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Reminders

« PA2 has been released. You are about to implement a transformer from
scratch.
« The detail of the final course project is posted in this repo.

« Additional leaderboard if you want to get extra points!
« DON’T wait t1ll the last minute to start.
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https://github.com/DSL-Lab/CPEN455HW-2024W2
https://huggingface.co/spaces/CPEN455-UBC/CPEN45524W2CourseProject

Introduction

* Idon’t know how to code, but I’ d love to experience cutting-edge Al
models.

e ] don’tunderstand the structure of Transformers, but I've been asked to
train one to complete a course assignment. &)

* | only have one RTX 3090 GPU, but I want to train a large GPT model to
accomplish my tasks. &)

Hugging Face(®)
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Transformers

The (&) Transformers library provides a single API through which any
Transformer model can be loaded, trained, and saved.

e Ease of use
» Flexibility
« Simplicity

history with GPT4o0
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https://chatgpt.com/share/e/677f166e-4efc-800a-ad6b-7314e97be340

Installation

o (& Transformers is tested on Python 3.6+, PyTorch 1.1.0+, TensorFlow
2.0+, and Flax.

Install with pip

pip install 'transformers[torch]’

Install with Conda

conda install conda-foxrge::transformers

Follow the (&) instructions:
https://huggingface.co/docs/transformers/en/installation

a place of mind
THE UNIVERSITY OF BRITISH COLUMBIA



https://huggingface.co/docs/transformers/en/installation

Basic Usage

«  The most basic object in the (&) Transformers library is the pipeline()

function.

from transformers import pipeline

classifier = pipeline("sentiment-analysis")

classifier("I've been waiting for a HuggingFace course my whole life.")

oo

[{'label': 'POSITIVE', 'score': 0.9598047137260437%]
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Basic Usage

«  The most basic object in the (&) Transformers library is the pipeline()
function.

classifier(

["I've been waiting for a HuggingFace course my whole life.", "I hate this so much!"]

[=1= oy

[{'label': 'POSITIVE', 'score': 0.9598047137260437%,
1'label': 'NEGATIVE', 'score': 0.9994558095932007F ]
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Task

Text classification

Text generation

Summarization

Image classification

Image segmentation

Object detection

Audio classification

Automatic speech

recognition

Visual question

answering

Document question

answering

Image captioning

Description
assign a label to a given sequence of text
generate text given a prompt
generate a summary of a sequence of text or document

assign a label to an image

assign a label to each individual pixel of an image

(supports semantic, panoptic, and instance segmentation)

predict the bounding boxes and classes of objectsin an

image
assign a label to some audio data

transcribe speech into text

answer a question about the image, given an image and a

question

answer a question about the document, given a document

and a question

generate a caption for a given image
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Modality
NLP
NLP
NLP

Computer

vision

Computer

vision

Computer

vision

Audio

Audio

Multimodal

Multimodal

Multimodal

Pipeline identifier

pipeline(task="“sentiment-analysis”)

pipeline(task="text-generation”)

pipeline(task="summarization”)

pipeline(task="image-classification”)

pipeline(task=“image-segmentation”)

pipeline(task="“object-detection”)

pipeline(task="audio-classification”)

pipeline(task="automatic-speech-

recognition”)

pipeline(task="vga”)

pipeline(task="document-question-

answering”)

pipeline(task="image-to-text”)
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Tokenizer

from transformers import AutoTokenizer

checkpoint = "distilbert-base-uncased-finetuned-sst-2-english"

tokenizer = AutoTokenizer.from_pretrained(checkpoint)

raw_inputs = [
"I've been waiting for a HuggingFace course my whole life.",

"T hate this so much!",

]

inputs = tokenizer(raw_inputs, padding=True, truncation=True, return_tensors="pt")
print(inputs)

1

"input_ids': tensorx([

[ 101, 1045, 1005, 2310, 2042, 3403, 2005, 1037, 17662, 12172, 2607, 2026, 28

[ 101, 1045, 5223, 2023, 2061, 2172, 999, 162, 0, 0, 0,
1),
'attention_mask': tensor([
1,1, 21,1, 1,1, 1,1, 1,1, 1,1, 1, 1, 1, 11,
(1,1, 1,1, 1,1, 1,1, @, 0, 0, 0, 0, 0, 0, 0]
1
f
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Tokenizer

 Splitting the input into words, subwords, or symbols (like punctuation) that
are called tokens.

« Mapping each token to an integer [Token ID].
« Adding additional inputs that may be useful to the model.
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Tokenizer

from transformers import AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained("bert-base-cased")

sequence = "Using a Transformer network is simple”

tokens = tokenizer.tokenize(sequence)
print(tokens)

The output of this method is a list of strings, or tokens:

['Using', 'a', 'transform', '#Her', 'network',

ids = tokenizer.convert tokens_to_ids(tokens)

print(ids)

[7993, 170, 11303, 1200, 2443, 1110, 3014]

a place of mind
THE UNIVERSITY OF BRITISH COLUMBIA

is

r

'simple']

ece.

Electrical and
Computer
Engineering

13



Models

. @ Transformers provides an AutoModel class which also has a
from_pretrained() method:

from transformers import AutoModel

checkpoint = "distilbert-base-uncased-finetuned-sst-2-english"

model = AutoModel.from_pretrained(checkpoint)

outputs = model (¥*inputs)

print(outputs.last_hidden_state.shape)

torch.Size([2, 16, 768])
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Models

 If you know the type of model you want to use, you can use the class that

defines its architecture directly.

from transformers import BertConfig, BertModel
config = BertConfig()

model = BertModel(config)

orint(config)

BertConfig 1
[...]
hidden_size": 768,
intermediate_size": 3072,
max_position_embeddings": 512,
attention_heads": 12,
num_hidden_layers": 12,
[...

¥

um

—_ |
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Model heads

« The model heads take the high-dimensional vector of hidden states as input
and project them onto a different dimension.

Transformer ne twork

Model . Hidden Model
. Embeddings Layers states Head SRR

Full model
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Model heads

The model heads take the high-dimensional vector of hidden states as input

and project them onto a different dimension.

from transformers import AutoModelForSequenceClassification

checkpoint = "distilbert-base-uncased-finetuned-sst-2-english"”
model = AutoModelForSequenceClassification.from_pretrained(checkpoint)

outputs = model (¥*inputs)

print(outputs.logits.shape)

torch.Size([2, 2])
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Model heads

« There are many different architectures available in (&) Transformers, with
each one designed around tackling a specific task.

* *Model (retrieve the hidden states)
 *ForCausallLM

 *ForMaskedLM

* *ForMultipleChoice

* *ForQuestionAnswering

* *ForSequenceClassification

* *ForTokenClassification

« and others &)
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Postprocessing the output

Covert logits to probability

print(outputs.logits)

tensor([[-1.5607, 1.6123],
[ 4.1692, -3.3464]], grad_fn=<AddmmBackward>)

import torch
predictions = torch.nn.functional.softmax(outputs.logits, dim=-1)

print(predictions)

tensor([[4.0195e-02, 9.5980e-01],
[9.9946e-01, 5.4418e-04]], grad_fn=<SoftmaxBackward>)
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Inference

« Putall these processes to together

import torch
from transformers import AutoTokenizer, AutoModelForSequenceClassification

checkpoint = "distilbert-base-uncased-finetuned-sst-2-english"
tokenizer = AutoTokenizer.from_pretrained(checkpoint)

model = AutoModelForSequenceClassification.from_pretrained(checkpoint)

sequences = ["I've been waiting for a HuggingFace course my whole life.", "So have I!"]

tokens

output model (¥*tokens)

a place of mind
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Training

»  How to train or fine-tune a model using (&) Transformers

import torch

from transformers import AdamW, AutoTokenizer, AutoModelForSequenceClassification

checkpoint = "bert-base-uncased"
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
model = AutoModelForSequenceClassification.from_pretrained(checkpoint)
sequences = [
"I've been waiting for a HuggingFace course my whole life.",
"This course is amazing!",

]

batch = tokenizer(sequences, padding=True, truncation=True, return_tensors="pt")

batch["labels"] = torch.tensor([1, 1])

optimizer = AdamW(model.parameters())
loss = model (¥xbatch) .loss
loss.backwazrd()

optimizer.step()
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Processing the data

« Loading a dataset from the Hub

from datasets import load_dataset

raw_datasets = load_dataset("glue", "mxpc")

raw_datasets

DatasetDict({
train: Dataset({
features: ['sentencel', 'sentence2', ‘'label', 'idx'],
num_rows: 3668
)
validation: Dataset({
features: ['sentencel', 'sentence2', ‘'label', 'idx'],

num_rows: 408

5)
test: Dataset({
features: ['sentencel', 'sentence2', ‘'label', 'idx'],
num_rows: 1725
P)
P)
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Processing the data

* Pre-processing the data

def tokenize_function(example):

return tokenizer(example["sentencel"], example["sentence2"], truncation=True)

tokenized_datasets =

tokenized_datasets

DatasetDict (3

train: Dataset({
features: ['attention_mask', 'didx', 'input_ids',
num_rows: 3668

§)

validation: Dataset({
features: ['attention_mask', 'didx', 'input_ids',
num_rows: 408

§)

test: Dataset(d
features: ['attention_mask', 'didx', 'input_ids',
num_rows: 1725

5)
)

a place of mind
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'label’, 'sentencel',
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Processing the data

e Get batch!

from transformers import DataCollatorWithPadding

data_collator = DataCollatorWithPadding(tokenizer=tokenizer)

batch = data_collator(samples)

ik: v.shape for k, v in batch.items()}

i'attention_mask': torch.Size([8, 67]),
"input_ids': torch.Size([8, 67]),
'token_type_ids': torch.Size([8, 67]),
'labels': torch.Size([8]1)%
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Processing the data

The whole process

from datasets import load_dataset

from transformers import AutoTokenizer, DataCollatorWithPadding
raw_datasets = load_dataset("glue", "mrpc")

checkpoint = "bert-base-uncased"

tokenizer = AutoTokenizer.from_pretrained(checkpoint)

def tokenize_function(example):

return tokenizer(example["sentencel"], example["sentence2"], truncation=True)

tokenized_datasets = raw_datasets.map(tokenize_function, batched=True)

data_collator = DataCollatorWithPadding(tokenizer=tokenizer)
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Training

« Specify the training arguments

from transformers import TrainingArguments

training_args = TrainingArguments("test-trainer")
 Define our model

from transformers import AutoModelForSequenceClassification

model = AutoModelForSequenceClassification.from_pretrained(checkpoint, num_labels=2)
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Training

 Define a Trainer

from transformers import Trainer

trainer = Trainer(
model,
training_args,
train dataset=tokenized datasets["train"],
eval dataset=tokenized datasets["validation"],
data collator=data collator,

tokenizer=tokenizer,

« Start training

trainer.train()
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Evaluation

« Define a compute metrics() function:

def compute_metrics(eval_preds):
metric = evaluate.load("glue", "mxrpc")
logits, labels = eval_preds
predictions = np.argmax(logits, axis=-1)

return metric.compute(predictions=predictions, references=labels)

e Start training

training_args = TrainingArguments("test-trainexr", evaluation_strategy="epoch")

model = AutoModelForSequenceClassification.from_pretrained(checkpoint, num_labels=2)

trainer = Trainer(
model,
training_args,
train_dataset=tokenized datasets["train"],
eval dataset=tokenized datasets["validation"],
data_collator=data_collator,
tokenizer=tokenizer,

compute_metrics=compute_metrics,
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Autoregressive Models

We are a given n-dimensional data x

n n
po(x) = HPQ(Xi‘Xla ey Xjo1) = HPQ(Xi‘X<7L)
i=1 i=1

Graphical model:

@@
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Pixel CNNs

Autoregressive model for images.

n n
po(x) = Hpe(Xz'\Xh s X)) = Hpe(Xz'\XQ')
1=1 i=1

X is pixel value, e.g., {0, 1, ..., 255}
1 = height x width

Every term Do (Xi |X<z‘) is modeled by the same CNN (softmax readout)

a place of mind
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Pixel CNNs

Po(Xi|xX<;)
0 T 255
Conditioned on all pixels
that are top-left! P mi
One can also vectorize an / / /
Image as a sequence and
use RNNSs to build the
autoregressive model,
e.g., PixelRNNs [2].
Image Credit: [1]
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What About Color Images?

Autoregressive conditioning again along channels:

T
Po(XRr,XG,XB) = Hpa(mﬁ,z' XR,<i,XG,<i, XB,<i) X
7

Po(G,i|TRi, XR,<is XG,<is XB,<i) X

Peo (mB,i LG,iy TR,iy XR,<iyXG,<iy XB,{I'.)
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How to Implement?

1. Mask Input
2. Convolution

Image Credit: [1]
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How to Implement?

For each image, we need H X
W masks and convolutions to
compute the likelihood!

255

'\.
Sy

Image Credit: [1]
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Solutions in Pixel CNNs

Masked Filter + Smart Stack of Regular Convolutions!

Image Credit: [1]
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Masked Filter

Masked 3 x 3 filter
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Masked Filter

Masked 3 x 3 filter
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Masked Filter

Masked 3 x 3 filter
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Masked Filter

Masked 3 x 3 filter
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Masked Filter

Masked 3 x 3 filter

Naively applying masked filter causes blind spots (blue area)!
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How to Resolve Blind Spots?

Applying two stacks of masked convolutions!

Vertical stack ‘T

<l— —
el Horizontal stack
Image Credit: [1]
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How to Resolve Blind Spots?

Horizontal Stack (Implemented by masked 2D convolution)

Horizontal Mask 1

Horizontal Mask 2
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How to Resolve Blind Spots?

Horizontal Stack (Implemented by masked 2D convolution)

Horizontal Mask 1

Mask 1 — Mask 2 — ... — Mask 2
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How to Resolve Blind Spots?

Horizontal Stack (Implemented by masked 2D convolution)

Horizontal Mask 1

Avoid using information at current location!

Mask 1 — Mask 2 — ... — Mask 2
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How to Resolve Blind Spots?

Horizontal Stack (Implemented by masked 2D convolution)

Note that the same masked filter is convolved everywhere!

Horizontal Mask 1

Avoid using information at current location!

Mask 1 — Mask 2 — ... — Mask 2
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How to Resolve Blind Spots?

Horizontal Stack (Implemented by masked 2D convolution)

Horizontal Mask 2

Mask 1 - Mask 2 — ... — Mask 2
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How to Resolve Blind Spots?

Horizontal Stack (Implemented by masked 2D convolution)

Horizontal Mask 2

Mask 1 - Mask 2 — ... — Mask 2
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How to Resolve Blind Spots?

Horizontal Stack (Implemented by masked 2D convolution)

Horizontal Mask 2

Mask 1 — Mask 2 — ... — Mask 2
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How to Resolve Blind Spots?

Horizontal Stack (Implemented by masked 2D convolution)

Horizontal Mask 2

Mask 1 —» Mask 2 — ... - Mask 2
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How to Resolve Blind Spots?

Vertical Stack (Implemented by masked 2D convolution)

Vertical Mask 1
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How to Resolve Blind Spots?s

Vertical Stack (Implemented by masked 2D convolution)

Vertical Mask 1

Avoid using information at current location!
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How to Resolve Blind Spots?

Vertical Stack (Implemented by masked 2D convolution)

Vertical Mask 1

Applying vertical masked filter causes blind spots (blue area) too!
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How to Resolve Blind Spots?

Vertical Stack (Implemented by masked 2D convolution)

We again use two masked filters to remove blind spots!

Vertical Mask 1

Vertical Mask 2
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How to Resolve Blind Spots?

Vertical Stack (Implemented by masked 2D convolution)

Vertical Mask 1

Mask 1 — Mask 2 — ... — Mask 2
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How to Resolve Blind Spots?

Vertical Stack (Implemented by masked 2D convolution)

Vertical Mask 1
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Note that the same masked filter is convolved everywhere!

Mask 1 — Mask 2 — ... — Mask 2
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How to Resolve Blind Spots?

Vertical Stack (Implemented by masked 2D convolution)

Vertical Mask 1

Mask 1 — Mask 2 — ... — Mask 2
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How to Resolve Blind Spots?

Vertical Stack (Implemented by masked 2D convolution)

Vertical Mask 1

Mask 1 — Mask 2 — ... — Mask 2
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How to Resolve Blind Spots?

Vertical Stack (Implemented by masked 2D convolution)

Vertical Mask 1

Mask 1 — Mask 2 — ... — Mask 2
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How to Resolve Blind Spots?

Vertical Stack (Implemented by masked 2D convolution)

Vertical Mask 1

Mask 1 — Mask 2 — ... — Mask 2
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How to Resolve Blind Spots?

Vertical Stack (Implemented by masked 2D convolution)

Vertical Mask 1

Mask 1 — Mask 2 — ... — Mask 2
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How to Resolve Blind Spots?

Vertical Stack (Implemented by masked 2D convolution)

Vertical Mask 1

Mask 1 — Mask 2 — ... — Mask 2
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How to Resolve Blind Spots?

Vertical Stack (Implemented by masked 2D convolution)

Vertical Mask 2

Mask 1 - Mask 2 — ... — Mask 2

a place of mind
THE UNIVERSITY OF BRITISH COLUMBIA ece




How to Resolve Blind Spots?

Vertical Stack (Implemented by masked 2D convolution)

Vertical Mask 2

Mask 1 — Mask 2 — ... — Mask 2
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How to Resolve Blind Spots?

Vertical Stack (Implemented by masked 2D convolution)

Vertical Mask 2

Mask 1 —» Mask 2 — ... - Mask 2
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How to Resolve Blind Spots?

Combine Horizontal and Vertical Stacks

Horizontal Mask 1

Vertical Mask 1

Layer 1 — Layer 2 — ... — Layer L

a place of mind Electrical and
THE UNIVERSITY OF BRITISH COLUMBIA €Ce | Computer
Engineering



How to Resolve Blind Spots?

Combine Horizontal and Vertical Stacks

Horizontal Mask 2

Vertical Mask 2

Layer 1 — Layer2 — ... — Layer L
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How to Resolve Blind Spots?

Combine Horizontal and Vertical Stacks

Horizontal Mask 2

Vertical Mask 2

Layer 1 — Layer2 — ... — Layer L
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How to Resolve Blind Spots?

Combine Horizontal and Vertical Stacks

Horizontal Mask 2

Vertical Mask 2

Layer 1 — Layer2 — ... — Layer L
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How to Resolve Blind Spots?

Combine Horizontal and Vertical Stacks

Horizontal Mask 2

Vertical Mask 2

Layer 1 — Layer2 — ... — Layer L
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Pixel CNN Process

Image

Horlzontal

<[ Horizontal Horizontal
[ Vertical Vertical

Output

=
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Pixel CNN Architecture

Gated Convolutions y = tanh (W;x) ® 0 (W, x)

1x1

Split feature maps

\ertical Horizontal

Image Credit: [1]
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Pros

+ Parallel Training

One forward pass to compute losses at all locations (i.e., all conditional probabilities)!
+ Strong Performances

PixeCNN++ [3] further improves performances by:

1. Softmax — discretized mixture of logistic distributions
2. Downsample & upsample, dropout, skip connections, etc.

0.010

0.008

K
v o~ Y mlogistic(u, s;) Pixel intensity distribution
i=1

0.006
>
g

K
P(z|m p,s) = Zm lo((z+ 0.5 —p)/si) —o((x — 0.5 — pi)/si)],

Image Credit: [3]
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Pros vs Cons

+ Parallel Training
One forward pass to compute losses at all locations (i.e., all conditional probabilities)!
+ Strong Performances
PixelCNN++ [3] further improves performances by:
1. Softmax — discretized mixture of logistic distributions
2. Downsample & upsample, dropout, skip connections, etc.

- Slow Sampling

This is due to the sequential nature of autoregressive sampling.
It could be further improved by methods, e.g., [5].
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