
CPEN 455 Tutorial 5

Muchen Li & Sadegh Mahdavi

Introduction to 
Pytorch



Last Time

• Autograd
• Disable Autograd

• Check gradient

• Demo

• Build your model

• __init__ & forward function

• Linear Layer: a case study



This Time

• Model Optimization
• Loss function

• Optimizer

• Training & Testing Loop
• What to expect

• Save & Load the model

• Test the model

• Hyper Parameters Tuning



Loss function measures the degree of dissimilarity of obtained result 
from our network output to the target value, and it is the loss function 
that we want to minimize during training.

5. Model Optimization: Loss



MSE Loss:

Negative Log Likelihood for N class Classification:

yc = flag(y==c)

5. Model Optimization: Loss

[1] Check out Various Loss functions here: https://pytorch.org/docs/stable/nn.html#loss-functions

[2] Read More About Cross Entropy Loss: https://wandb.ai/sauravmaheshkar/cross-entropy/reports/What-Is-Cross-Entropy-Loss-A-Tutorial-With-Code--VmlldzoxMDA5NTMx

[3] https://en.wikipedia.org/wiki/Cross-entropy

https://pytorch.org/docs/stable/nn.html
https://wandb.ai/sauravmaheshkar/cross-entropy/reports/What-Is-Cross-Entropy-Loss-A-Tutorial-With-Code--VmlldzoxMDA5NTMx


Optimization is the process of adjusting model parameters to reduce 
model error in each training step. Optimization algorithms define how 
this process is performed (in this example we use Stochastic Gradient 
Descent). All optimization logic is encapsulated in the optimizer object.

5. Model Optimization: Optimizer

[4] Check out different optimizers implemented in pytorch: https://pytorch.org/docs/stable/optim.html

https://pytorch.org/docs/stable/optim.html


Optimization is the process of adjusting model parameters to reduce 
model error in each training step. Optimization algorithms define how 
this process is performed (in this example we use Stochastic Gradient 
Descent). All optimization logic is encapsulated in the optimizer object.

5. Model Optimization: Optimizer

[4] Check out different optimizers implemented in pytorch: https://pytorch.org/docs/stable/optim.html

All parameters within model, only parameter 
with requires_grad = True will be updated

https://pytorch.org/docs/stable/optim.html


Optimization is the process of adjusting model parameters to reduce 
model error in each training step. Optimization algorithms define how 
this process is performed (in this example we use Stochastic Gradient 
Descent). All optimization logic is encapsulated in the optimizer object.

5. Model Optimization: Optimizer

[4] Check out different optimizers implemented in pytorch: https://pytorch.org/docs/stable/optim.html

Learning Rate defines the magnitude of a 
parameter is updated each time. 

https://pytorch.org/docs/stable/optim.html


Inside the training loop, optimization happens in three steps:
o optimizer.zero_grad(): reset the gradients of model parameters. Gradients 

by default add up; to prevent double-counting, we explicitly zero them at 
each iteration.

5. Model Optimization: Optimizer

[4] Check out different optimizers implemented in pytorch: https://pytorch.org/docs/stable/optim.html

https://pytorch.org/docs/stable/optim.html


Inside the training loop, optimization happens in three steps:
o optimizer.zero_grad(): reset the gradients of model parameters. Gradients 

by default add up; to prevent double-counting, we explicitly zero them at 
each iteration.

o loss.backward(): Backpropagate the prediction loss. PyTorch deposits the 
gradients of the loss w.r.t. each parameter.

5. Model Optimization: Optimizer

[4] Check out different optimizers implemented in pytorch: https://pytorch.org/docs/stable/optim.html

https://pytorch.org/docs/stable/optim.html


Inside the training loop, optimization happens in three steps:
o optimizer.zero_grad(): reset the gradients of model parameters. Gradients 

by default add up; to prevent double-counting, we explicitly zero them at 
each iteration.

o loss.backward(): Backpropagate the prediction loss. PyTorch deposits the 
gradients of the loss w.r.t. each parameter.

o optimizer.step(): Adjust the parameters by the gradients collected in the 
backward pass.

5. Model Optimization: Optimizer

[4] Check out different optimizers implemented in pytorch: https://pytorch.org/docs/stable/optim.html

https://pytorch.org/docs/stable/optim.html


Inside the training loop, optimization happens in three steps:
o optimizer.zero_grad(): reset the gradients of model parameters. Gradients 

by default add up; to prevent double-counting, we explicitly zero them at 
each iteration.

o loss.backward(): Backpropagate the prediction loss. PyTorch deposits the 
gradients of the loss w.r.t. each parameter.

o optimizer.step(): Adjust the parameters by the gradients collected in the 
backward pass.

Popular optimizer includes: SGD, Adam, AdamW

5. Model Optimization: Optimizer

[4] Check out different optimizers implemented in pytorch: https://pytorch.org/docs/stable/optim.html

https://pytorch.org/docs/stable/optim.html


For X, Y_gt in TrainLoader:

 Y_pred = Model(X)

Loss = LossFunction(Y_pred, Y_gt)

 Loss.backward()

 Optimizer.step()

 Optimizer.zero_grad()

6. Training & Testing

Model

Optimizer

Let's Look at what will be done in one 
epoch of training:



For X, Y_gt in TrainLoader:

 Y_pred = Model(X)

Loss = LossFunction(Y_pred, Y_gt)

 Loss.backward()

 Optimizer.step()

 Optimizer.zero_grad()

6. Training & Testing



For X, Y_gt in TrainLoader:

 Y_pred = Model(X)

Loss = LossFunction(Y_pred, Y_gt)

 Loss.backward()

 Optimizer.step()

 Optimizer.zero_grad()

6. Training & Testing



For X, Y_gt in TrainLoader:

 Y_pred = Model(X)

Loss = LossFunction(Y_pred, Y_gt)

 Loss.backward()

 Optimizer.step()

 Optimizer.zero_grad()

6. Training & Testing



For X, Y_gt in TrainLoader:

 Y_pred = Model(X)

Loss = LossFunction(Y_pred, Y_gt)

 Loss.backward()

 Optimizer.step()

 Optimizer.zero_grad()

6. Training & Testing



6.1 Training Loop

[7] Code Credit: https://pytorch.org/tutorials/beginner/basics/optimization_tutorial.html



6.2 Test Loop

[7] Code Credit: https://pytorch.org/tutorials/beginner/basics/optimization_tutorial.html



6.2 Test Loop

[7] Code Credit: https://pytorch.org/tutorials/beginner/basics/optimization_tutorial.html



Hyperparameters are adjustable parameters that let you control the 
model optimization process. Different hyperparameter values can 
impact model training and convergence rates

• Learning Rate

6.3 Hyper Parameters Tuning



Hyperparameters are adjustable parameters that let you control the 
model optimization process. Different hyperparameter values can 
impact model training and convergence rates

• Learning Rate

• Batch Size

6.3 Hyper Parameters Tuning



Hyperparameters are adjustable parameters that let you control the 
model optimization process. Different hyperparameter values can 
impact model training and convergence rates

• Learning Rate

• Batch Size

• Number of Epochs

6.3 Hyper Parameters Tuning



6.3.1 Choose your Learning Rate

[6] Image Credit: https://medium.com/codex/gradient-descent-cb0f02dc6eab

How should we choose learning rate? 



6.3.1 Choose your Learning Rate

[6] Image Credit: https://medium.com/codex/gradient-descent-cb0f02dc6eab

How should we choose learning rate? 



6.3.1 Choose your Learning Rate

[6] Image Credit: https://medium.com/codex/gradient-descent-cb0f02dc6eab

How should we choose learning rate? 



6.3.1 Choose your Learning Rate

[6] Image Credit: https://medium.com/codex/gradient-descent-cb0f02dc6eab

Issue of Learning rate being too small:

For Non-convex Function e.g. Deep 

Neural Network.



6.3.1 Choose your Learning Rate

[5] Slide Credit: https://www.cs.ubc.ca/~schmidtm/Courses/5XX-S22/S4.pdf

Empirical rule to choose your Learning Rate: Observe your Training Loss 

Curve



6.3.3 When to stop: Number of Epochs

[8] Image Credit: https://theaisummer.com/regularization/



6.3.3 Adam vs SGD

• SGD is simple and elegant, but is highly sensitive to learning rate, 
and for some data/architectures it does not converge :(

• Adam:
• Basically SGD + Adaptive Learning Rate + Momentum

• Much less sensitive to learning rate: Often learning rates of 0.001 or 0.0001 
work pretty well.

• Almost all state-of-the-art models use this.



6.3 Hyper-Parameter Tuning

Empirical Take away:

• Use Batch Size > 1 if you can: reduce the variance of gradient.

• Scale up your Learning Rate as you increase batch size. Use smaller 
learning rate if you use a small batch size.

• log / Visualize your training Loss and test Loss curve to adjust Learning 
Rate & Decide when to Early Stop.



6.3 Hyper-Parameter Tuning

Batch Size vs Learning Rate:

• For SGD: If you multiply your batch-size by 𝑥 you can multiply your 
learning rate by 𝑥

• For Adam: If you multiply your batch-size by 𝑥, you can multiply your 

learning rate by √𝑥

Note: these tips are empirical ballparks, and you should still try out 
different learning rates.

[9] https://www.cs.princeton.edu/~smalladi/blog/2024/01/22/SDEs-ScalingRules/



Topics Not Covered

• Debugging & Analysis Model
oProfiler

oVisualizing & Logging: Tensorboard, Wandb

• Distributed Training
oUse Torch.nn.DistributedDataParallel

oOptimize your data loading

oOptimizer / Loss in distributed training

• More Design Detail:
oLearning rate Scheduler ()

oDropout & DropPath & Weight Decay & EMA



Useful Resources

• Recommend reading the tuning playbook by Google:

https://github.com/google-research/tuning_playbook

• Annotated pytorch implementation for a zoo of models: 
https://nn.labml.ai/

https://nn.labml.ai/


Thanks for listening and Happy Coding :)

[9] Image Credit: https://www.reddit.com/r/TheInsaneApp/comments/u0a1am/best_machine_learning_meme/



6.3.2 Choose Your Batch Size: A closer look at mini-batch

[5] Slide Credit: https://www.cs.ubc.ca/~schmidtm/Courses/5XX-S22/S4.pdf

Update Rule of Gradient 
Descent



6.3.2 Choose Your Batch Size

[5] Slide Credit: https://www.cs.ubc.ca/~schmidtm/Courses/5XX-S22/S4.pdf

Gradient Estimation of ALL 
n Samples



6.3.2 Choose Your Batch Size

[5] Slide Credit: https://www.cs.ubc.ca/~schmidtm/Courses/5XX-S22/S4.pdf

Approximate to the True gradient 
with m samples in Current Batch.

This approximate is unbiased 
given samples are IID



6.3.2 Choose Your Batch Size

[5] Slide Credit: https://www.cs.ubc.ca/~schmidtm/Courses/5XX-S22/S4.pdf ; See proof from slide 21.

The variance of 
gradient with batch 
size M

https://www.cs.ubc.ca/~schmidtm/Courses/5XX-S22/S4.pdf


6.3.2 Choose Your Batch Size

[5] Slide Credit: https://www.cs.ubc.ca/~schmidtm/Courses/5XX-S22/S4.pdf



Prove of the Unbiasedness and variance for mini-batch SGD

[5] Slide Credit: https://www.cs.ubc.ca/~schmidtm/Courses/5XX-S22/S4.pdf



[5] Slide Credit: https://www.cs.ubc.ca/~schmidtm/Courses/5XX-S22/S4.pdf



[5] Slide Credit: https://www.cs.ubc.ca/~schmidtm/Courses/5XX-S22/S4.pdf



[5] Slide Credit: https://www.cs.ubc.ca/~schmidtm/Courses/5XX-S22/S4.pdf



Overview

• Fundamentals Pipelines of a DL model

Dataset

M
o

d
el

1. Preparing Your Data 2. Train the model

O
ptim

izer

Test Result /
Visualizations

3. Test the model


	Slide 1: Introduction to Pytorch 
	Slide 2: Last Time
	Slide 3: This Time
	Slide 4: 5. Model Optimization: Loss
	Slide 5: 5. Model Optimization: Loss
	Slide 6: 5. Model Optimization: Optimizer
	Slide 7: 5. Model Optimization: Optimizer
	Slide 8: 5. Model Optimization: Optimizer
	Slide 9: 5. Model Optimization: Optimizer
	Slide 10: 5. Model Optimization: Optimizer
	Slide 11: 5. Model Optimization: Optimizer
	Slide 12: 5. Model Optimization: Optimizer
	Slide 13: 6. Training & Testing
	Slide 14: 6. Training & Testing
	Slide 15: 6. Training & Testing
	Slide 16: 6. Training & Testing
	Slide 17: 6. Training & Testing
	Slide 18: 6.1 Training Loop
	Slide 19: 6.2 Test Loop
	Slide 20: 6.2 Test Loop
	Slide 21: 6.3 Hyper Parameters Tuning
	Slide 22: 6.3 Hyper Parameters Tuning
	Slide 23: 6.3 Hyper Parameters Tuning
	Slide 24: 6.3.1 Choose your Learning Rate
	Slide 25: 6.3.1 Choose your Learning Rate
	Slide 26: 6.3.1 Choose your Learning Rate
	Slide 27: 6.3.1 Choose your Learning Rate
	Slide 28: 6.3.1 Choose your Learning Rate
	Slide 29: 6.3.3 When to stop: Number of Epochs
	Slide 30: 6.3.3 Adam vs SGD
	Slide 31: 6.3 Hyper-Parameter Tuning
	Slide 32: 6.3 Hyper-Parameter Tuning
	Slide 33: Topics Not Covered
	Slide 34: Useful Resources
	Slide 35
	Slide 36: 6.3.2 Choose Your Batch Size: A closer look at mini-batch
	Slide 37: 6.3.2 Choose Your Batch Size
	Slide 38: 6.3.2 Choose Your Batch Size
	Slide 39: 6.3.2 Choose Your Batch Size
	Slide 40: 6.3.2 Choose Your Batch Size
	Slide 41: Prove of the Unbiasedness and variance for mini-batch SGD
	Slide 42
	Slide 43
	Slide 44
	Slide 45: Overview

