer

Optimization is the process of adjusting model parameters to reduce
model error in each training step. Optimization algorithms define how
this process is performed (in this example we use Stochastic Gradient
Descent). All optimization logic is encapsulated in the optimizer object.

optimizer = torch.optim.SGD(model.parameters(ﬂ, lr=learning_rate)

All parameters within model, only parameter
with requires_grad = True will be updated

[4] Check out different optimizers implemented in pytorch: https://pytorch.org/docs/stable/optim.html
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5. Model Optimization: Optimizer

Optimization is the process of adjusting model parameters to reduce
model error in each training step. Optimization algorithms define how
this process is performed (in this example we use Stochastic Gradient
Descent). All optimization logic Is encapsulated in the optimizer object.

optimizer = torch.optim.SGD(model.parameters(), |lxr=learning_rate)

Learning Rate defines the magnitude of a
parameter is updated each time.

[4] Check out different optimizers implemented in pytorch: https://pytorch.org/docs/stable/optim.html
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5. Model Optimization: Optimizer

Inside the training loop, optimization happens in three steps:

o optimizer.zero _grad(): reset the gradients of model parameters. Gradients
by default add up; to prevent double-counting, we explicitly zero them at
each iteration.

[4] Check out different optimizers implemented in pytorch: https://pytorch.org/docs/stable/optim.html
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by default add up; to prevent double-counting, we explicitly zero them at
each iteration.

o loss.backward(): Backpropagate the prediction loss. PyTorch deposits the
gradients of the loss w.r.t. each parameter.
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by default add up; to prevent double-counting, we explicitly zero them at
each iteration.

o loss.backward(): Backpropagate the prediction loss. PyTorch deposits the
gradients of the loss w.r.t. each parameter.

o optimizer.step(): Adjust the parameters by the gradients collected in the
backward pass.
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5. Model Optimization: Optimizer

Inside the training loop, optimization happens in three steps:

o optimizer.zero_grad(): reset the gradients of model parameters. Gradients
by default add up; to prevent double-counting, we explicitly zero them at
each iteration.

o loss.backward(): Backpropagate the prediction loss. PyTorch deposits the
gradients of the loss w.r.t. each parameter.

o optimizer.step(): Adjust the parameters by the gradients collected in the
backward pass.

Popular optimizer includes: SGD, Adam, AdamW

[4] Check out different optimizers implemented in pytorch: https://pytorch.org/docs/stable/optim.html



https://pytorch.org/docs/stable/optim.html

6. Training & Testing

Let's Look at what will be done In one
epoch of training:

/For X, Y_gt in TrainLoader: \

Y pred = Model(X)

Loss = LossFunction(Y_pred, Y_gt)
Loss.backward()

Optimizer.step()

K Optimizer.zero_grad() /




6. Training & Testing

def train_loop(dataloader, model, loss_£fn, optimizer):

size = len(dataloader.dataset)

# Set the model to training mode - important for batch normali
and dropout layers

///7 : i der- ‘\\\ # Unnecessary in this situation but added for best practices
For X, Y_gtin TrainLoader: model . train()
Y_pred = Model(X) for batch, (X, y) in enumerate(dataloader):

# Compute prediction and loss
pred = model (X)
Loss.backward() loss = loss_fn(pred, y)

Optimizer.step()

Loss = LossFunction(Y_pred, Y_gt)

# Backpropagation
Optimizer.zero_grad() s e e O

\\\‘ 4/// optimizer.step()

optimizer.zero_grad()

if batch % 100 == 0O:
loss, current = loss.item(), (batch + 1) * len(X)
print(f"loss: {loss:>7ff¢ [{current:>5df{/{size:>5d#]")
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6. Training & Testing

def train_loop(dataloader, model, loss_£fn, optimizer):

size = len(dataloader.dataset)

# Set the model to training mode - important for batch normali
and dropout layers

///7 : : der- ‘\\\ # Unnecessary in this situation but added for best practices
For X, Y_gt In TrainLoader: model . train ()
Y pred = Model(X) for batch, (X, y) in enumerate(dataloader):

# Compute prediction and loss
pred = model (X)
LOSS.baCkward() loss = loss_fn(pred, y)

Optimizer.step()

Loss = LossFunction(Y_pred, Y_gt)

# Backpropagation
Optimizer.zero_grad() s e e O

\\\‘ 4/// optimizer.step()

optimizer.zero_grad()

if batch % 100 == 0O:
loss, current = loss.item(), (batch + 1) * len(X)
print(f"loss: {loss:>7ff¢ [{current:>5df{/{size:>5d#]")



6.1 Training Loop

def train_loop(dataloader, model, loss_fn, optimizer):
size = len(dataloader.dataset)
# Set the model to training mode - important for batch normalization
and dropout layers
# Unnecessary in this situation but added for best practices
model.train()
for batch, (X, y) in enumerate(dataloader):
# Compute prediction and loss
pred = model(X)
loss loss_fn(pred, y)

# Backpropagation
loss.backward()
optimizer.step()
optimizer.zero_grad()

if batch % 100 == 0:
loss, current = loss.item(), (batch + 1) * len(X)
print(f"loss: {loss:>7f} [{current:>5d¢/{size:>5df]")

[7] Code Credit: https://pytorch.org/tutorials/beginner/basics/optimization_tutorial.html

©



6.2 Test Loop

def test_loop(dataloader, model, loss_£fn):

# Set the model to evaluation mode - important for batch normalization and
dropout layers

# Unnecessary in this situation but added for best practices

model.eval()

size = len(dataloader.dataset)

num_batches = len(dataloader)

test_loss, correct = 0, 0O

# Evaluating the model with torch.no_grad() ensures that no gradients are
computed during test mode
# also serves to reduce unnecessary gradient computations and memory usage for
tensors with requires_grad=True
with torch.no_grad()i]
for X, y in dataloader:
pred = model(X)
test_loss += loss_fn(pred, y).item()
correct += (pred.argmax(l) == y).type(torch.float).sum().item()

test_loss /= num_batches

correct /= size

print(f"Test Error: \n Accuracy: {(100xcorrect) :>0.1f¢%, Avg loss:
/test_loss:>8f7 \n")

[7] Code Credit: https://pytorch.org/tutorials/beginner/basics/optimization_tutorial.html



6.2 Test Loop

def test_loop(dataloader, model, loss_£fn):

# Set the model to evaluation mode - important for batch normalization and
dropout layers

# Unnecessary in this situation but added for best practices

model.eval()

size = len(dataloader.dataset)

num_batches = len(dataloader)

test_loss, correct = 0, 0O

# Evaluating the model with torch.no_grad() ensures that no gradients are
computed during test mode

# also serves to reduce unnecessary gradient computations and memory usage for
tensors with requires_grad=True

with torch.no_grad():
for X, y in dataloader:

pred = model(X)

test_loss += loss_fn(pred, y).item()

correct += (pred.argmax(l) == y).type(torch.float).sum().item()

test_loss /= num_batches

correct /= size

print(f"Test Error: \n Accuracy: {(100xcorrect) :>0.1f¢%, Avg loss:
/test_loss:>8f7 \n")

[7] Code Credit: https://pytorch.org/tutorials/beginner/basics/optimization_tutorial.html



6.3 Hyper Parameters Tuning

Hyperparameters are adjustable parameters that let you control the
model optimization process. Different hyperparameter values can

Impact model training and convergence rates

optimizer = torch.optim.SGD(model.parametexs(),

 Learning Rate

1r=1earning_rat%)




6.3 Hyper Parameters Tuning

Hyperparameters are adjustable parameters that let you control the
model optimization process. Different hyperparameter values can

Impact model training and convergence rates

optimizer = torch.optim.SGD(model.parametexs(),

 Learning Rate

from torch.utils.data import Dataloader

1r=1earning_rat%)

o BatCh Slze train_dataloader = Dataloader(training_data,|batch_size=64] shuffle=True)

test_dataloader = Dataloader(test_data, batch_size=64, shuffle=True)



6.3 Hyper Parameters Tuning

Hyperparameters are adjustable parameters that let you control the
model optimization process. Different hyperparameter values can
Impact model training and convergence rates

optimizer = torch.optim.SGD(model.parametexs(), 1r=1earning_rat%)

 Learning Rate

from torch.utils.data import Dataloader

o BatCh Slze train_dataloader = Dataloader(training_data,|batch_size=64] shuffle=True)
test_dataloader = Dataloader(test_data, batch_size=64, shuffle=True)

for epoch in rangel(EPOCHS):

¢ Number Of EpOChS print('EPOCH {f:'.format(epoch_number + 1))

# Make sure gradient tracking is on, and do a pa:
model.train(Txue)
avg_loss = train_one_epoch(epoch_number, writer)



6.3.1 Choose your Learning Rate

How should we choose learning rate?

Just right

1(9)] |

|
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The optimal learning
rate swiftly reaches the
minimum point

[6] Image Credit: https://medium.com/codex/gradient-descent-cb0f02dc6eab
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Too high

The optimal learning

rate swiftly reaches the
minimum point

Too large of a learning rate
causes drastic updates

which lead to divergent
behaviors

[6] Image Credit: https://medium.com/codex/gradient-descent-cb0f02dc6eab



6.3.1 Choose your Learning Rate

How should we choose learning rate?

1(6)
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Just right

Too high
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Too low

The optimal learning
rate swiftly reaches the
minimum point

Too large of a learning rate
causes drastic updates
which lead to divergent
behaviors

[6] Image Credit: https://medium.com/codex/gradient-descent-cb0f02dc6eab

A small learning rate
requires many updates
before reaching the
minimum point



6.3.1 Choose your Learning Rate

J(w)

Issue of Learning rate being too small:

For Non-convex Function e.g. Deep
Neural Network.

Small learning rate: Many iterations
until convergence and trapping in
local minima.

[6] Image Credit: https://medium.com/codex/gradient-descent-cb0f02dc6eab



6.3.1 Choose your Learning Rate

Empirical rule to choose your Learning Rate: Observe your Training Loss
Curve

loss

low learning rate

high learning rate

good learning rate

[5] Slide Credit: https://mww.cs.ubc.ca/~schmidtm/Courses/5XX-S22/S4.pdf



6.3.3 When to stop: Number of Epochs

Underfitting

Loss

Overfitting

early stopping \J

[8] Image Credit: https://theaisummer.com/regularization/

Epochs

training



6.3.3 Adam vs SGD

« SGD is simple and elegant, but is highly sensitive to learning rate,
and for some data/architectures it does not converge :(

o Adam:

 Basically SGD + Adaptive Learning Rate + Momentum

* Much less sensitive to learning rate: Often learning rates of 0.001 or 0.0001
work pretty well.

 Almost all state-of-the-art models use this.



6.3 Hyper-Parameter Tuning

Empirical Take away:
* Use Batch Size > 1 if you can: reduce the variance of gradient.

e Scale up your Learning Rate as you increase batch size. Use smaller
learning rate if you use a small batch size.

* log / Visualize your training Loss and test Loss curve to adjust Learning
Rate & Decide when to Early Stop.



6.3 Hyper-Parameter Tuning

Batch Size vs Learning Rate:

* For SGD: If you multiply your batch-size by x you can multiply your
learning rate by x
* For Adam: If you multiply your batch-size by x, you can multiply your

learning rate by Vax

Note: these tips are empirical ballparks, and you should still try out
different learning rates.

[9] https://www.cs.princeton.edu/~smalladi/blog/2024/01/22/SDEs-ScalingRules/



Topics Not Covered

* Debugging & Analysis Model
o Profiler
o Visualizing & Logging: Tensorboard, Wandb

* Distributed Training
o Use Torch.nn.DistributedDataParallel
o Optimize your data loading
o Optimizer / Loss in distributed training

* More Design Detalil:
o Learning rate Scheduler ()
o Dropout & DropPath & Weight Decay & EMA



Useful Resources

« Recommend reading the tuning playbook by Google:
https://github.com/google-research/tuning_playbook

« Annotated pytorch implementation for a zoo of models:
https://nn.labml.al/



https://nn.labml.ai/

Thanks for listening and Happy Coding :)

People with no idea about Al

saying it will take over the world: My'heeural Nedwors:

(BT g

[9] Image Credit: https://www.reddit.com/r/ThelnsaneApp/comments/uOalam/best_machine learning_meme/



6.3.2 Choose Your Batch Size: A closer look at mini-batch

@ We considered stochastic gradient descent (SGD),
W = wh — o, V£, (wF).

which performs a gradient descent step using a random training example .
o This gives an unbiased gradient approximation, E[V f; (w®)] = V f(w*).

Update Rule of Gradient
Descent

[5] Slide Credit: https://mww.cs.ubc.ca/~schmidtm/Courses/5XX-S22/S4.pdf
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which performs a gradient descent step using a random training example .
o This gives an unbiased gradient approximation, E[V f; (w®)] = V f(w*).

@ Deterministic gradient descent uses all n gradients,
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n Samples
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6.3.2 Choose Your Batch Size

@ We considered stochastic gradient descent (SGD),
W = wh — o, V£, (wF).

which performs a gradient descent step using a random training example .
o This gives an unbiased gradient approximation, E[V f; (w®)] = V f(w*).

@ Deterministic gradient descent uses all n gradients,

V £ (w*) Zv fi(wh).

@ A common variant is to use m samples as a mini-batch B¥,

Vf('wk) ~ % Z Vf«g(wk) Approximate to the True gradient

with m samples in Current Batch.

This approximate is unbiased

given samples are IID
[5] Slide Credit: https://mww.cs.ubc.ca/~schmidtm/Courses/5XX-S22/S4.pdf



6.3.2 Choose Your Batch Size

e With m samples in our mini-batch we have that (see bonus)

k\2 :
olw The variance of
[Eme’fn?] _ (—)] e

size M

where o?(w”) is the variation in the individual gradients at w*.

[5] Slide Credit: https://www.cs.ubc.ca/~schmidtm/Courses/5XX-S22/S4.pdf ; See proof from slide 21.
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6.3.2 Choose Your Batch Size

e With m samples in our mini-batch we have that (see bonus)

k
Eflle"]|"] = ,
where o?(w”) is the variation in the individual gradients at w*.

e "“With a mini-batch size of 100, effect of noise is divided by 100".
e | Biggest gains obtained for increasing small batch sizes.

@ “With a mini-batch size of 100, you can use a step size that is 100-times larger.”
o |“Linear scaling rule” |(but may not guarantee progress if oy, > 2/L)

wt = wk — o, Vi (W)

[5] Slide Credit: https://mww.cs.ubc.ca/~schmidtm/Courses/5XX-S22/S4.pdf



Prove of the Unbiasedness and variance for mini-batch SGD

Unbiasedness of Mini-Batch Approximation

e Taking expectation over choice of mini-batch gives:

E|L1 Y Vii(w)| = 1g Y Vfi(w) (linearity of E)
M B " |ies
= % ;E[Vfi(w)] (linearity of E)
_ 1 Z Vf(w) (unbiased estimate)
m i€B
= %Vf(w) (term is repeated |B| times)

so mini-batch approximation is unbiased.

[5] Slide Credit: https://mww.cs.ubc.ca/~schmidtm/Courses/5XX-S22/S4.pdf



Variation in Mini-Batch Approximation

@ To analyze variation in gradients, we use a variance-like identity:
o If random variable g is an unbiased approximation of vector p, then

Elllg — ull’] = E[l|gll* — 29" u + || ul|*] (expand square)
= E[llgll*] - 2E[g]" & + | ul|® (linearity of E)
=E[llgll*] — 2" g + [|e])? (unbiased)
= E[llglI*] — llull*.

[5] Slide Credit: https://mww.cs.ubc.ca/~schmidtm/Courses/5XX-S22/S4.pdf



Variation in Mini-Batch Approximation

@ We also need expectation of inner product between independent samples:

E[Vfi(w)TVf;(w)] = Zi: zi: ni Fi(w)TV f;(w) (definition of E)
Zn: V fi(w)T (:Z i;v fi (w)) (distributive)
=1 =
i Y £i(w) TV f (w) (gradient of )

( Zv fil w)) V f(w) (distributive)
('w)TVf w) = ||V f(w)]|* (gradient of f),

which is squared gradient norm.

[5] Slide Credit: https://mww.cs.ubc.ca/~schmidtm/Courses/5XX-S22/S4.pdf



Variation Bound for Mini-Batch Approximation

o Let go(w) = £(Vfi(w) + V fj(w)) be mini-batch approximation with 2 samples.

E[||g2(w) — Vf(w)|?] = E[| %(vmfw) + Vi (w)?] = IV f(w)]? (variance identity)
= LBV A )12 + LEV £ )TV ()] + SB[V w))12] - [V £ (w)]2 (expand
=7 i (w 2 i (w j(w 2 j(w w expand square)
—_ lE . 2 1 . T . 2 . — .
= SEUVF @)1 + SEIVfi(w)" V15 w)] — V@) (E[V £i] = E[V £;])
_ EE . 2 1 2 _ 2 E : ;= 2
= SENVEA@)IP1+ JIVI@)I° = [V f(w)] E[V £,V ;] = VF?)

B lE vr 2 1 v 2
= SEUVA @] = JIV (W)

= % (EUV £ @)I1*] - 1V 5(w)I?) (Factor %)
— %E[HVfﬁ('w) — V(w)|?] (variance identity)
o(w)?

= (0-2 is 1-sample variation)

@ So SGD error E[||e*||?] is cut in half compared to using 1 sample.

[5] Slide Credit: https://mww.cs.ubc.ca/~schmidtm/Courses/5XX-S22/S4.pdf



Overview

* Fundamentals Pipelines of a DL model

Test Result /

Dataset

Visualizations

1. Preparing Your Data 2. Train the model 3. Test the model
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