Introduction to Pytorch ()

CPEN 455 Tutorial 5

Muchen Li & Sadegh Mahdavi

Last Time

- Autograd
 - Disable Autograd
 - Check gradient
 - Demo
- Build your model
 - ______ & forward function
 - Linear Layer: a case study

This Time

- Model Optimization
 - Loss function
 - Optimizer
- Training & Testing Loop
 - What to expect
 - Save & Load the model
 - Test the model
- Hyper Parameters Tuning

Loss function measures the degree of dissimilarity of obtained result from our network output to the target value, and it is the loss function that we want to minimize during training.

5. Model Optimization: Loss

MSE Loss:

$$ext{MSE} = rac{1}{n}\sum_{i=1}^n \left(Y_i - \hat{Y_i}
ight)^2.$$

Negative Log Likelihood for N class Classification:

$$-\sum_{c=1}^N y_c log(p_c)$$

yc = flag(y==c)

[1] Check out Various Loss functions here: https://pytorch.org/docs/stable/nn.html#loss-functions

[2] Read More About Cross Entropy Loss: <u>https://wandb.ai/sauravmaheshkar/cross-entropy/reports/What-Is-Cross-Entropy-Loss-A-Tutorial-With-Code--VmlldzoxMDA5NTMx</u>
 [3] https://en.wikipedia.org/wiki/Cross-entropy

Optimization is the process of adjusting model parameters to reduce model error in each training step. **Optimization algorithms** define how this process is performed (in this example we use Stochastic Gradient Descent). All optimization logic is encapsulated in the optimizer object.

optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)

Optimization is the process of adjusting model parameters to reduce model error in each training step. **Optimization algorithms** define how this process is performed (in this example we use Stochastic Gradient Descent). All optimization logic is encapsulated in the optimizer object.

optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)

All parameters within model, only parameter with requires_grad = True will be updated

Optimization is the process of adjusting model parameters to reduce model error in each training step. **Optimization algorithms** define how this process is performed (in this example we use Stochastic Gradient Descent). All optimization logic is encapsulated in the optimizer object.

optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)

Learning Rate defines the magnitude of a parameter is updated each time.

Inside the training loop, optimization happens in three steps:

• **optimizer.zero_grad()**: reset the gradients of model parameters. Gradients by default add up; to prevent double-counting, we explicitly zero them at each iteration.

Inside the training loop, optimization happens in three steps:

- **optimizer.zero_grad()**: reset the gradients of model parameters. Gradients by default add up; to prevent double-counting, we explicitly zero them at each iteration.
- **loss.backward()**: Backpropagate the prediction loss. PyTorch deposits the gradients of the loss w.r.t. each parameter.

Inside the training loop, optimization happens in three steps:

- **optimizer.zero_grad()**: reset the gradients of model parameters. Gradients by default add up; to prevent double-counting, we explicitly zero them at each iteration.
- **loss.backward()**: Backpropagate the prediction loss. PyTorch deposits the gradients of the loss w.r.t. each parameter.
- **optimizer.step()**: Adjust the parameters by the gradients collected in the backward pass.

Inside the training loop, optimization happens in three steps:

- **optimizer.zero_grad()**: reset the gradients of model parameters. Gradients by default add up; to prevent double-counting, we explicitly zero them at each iteration.
- **loss.backward()**: Backpropagate the prediction loss. PyTorch deposits the gradients of the loss w.r.t. each parameter.
- **optimizer.step()**: Adjust the parameters by the gradients collected in the backward pass.

Popular optimizer includes: SGD, Adam, AdamW

Let's Look at what will be done in one epoch of training:

For X, Y_gt in TrainLoader: Y_pred = Model(X) Loss = LossFunction(Y_pred, Y_gt) Loss.backward() Optimizer.step() Optimizer.zero_grad()

For X, Y_gt in TrainLoader:

Y_pred = Model(X)
Loss = LossFunction(Y_pred, Y_gt)
Loss.backward()
Optimizer.step()
Optimizer.zero_grad()

def train_loop(dataloader, model, loss_fn, optimizer): size = len(dataloader.dataset)

Set the model to training mode - important for batch normali. and dropout layers

Unnecessary in this situation but added for best practices
model.train()

```
for batch, (X, y) in enumerate(dataloader):
```

```
# Compute prediction and loss
```

pred = model(X)

```
loss = loss_fn(pred, y)
```

```
# Backpropagation
loss.backward()
optimizer.step()
```

```
optimizer.zero_grad()
```

```
if batch % 100 == 0:
    loss, current = loss.item(), (batch + 1) * len(X)
    print(f"loss: {loss:>7f} [{current:>5d}/{size:>5d}]")
```

```
For X, Y_gt in TrainLoader:
    Y_pred = Model(X)
    Loss = LossFunction(Y_pred, Y_gt)
    Loss.backward()
    Optimizer.step()
    Optimizer.zero_grad()
```

def train_loop(dataloader, model, loss_fn, optimizer): size = len(dataloader.dataset)

Set the model to training mode - important for batch normali. and dropout layers

Unnecessary in this situation but added for best practices
model.train()

```
for batch, (X, y) in enumerate(dataloader):
```

Compute prediction and loss

pred = model(X)
loss = loss_fn(pred, y)

```
# Backpropagation
loss.backward()
optimizer.step()
optimizer.zero_grad()
if batch % 100 == 0:
    loss, current = loss.item(), (batch + 1) * len(X)
```

```
print(f"loss: {loss:>7f} [{current:>5d}/{size:>5d}]")
```

```
For X, Y_gt in TrainLoader:
    Y_pred = Model(X)
    Loss = LossFunction(Y_pred, Y_gt)
    Loss.backward()
    Optimizer.step()
    Optimizer.zero_grad()
```

def train_loop(dataloader, model, loss_fn, optimizer): size = len(dataloader.dataset)

Set the model to training mode - important for batch normali. and dropout layers

Unnecessary in this situation but added for best practices
model.train()

```
for batch, (X, y) in enumerate(dataloader):
```

Compute prediction and loss

pred = model(X)
loss = loss_fn(pred, y)

```
# Backpropagation
loss.backward()
optimizer.step()
optimizer.zero_grad()
```

```
if batch % 100 == 0:
    loss, current = loss.item(), (batch + 1) * len(X)
    print(f"loss: {loss:>7f} [{current:>5d}/{size:>5d}]")
```

```
For X, Y_gt in TrainLoader:
    Y_pred = Model(X)
    Loss = LossFunction(Y_pred, Y_gt)
    Loss.backward()
    Optimizer.step()
    Optimizer.zero_grad()
```

def train_loop(dataloader, model, loss_fn, optimizer): size = len(dataloader.dataset)

Set the model to training mode - important for batch normali. and dropout layers

Unnecessary in this situation but added for best practices
model.train()

```
for batch, (X, y) in enumerate(dataloader):
```

Compute prediction and loss

```
pred = model(X)
```

```
loss = loss_fn(pred, y)
```

```
# Backpropagation
loss.backward()
optimizer.step()
optimizer.zero_grad()
```

```
if batch % 100 == 0:
    loss, current = loss.item(), (batch + 1) * len(X)
    print(f"loss: {loss:>7f} [{current:>5d}/{size:>5d}]")
```

6.1 Training Loop

```
def train_loop(dataloader, model, loss_fn, optimizer):
    size = len(dataloader.dataset)
    # Set the model to training mode - important for batch normalization
and dropout layers
    # Unnecessary in this situation but added for best practices
    model.train()
    for batch, (X, y) in enumerate(dataloader):
        # Compute prediction and loss
        pred = model(X)
        loss = loss_fn(pred, y)
```

```
# Backpropagation
loss.backward()
optimizer.step()
optimizer.zero_grad()
```

```
if batch % 100 == 0:
    loss, current = loss.item(), (batch + 1) * len(X)
    print(f"loss: {loss:>7f} [{current:>5d}/{size:>5d}]")
```

ር

6.2 Test Loop

def test_loop(dataloader, model, loss_fn):

Set the model to evaluation mode - important for batch normalization and dropout layers

```
# Unnecessary in this situation but added for best practices
model.eval()
size = len(dataloader.dataset)
num_batches = len(dataloader)
test_loss, correct = 0, 0
```

Evaluating the model with torch.no_grad() ensures that no gradients are computed during test mode

also serves to reduce unnecessary gradient computations and memory usage for tensors with requires_grad=True

```
with torch.no_grad():
    for X, y in dataloader:
        pred = model(X)
        test_loss += loss_fn(pred, y).item()
        correct += (pred.argmax(1) == y).type(torch.float).sum().item()
    test_loss /= num_batches
    correct /= size
    print(f"Test Error: \n Accuracy: {(100*correct):>0.1f}%, Avg loss:
{test_loss:>8f} \n")
```

[7] Code Credit: https://pytorch.org/tutorials/beginner/basics/optimization_tutorial.html

6.2 Test Loop

def test_loop(dataloader, model, loss_fn):

Set the model to evaluation mode - important for batch normalization and dropout layers

```
# Unnecessary in this situation but added for best practices
model.eval()
size = len(dataloader.dataset)
num_batches = len(dataloader)
test_loss, correct = 0, 0
```

Evaluating the model with torch.no_grad() ensures that no gradients are computed during test mode

also serves to reduce unnecessary gradient computations and memory usage for tensors with requires_grad=True

```
with torch.no_grad():
```

```
for X, y in dataloader:
    pred = model(X)
    test_loss += loss_fn(pred, y).item()
    correct += (pred.argmax(1) == y).type(torch.float).sum().item()
```

```
test_loss /= num_batches
correct /= size
print(f"Test Error: \n Accuracy: {(100*correct):>0.1f}%, Avg loss:
{test_loss:>8f} \n")
```

[7] Code Credit: https://pytorch.org/tutorials/beginner/basics/optimization_tutorial.html

Hyperparameters are adjustable parameters that let you control the model optimization process. Different hyperparameter values can impact model training and convergence rates

• Learning Rate

optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)

Hyperparameters are adjustable parameters that let you control the model optimization process. Different hyperparameter values can impact model training and convergence rates

• Learning Rate

optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)

from torch.utils.data import DataLoader

• Batch Size

train_dataloader = DataLoader(training_data, batch_size=64, shuffle=True)
test_dataloader = DataLoader(test_data, batch_size=64, shuffle=True)

Hyperparameters are adjustable parameters that let you control the model optimization process. Different hyperparameter values can impact model training and convergence rates

How should we choose learning rate?

[6] Image Credit: https://medium.com/codex/gradient-descent-cb0f02dc6eab

How should we choose learning rate?

[6] Image Credit: https://medium.com/codex/gradient-descent-cb0f02dc6eab

How should we choose learning rate?

[6] Image Credit: https://medium.com/codex/gradient-descent-cb0f02dc6eab

Issue of Learning rate being too small:

For Non-convex Function e.g. Deep Neural Network.

Small learning rate: Many iterations until convergence and trapping in local minima.

Empirical rule to choose your Learning Rate: Observe your Training Loss Curve

6.3.3 When to stop: Number of Epochs

[8] Image Credit: https://theaisummer.com/regularization/

6.3.3 Adam vs SGD

- SGD is simple and elegant, but is highly **sensitive to learning rate**, and for some data/architectures it **does not converge** :(
- Adam:
 - Basically SGD + Adaptive Learning Rate + Momentum
 - Much less sensitive to learning rate: Often learning rates of 0.001 or 0.0001 work pretty well.
 - Almost all state-of-the-art models use this.

6.3 Hyper-Parameter Tuning

Empirical Take away:

- Use Batch Size > 1 if you can: reduce the variance of gradient.
- Scale up your Learning Rate as you increase batch size. Use smaller learning rate if you use a small batch size.
- log / Visualize your training Loss and test Loss curve to adjust Learning Rate & Decide when to Early Stop.

6.3 Hyper-Parameter Tuning

Batch Size vs Learning Rate:

- For SGD: If you multiply your batch-size by x you can multiply your learning rate by x
- For Adam: If you multiply your batch-size by x, you can multiply your learning rate by \sqrt{x}

Note: these tips are empirical ballparks, and you should still try out different learning rates.

[9] https://www.cs.princeton.edu/~smalladi/blog/2024/01/22/SDEs-ScalingRules/

Topics Not Covered

• Debugging & Analysis Model • Profiler

Visualizing & Logging: Tensorboard, Wandb

• Distributed Training

O Use Torch.nn.DistributedDataParallel
Optimize your data loading
Optimizer / Loss in distributed training

• More Design Detail:

• Learning rate Scheduler ()

o Dropout & DropPath & Weight Decay & EMA

Useful Resources

- Recommend reading the tuning playbook by Google: https://github.com/google-research/tuning_playbook
- Annotated pytorch implementation for a zoo of models: <u>https://nn.labml.ai/</u>

Thanks for listening and Happy Coding :)

People with no idea about AI saying it will take over the world:

My Neural Network:

[9] Image Credit: https://www.reddit.com/r/TheInsaneApp/comments/u0a1am/best_machine_learning_meme/

6.3.2 Choose Your Batch Size: A closer look at mini-batch

• We considered stochastic gradient descent (SGD),

$$w^{k+1} = w^k - \alpha_k \nabla f_{i_k}(w^k).$$

Update Rule of Gradient Descent

which performs a gradient descent step using a random training example i_k .

• This gives an unbiased gradient approximation, $\mathbb{E}[\nabla f_{i_k}(w^k)] = \nabla f(w^k)$.

• We considered stochastic gradient descent (SGD),

$$w^{k+1} = w^k - \alpha_k \nabla f_{i_k}(w^k).$$

which performs a gradient descent step using a random training example i_k .

- This gives an unbiased gradient approximation, $\mathbb{E}[\nabla f_{i_k}(w^k)] = \nabla f(w^k)$.
- Deterministic gradient descent uses all n gradients,

$$\nabla f(w^k) = \frac{1}{n} \sum_{i=1}^n \nabla f_i(w^k).$$

Gradient Estimation of ALL n Samples

• We considered stochastic gradient descent (SGD),

$$w^{k+1} = w^k - \alpha_k \nabla f_{i_k}(w^k).$$

which performs a gradient descent step using a random training example i_k .

- This gives an unbiased gradient approximation, $\mathbb{E}[\nabla f_{i_k}(w^k)] = \nabla f(w^k)$.
- Deterministic gradient descent uses all n gradients,

$$abla f(w^k) = rac{1}{n} \sum_{i=1}^n
abla f_i(w^k).$$

• A common variant is to use m samples as a mini-batch \mathcal{B}^k ,

$$abla f(w^k) pprox rac{1}{m} \sum_{i \in \mathcal{B}^k}
abla f_i(w^k)$$

Approximate to the True gradient with m samples in Current Batch.

This approximate is unbiased given samples are IID

• With *m* samples in our mini-batch we have that (see bonus)

$$\mathbb{E}[\|e^k\|^2] = \frac{\sigma(w^k)^2}{m}$$

The variance of gradient with batch size M

where $\sigma^2(w^k)$ is the variation in the individual gradients at w^k .

• With *m* samples in our mini-batch we have that (see bonus)

$$\mathbb{E}[\|e^k\|^2] = \frac{\sigma(w^k)^2}{m},$$

where $\sigma^2(w^k)$ is the variation in the individual gradients at w^k .

• "With a mini-batch size of 100, effect of noise is divided by 100".

• Biggest gains obtained for increasing small batch sizes.

- "With a mini-batch size of 100, you can use a step size that is 100-times larger."
 - "Linear scaling rule" (but may not guarantee progress if $\alpha_k \geq 2/L$)

$$w^{k+1} = w^k - \alpha_k \nabla f_{i_k}(w^k).$$

Prove of the Unbiasedness and variance for mini-batch SGD

Unbiasedness of Mini-Batch Approximation

• Taking expectation over choice of mini-batch gives:

$$\mathbb{E}\left[\frac{1}{m}\sum_{i\in\mathcal{B}}\nabla f_i(w)\right] = \frac{1}{m}\mathbb{E}\left[\sum_{i\in\mathcal{B}}\nabla f_i(w)\right] \qquad (\text{linearity of }\mathbb{E})$$
$$= \frac{1}{m}\sum_{i\in\mathcal{B}}\mathbb{E}[\nabla f_i(w)] \qquad (\text{linearity of }\mathbb{E})$$
$$= \frac{1}{m}\sum_{i\in\mathcal{B}}\nabla f(w) \qquad (\text{unbiased estimate})$$
$$= \frac{m}{m}\nabla f(w) \qquad (\text{term is repeated }|\mathcal{B}|\text{ times})$$
$$= \nabla f(w),$$

so mini-batch approximation is unbiased.

Variation in Mini-Batch Approximation

- To analyze variation in gradients, we use a variance-like identity:
 - If random variable g is an unbiased approximation of vector μ , then

$$\begin{split} \mathbb{E}[\|g - \mu\|^2] &= \mathbb{E}[\|g\|^2 - 2g^T \mu + \|\mu\|^2] & (\text{expand square}) \\ &= \mathbb{E}[\|g\|^2] - 2\mathbb{E}[g]^T \mu + \|\mu\|^2 & (\text{linearity of } \mathbb{E}) \\ &= \mathbb{E}[\|g\|^2] - 2\mu^T \mu + \|\mu\|^2 & (\text{unbiased}) \\ &= \mathbb{E}[\|g\|^2] - \|\mu\|^2. \end{split}$$

Variation in Mini-Batch Approximation

• We also need expectation of inner product between independent samples:

$$\begin{split} \mathbb{E}[\nabla f_i(w)^T \nabla f_j(w)] &= \sum_{i=1}^n \sum_{j=1}^n \frac{1}{n^2} \nabla f_i(w)^T \nabla f_j(w) & \text{(definition of } \mathbb{E}) \\ &= \frac{1}{n} \sum_{i=1}^n \nabla f_i(w)^T \left(\frac{1}{n} \sum_{j=1}^n \nabla f_j(w) \right) & \text{(distributive)} \\ &= \frac{1}{n} \sum_{i=1}^n \nabla f_i(w)^T \nabla f(w) & \text{(gradient of } f) \\ &= \left(\frac{1}{n} \sum_{i=1}^n \nabla f_i(w) \right)^T \nabla f(w) & \text{(distributive)} \\ &= \nabla f(w)^T \nabla f(w) = \| \nabla f(w) \|^2 & \text{(gradient of } f), \end{split}$$

which is squared gradient norm.

Variation Bound for Mini-Batch Approximation

• Let $g_2(w) = \frac{1}{2}(\nabla f_i(w) + \nabla f_j(w))$ be mini-batch approximation with 2 samples.

$$\begin{split} \mathbb{E}[\|g_{2}(w) - \nabla f(w)\|^{2}] &= \mathbb{E}[\|\frac{1}{2}(\nabla f_{i}(w) + \nabla f_{j}(w))\|^{2}] - \|\nabla f(w)\|^{2} \qquad (\text{variance identity}) \\ &= \frac{1}{4}\mathbb{E}[\|\nabla f_{i}(w)\|^{2}] + \frac{1}{2}\mathbb{E}[\nabla f_{i}(w)^{T} \nabla f_{j}(w)] + \frac{1}{4}\mathbb{E}[\|\nabla f_{j}(w)\|^{2}] - \|\nabla f(w)\|^{2} \qquad (\text{expand square}) \\ &= \frac{1}{2}\mathbb{E}[\|\nabla f_{i}(w)\|^{2}] + \frac{1}{2}\mathbb{E}[\nabla f_{i}(w)^{T} \nabla f_{j}(w)] - \|\nabla f(w)\|^{2} \qquad (\mathbb{E}[\nabla f_{i}] = \mathbb{E}[\nabla f_{j}]) \\ &= \frac{1}{2}\mathbb{E}[\|\nabla f_{i}(w)\|^{2}] + \frac{1}{2}\|\nabla f(w)\|^{2} - \|\nabla f(w)\|^{2} \qquad (\mathbb{E}[\nabla f_{i}] = \nabla f^{2}) \\ &= \frac{1}{2}\mathbb{E}[\|\nabla f_{i}(w)\|^{2}] - \frac{1}{2}\|\nabla f(w)\|^{2} \\ &= \frac{1}{2}\left(\mathbb{E}[\|\nabla f_{i}(w)\|^{2}] - \|\nabla f(w)\|^{2}\right) \qquad (factor \frac{1}{2}) \\ &= \frac{1}{2}\mathbb{E}[\|\nabla f_{i}(w) - \nabla f(w)\|^{2}] \qquad (variance identity) \\ &= \frac{\sigma(w)^{2}}{2} \qquad (\sigma^{2} \text{ is 1-sample variation}) \end{split}$$

• So SGD error $\mathbb{E}[\|e^k\|^2]$ is cut in half compared to using 1 sample.

Overview

• Fundamentals Pipelines of a DL model

