Hugging Face (&) Transformers

.'. CPEN 455 Tutorial 8
* ‘ Felix Fu

UBC| aplaceof mind Electrical and

W THE UNIVERSITY OF BRITISH COLUMBIA ~€Ce | Computer
Engineering

Reminders

« PA2 has been released. You are about to implement a transformer from
scratch.
« The detail of the final course project is posted in this repo.

« Additional leaderboard if you want to get extra points!
« DON’T wait t1ll the last minute to start.

a place of mind
THE UNIVERSITY OF BRITISH COLUMBIA

https://github.com/DSL-Lab/CPEN455HW-2024W2
https://huggingface.co/spaces/CPEN455-UBC/CPEN45524W2CourseProject

Introduction

* Idon’t know how to code, but I’ d love to experience cutting-edge Al
models.

e] don’tunderstand the structure of Transformers, but I've been asked to
train one to complete a course assignment. &)

* | only have one RTX 3090 GPU, but I want to train a large GPT model to
accomplish my tasks. &)

Hugging Face(®)

a place of mind
THE UNIVERSITY OF BRITISH COLUMBIA

Z N C

Libraries Datasets Languages Licenses Other

=

Filter Tasks by name
Multimodal
It Audio-Text-to-Text % Image-Text-to-Text
[% Visual Question Answering
E5 Decument Question Answering & Video-Text-to-Text

Visual Document Retrieval Any-to-Any

Computer Vision
Depth Estimation 4 Image Classification
Fo Object Detection i Image Segmentation
Text-to-lmage & Image-to-Text [Image-to-Image
£ Image-to-Video =l Unconditional Image Generation
5¥ Video Classification 05 Text-to-Video
Zero-Shot Image Classification F. Mask Generation
Zero-Shot Object Detection Text-to-3D
© Imagete-30 [Image Feature Extraction

#* Keypoint Detection

Natural Language Processing
Text Classification &% Token Classification
& Table Question Answering §9 Question Answering

Zero-Shot Classification . Translation

Summarization & Feature Extraction

(=]

% Text Generation &4 Text2Text Generation

& Fill-Mask Sentence Similarity

Audio

Text-to-5i lv‘ 1 Text-ti n“dio
Automatic Speech Recognition it Audio-to-Audio
71 Audio Classification % Voice Activity Detection
Tabular
E Tabular Classification |~ Tabular Regression
5 Time Series Forecasting

Reinforcement Learning

“

= ReinforcementLearning ¥ Robotics

Other

“¢ Graph Machine Learning

Models 1,490,739

Filter by name

W% Qwen/QwQ-328B

Text Generation - Updated about 2 hours ago 132k
¥ microsoft/Phi-4-multimodal-instruct
Automatic Speech Recognition « Updated 3 days ago 303k
« CohereForAIl/aya-vision-8b
Image-Text-to-Text - Updated € days ago 144k 220
@ SparkAudio/Spark-TTS-0.58
Text-to-Speech - Updated 3 days ago 4.26k 206
@ allenai/olmOCR-7B-0225-preview
Image-Text-to-Text + Updated 14 days ago 153k « 7 518
& black-forest-labs/FLUX.1-dev
Text-to-lmage - Updated Aug 16, 2024 2.64M 7 9.26k
@ perplexity-ai/r1-1776
Text Generation - Updated 12 days ago 39.3k & 2.08k
W% Qwen/QwQ-32B-GGUF
Text Generation « Updated about 1 hour ago 75.2k + O 105
“. hexgrad/Kokoro-82M
Text-to-Speech - Updated € days ago 1.56M - <7 3.61k
® microsoft/Phi-4-mini-instruct
Text Generation - Updated 5 days ago 117k 326
¢ GSAI-ML/LLaDA-8B-Instruct
Text Generation - Updated 12 days ago 19.6k 198
i Wan-AI/Wan2.1-I2V-14B-720P
. Image-to-Video - Updated 12 days ago 63.3k « T/ 345
% Qwen/QwQ-32B-Preview
Text Generation - Updated Jan 11 256k 1.71k
¥ microsoft/Magma-88B
Image-Text-to-Text - Updated 5 days ago 10.9k 324
o meta-1lama/Llama-3.3-70B-Instruct
Text Generation - Updated Dec 21, 2024 T5Tk 2.12k

1.81k

1.06k

Previous 1

Full-text search

~ deepseek-ai/DeepSeek-R1
Text Generation - Updated 15 days ago 3.43M @ 1L1k

v Wan-AI/Wan2.1-T2V-14B
» Text-to-Video « Updated 12 days ago 191k T 967

@ tencent/HunyuanVideo-I2V
Updated 3 days ago 1.35k 200

< THUDM/CogViewd-6B
Text-to-lmage - Updated 6 days ago 8.46k 175

- CohereForAl/aya-vision-32b
Image-Text-to-Text « Updated 6 days ago 650 153

@& bartowski/Qwen_QwQ-32B-GGUF
Text Generation - Updated 5 days ago 117k « < 124

« ASLP-lab/DiffRhythm-base
Updated 5 days ago - < 117

@ lodestones/Chroma
Text-to-lmage - Updated about 8 hours ago « < 109

@ Comfy-0Org/Wan_2.1_ComfyUI_repackaged
Updated 3 days ago - <7 246

® microsoft/OmniParser-v2.0
Image-Text-to-Text - Updated 20 days ago 8.92k 1.13k

. ElectricAlexis/NotaGen
Updated 12 days ago - < 99

% Qwen/QwQ-32B-AWQ

Text Generation - Updated about 2 hours ago 50.8k « © 70

s. stabilityai/stable-diffusion-3.5-large
Text-to-Image - Updated Oct 22, 2024 161k 2.44k

s Lightricks/LTX-Video
s Text-to-Video - Updated 4 days ago 350k 1.06k

agents-course/notebooks
Updated 6 days ago - < 227

100 Next >

T4 Sort: Trending

ical and
uter
2ering

Transformers

20000

—_— []
/2]
5 17000
§15000 Turing-NLG
= riooe .q.
c Lite [|
= 11000
4 T5
[} @
‘E; []
E MeSatonLM
E'IOOOO 8300
o
ko))
o
g @ RoBERTa
g OpenAl w % it
5000 GPT-2 UNIVERSITY of WASH NGTON e
= 12 1500 rover BART 2600
@ sie Ai2 1500 400 Meena
Ai2 OpenAI ities Transformer]| -
ELMo GPT BERT E;-G"g° MT-DNN XLM Y, XLM-R]
94 110 340 e 330 665 o DistilBERT 550
66
0 - " [d [g o . e ©
340
,Lg\cb q/g'\o’ XLNETSN q9'19
C: roie
S o'&‘\ M%Iillgfl.%* \;&\\
5@9 Universi S.bﬂ‘
a place of mind Electrical and
THE UNIVERSITY OF BRITISH COLUMBIA —€Ce | Computer
| Engineering

Transformers

The (&) Transformers library provides a single API through which any
Transformer model can be loaded, trained, and saved.

e Ease of use
» Flexibility
« Simplicity

history with GPT4o0

a place of mind Electrical and
THE UNIVERSITY OF BRITISH COLUMBIA ~€Ce | Computer
| Engineering

https://chatgpt.com/share/e/677f166e-4efc-800a-ad6b-7314e97be340

Installation

o (& Transformers is tested on Python 3.6+, PyTorch 1.1.0+, TensorFlow
2.0+, and Flax.

Install with pip

pip install 'transformers[torch]’

Install with Conda

conda install conda-foxrge::transformers

Follow the (&) instructions:
https://huggingface.co/docs/transformers/en/installation

a place of mind
THE UNIVERSITY OF BRITISH COLUMBIA

https://huggingface.co/docs/transformers/en/installation

Basic Usage

« The most basic object in the (&) Transformers library is the pipeline()

function.

from transformers import pipeline

classifier = pipeline("sentiment-analysis")

classifier("I've been waiting for a HuggingFace course my whole life.")

oo

[{'label': 'POSITIVE', 'score': 0.9598047137260437%]

a place of mind
THE UNIVERSITY OF BRITISH COLUMBIA

€Ce

Electrical and
Computer
Engineering

Basic Usage

« The most basic object in the (&) Transformers library is the pipeline()
function.

classifier(

["I've been waiting for a HuggingFace course my whole life.", "I hate this so much!"]

[=1= oy

[{'label': 'POSITIVE', 'score': 0.9598047137260437%,
1'label': 'NEGATIVE', 'score': 0.9994558095932007F]

a place of mind Electrical and
THE UNIVERSITY OF BRITISH COLUMBIA €Ce | Computer
Engineering

Task

Text classification

Text generation

Summarization

Image classification

Image segmentation

Object detection

Audio classification

Automatic speech

recognition

Visual question

answering

Document question

answering

Image captioning

Description
assign a label to a given sequence of text
generate text given a prompt
generate a summary of a sequence of text or document

assign a label to an image

assign a label to each individual pixel of an image

(supports semantic, panoptic, and instance segmentation)

predict the bounding boxes and classes of objectsin an

image
assign a label to some audio data

transcribe speech into text

answer a question about the image, given an image and a

question

answer a question about the document, given a document

and a question

generate a caption for a given image

a place of mind
THE UNIVERSITY OF BRITISH COLUMBIA

Modality
NLP
NLP
NLP

Computer

vision

Computer

vision

Computer

vision

Audio

Audio

Multimodal

Multimodal

Multimodal

Pipeline identifier

pipeline(task="“sentiment-analysis”)

pipeline(task="text-generation”)

pipeline(task="summarization”)

pipeline(task="image-classification”)

pipeline(task=“image-segmentation”)

pipeline(task="“object-detection”)

pipeline(task="audio-classification”)

pipeline(task="automatic-speech-

recognition”)

pipeline(task="vga”)

pipeline(task="document-question-

answering”)

pipeline(task="image-to-text”)

Electrical and
Computer
Engineering

ece.

10

Tokenizer

from transformers import AutoTokenizer

checkpoint = "distilbert-base-uncased-finetuned-sst-2-english"

tokenizer = AutoTokenizer.from_pretrained(checkpoint)

raw_inputs = [
"I've been waiting for a HuggingFace course my whole life.",

"T hate this so much!",

]

inputs = tokenizer(raw_inputs, padding=True, truncation=True, return_tensors="pt")
print(inputs)

1

"input_ids': tensorx([

[101, 1045, 1005, 2310, 2042, 3403, 2005, 1037, 17662, 12172, 2607, 2026, 28

[101, 1045, 5223, 2023, 2061, 2172, 999, 162, 0, 0, 0,
1),
'attention_mask': tensor([
1,1, 21,1, 1,1, 1,1, 1,1, 1,1, 1, 1, 1, 11,
(1,1, 1,1, 1,1, 1,1, @, 0, 0, 0, 0, 0, 0, 0]
1
f
a place of mind \
THE UNIVERSITY OF BRITISH COLUMBIA ece

0,

Electrical and
Computer

Engineering
11

Tokenizer

 Splitting the input into words, subwords, or symbols (like punctuation) that
are called tokens.

« Mapping each token to an integer [Token ID].
« Adding additional inputs that may be useful to the model.

a place of mind
THE UNIVERSITY OF BRITISH COLUMBIA

Tokenizer

from transformers import AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained("bert-base-cased")

sequence = "Using a Transformer network is simple”

tokens = tokenizer.tokenize(sequence)
print(tokens)

The output of this method is a list of strings, or tokens:

['Using', 'a', 'transform', '#Her', 'network',

ids = tokenizer.convert tokens_to_ids(tokens)

print(ids)

[7993, 170, 11303, 1200, 2443, 1110, 3014]

a place of mind
THE UNIVERSITY OF BRITISH COLUMBIA

is

r

'simple']

ece.

Electrical and
Computer
Engineering

13

Models

. @ Transformers provides an AutoModel class which also has a
from_pretrained() method:

from transformers import AutoModel

checkpoint = "distilbert-base-uncased-finetuned-sst-2-english"

model = AutoModel.from_pretrained(checkpoint)

outputs = model (¥*inputs)

print(outputs.last_hidden_state.shape)

torch.Size([2, 16, 768])

UBC| aplaceof mind Electrical and
?W"? THE UNIVERSITY OF BRITISH COLUMBIA eCe | Computer
Engineering

14

Models

 If you know the type of model you want to use, you can use the class that

defines its architecture directly.

from transformers import BertConfig, BertModel
config = BertConfig()

model = BertModel(config)

orint(config)

BertConfig 1
[...]
hidden_size": 768,
intermediate_size": 3072,
max_position_embeddings": 512,
attention_heads": 12,
num_hidden_layers": 12,
[...

¥

um

—_ |

a place of mind
THE UNIVERSITY OF BRITISH COLUMBIA

ece

15

Model heads

« The model heads take the high-dimensional vector of hidden states as input
and project them onto a different dimension.

Transformer ne twork

Model . Hidden Model
. Embeddings Layers states Head SRR

Full model

a place of mind
THE UNIVERSITY OF BRITISH COLUMBIA

Model heads

The model heads take the high-dimensional vector of hidden states as input

and project them onto a different dimension.

from transformers import AutoModelForSequenceClassification

checkpoint = "distilbert-base-uncased-finetuned-sst-2-english"”
model = AutoModelForSequenceClassification.from_pretrained(checkpoint)

outputs = model (¥*inputs)

print(outputs.logits.shape)

torch.Size([2, 2])

a place of mind
THE UNIVERSITY OF BRITISH COLUMBIA

€Ce

Electrical and
Computer
Engineering

17

Model heads

« There are many different architectures available in (&) Transformers, with
each one designed around tackling a specific task.

* *Model (retrieve the hidden states)
 *ForCausallLM

 *ForMaskedLM

* *ForMultipleChoice

* *ForQuestionAnswering

* *ForSequenceClassification

* *ForTokenClassification

« and others &)

a place of mind
THE UNIVERSITY OF BRITISH COLUMBIA

Postprocessing the output

Covert logits to probability

print(outputs.logits)

tensor([[-1.5607, 1.6123],
[4.1692, -3.3464]], grad_fn=<AddmmBackward>)

import torch
predictions = torch.nn.functional.softmax(outputs.logits, dim=-1)

print(predictions)

tensor([[4.0195e-02, 9.5980e-01],
[9.9946e-01, 5.4418e-04]], grad_fn=<SoftmaxBackward>)

a place of mind
THE UNIVERSITY OF BRITISH COLUMBIA

ece

Electrical and
Computer
Engineering

19

Inference

« Putall these processes to together

import torch
from transformers import AutoTokenizer, AutoModelForSequenceClassification

checkpoint = "distilbert-base-uncased-finetuned-sst-2-english"
tokenizer = AutoTokenizer.from_pretrained(checkpoint)

model = AutoModelForSequenceClassification.from_pretrained(checkpoint)

sequences = ["I've been waiting for a HuggingFace course my whole life.", "So have I!"]

tokens

output model (¥*tokens)

a place of mind
THE UNIVERSITY OF BRITISH COLUMBIA

tokenizer(sequences, padding=True, truncation=True, return_tensors="pt")

ece

Electrical and
Computer

Engineering
20

Training

» How to train or fine-tune a model using (&) Transformers

import torch

from transformers import AdamW, AutoTokenizer, AutoModelForSequenceClassification

checkpoint = "bert-base-uncased"
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
model = AutoModelForSequenceClassification.from_pretrained(checkpoint)
sequences = [
"I've been waiting for a HuggingFace course my whole life.",
"This course is amazing!",

]

batch = tokenizer(sequences, padding=True, truncation=True, return_tensors="pt")

batch["labels"] = torch.tensor([1, 1])

optimizer = AdamW(model.parameters())
loss = model (¥xbatch) .loss
loss.backwazrd()

optimizer.step()

a place of mind Electrical and
THE UNIVERSITY OF BRITISH COLUMBIA €Ce | Computer
Engineering

21

Processing the data

« Loading a dataset from the Hub

from datasets import load_dataset

raw_datasets = load_dataset("glue", "mxpc")

raw_datasets

DatasetDict({
train: Dataset({
features: ['sentencel', 'sentence2', ‘'label', 'idx'],
num_rows: 3668
)
validation: Dataset({
features: ['sentencel', 'sentence2', ‘'label', 'idx'],

num_rows: 408

5)
test: Dataset({
features: ['sentencel', 'sentence2', ‘'label', 'idx'],
num_rows: 1725
P)
P)
aplace of mind Electrical and
THE UNIVERSITY OF BRITISH COLUMBIA eCc | Computer
Engineering

22

Processing the data

* Pre-processing the data

def tokenize_function(example):

return tokenizer(example["sentencel"], example["sentence2"], truncation=True)

tokenized_datasets =

tokenized_datasets

DatasetDict (3

train: Dataset({
features: ['attention_mask', 'didx', 'input_ids',
num_rows: 3668

§)

validation: Dataset({
features: ['attention_mask', 'didx', 'input_ids',
num_rows: 408

§)

test: Dataset(d
features: ['attention_mask', 'didx', 'input_ids',
num_rows: 1725

5)
)

a place of mind
THE UNIVERSITY OF BRITISH COLUMBIA

raw_datasets.map(tokenize_function, batched=True)

'label’, 'sentencel',
'label’, 'sentencel',
'label', 'sentencel',

ece

'sentence?’,

'sentence?’,

'sentence?’,

Electrical and
Computer

Engineering
23

Processing the data

e Get batch!

from transformers import DataCollatorWithPadding

data_collator = DataCollatorWithPadding(tokenizer=tokenizer)

batch = data_collator(samples)

ik: v.shape for k, v in batch.items()}

i'attention_mask': torch.Size([8, 67]),
"input_ids': torch.Size([8, 67]),
'token_type_ids': torch.Size([8, 67]),
'labels': torch.Size([8]1)%

a place of mind
THE UNIVERSITY OF BRITISH COLUMBIA

ece

Electrical and
Computer
Engineering

24

Processing the data

The whole process

from datasets import load_dataset

from transformers import AutoTokenizer, DataCollatorWithPadding
raw_datasets = load_dataset("glue", "mrpc")

checkpoint = "bert-base-uncased"

tokenizer = AutoTokenizer.from_pretrained(checkpoint)

def tokenize_function(example):

return tokenizer(example["sentencel"], example["sentence2"], truncation=True)

tokenized_datasets = raw_datasets.map(tokenize_function, batched=True)

data_collator = DataCollatorWithPadding(tokenizer=tokenizer)

a place of mind
THE UNIVERSITY OF BRITISH COLUMBIA

ece

Electrical and
Computer
Engineering

25

Training

« Specify the training arguments

from transformers import TrainingArguments

training_args = TrainingArguments("test-trainer")
 Define our model

from transformers import AutoModelForSequenceClassification

model = AutoModelForSequenceClassification.from_pretrained(checkpoint, num_labels=2)

a place of mind Electrical and
THE UNIVERSITY OF BRITISH COLUMBIA €Ce | Computer
Engineering

26

Training

 Define a Trainer

from transformers import Trainer

trainer = Trainer(
model,
training_args,
train dataset=tokenized datasets["train"],
eval dataset=tokenized datasets["validation"],
data collator=data collator,

tokenizer=tokenizer,

« Start training

trainer.train()

a place of mind Electrical and
THE UNIVERSITY OF BRITISH COLUMBIA €Ce | Computer
Engineering

27

Evaluation

« Define a compute metrics() function:

def compute_metrics(eval_preds):
metric = evaluate.load("glue", "mxrpc")
logits, labels = eval_preds
predictions = np.argmax(logits, axis=-1)

return metric.compute(predictions=predictions, references=labels)

e Start training

training_args = TrainingArguments("test-trainexr", evaluation_strategy="epoch")

model = AutoModelForSequenceClassification.from_pretrained(checkpoint, num_labels=2)

trainer = Trainer(
model,
training_args,
train_dataset=tokenized datasets["train"],
eval dataset=tokenized datasets["validation"],
data_collator=data_collator,
tokenizer=tokenizer,

compute_metrics=compute_metrics,

a place of mind Electrical and
THE UNIVERSITY OF BRITISH COLUMBIA €Ce | Computer
Engineering

28

OO0O0O0O0
ONONORONG,
ONON NONO

O O O

O O

o o=

O O O
ONORONONGC)

UBC a place of mind

— iy

Pixel CNN

CPEN 455 Tutorial 8
Felix Fu

7~ THE UNIVERSITY OF BRITISH COLUMBIA

Image Credit: [1]

€Ce

Electrical and
Computer
Engineering

Autoregressive Models

We are a given n-dimensional data x

n n
po(x) = HPQ(Xi‘Xla ey Xjo1) = HPQ(Xi‘X<7L)
i=1 i=1

Graphical model:

@@

a place of mind
THE UNIVERSITY OF BRITISH COLUMBIA

Pixel CNNs

Autoregressive model for images.

n n
po(x) = Hpe(Xz'\Xh s X)) = Hpe(Xz'\XQ')
1=1 i=1

X is pixel value, e.g., {0, 1, ..., 255}
1 = height x width

Every term Do (Xi |X<z‘) is modeled by the same CNN (softmax readout)

a place of mind
THE UNIVERSITY OF BRITISH COLUMBIA

Pixel CNNs

Po(Xi|xX<;)
0 T 255
Conditioned on all pixels
that are top-left! P mi
One can also vectorize an / / /
Image as a sequence and
use RNNSs to build the
autoregressive model,
e.g., PixelRNNs [2].
Image Credit: [1]
UBC| aplaceof mind Electrical and
"W THE UNIVERSITY OF BRITISH COLUMBIA eCc | Computer
Engineering

What About Color Images?

Autoregressive conditioning again along channels:

T
Po(XRr,XG,XB) = Hpa(mﬁ,z' XR,<i,XG,<i, XB,<i) X
7

Po(G,i|TRi, XR,<is XG,<is XB,<i) X

Peo (mB,i LG,iy TR,iy XR,<iyXG,<iy XB,{I'.)

a place of mind
THE UNIVERSITY OF BRITISH COLUMBIA

How to Implement?

1. Mask Input
2. Convolution

Image Credit: [1]

a place of mind
THE UNIVERSITY OF BRITISH COLUMBIA

€Ce

Electrical and
Computer
Engineering

How to Implement?

For each image, we need H X
W masks and convolutions to
compute the likelihood!

255

'\.
Sy

Image Credit: [1]

UBC(aplaceof mind
-'-“;ii‘ﬁi"'-; THE UNIVERSITY OF BRITISH COLUMBIA

€Ce

7/

Electrical and
Computer
Engineering

Solutions in Pixel CNNs

Masked Filter + Smart Stack of Regular Convolutions!

Image Credit: [1]

a place of mind
THE UNIVERSITY OF BRITISH COLUMBIA

[T e T N T Y

(=T (=T I I

L T N e T s T IO

(o T (e T I e T O)

O O | O =]

€Ce

Electrical and
Computer
Engineering

Masked Filter

Masked 3 x 3 filter

a place of mind
THE UNIVERSITY OF BRITISH COLUMBIA

€Ce

Electrical and
Computer
Engineering

Masked Filter

Masked 3 x 3 filter

a place of mind
THE UNIVERSITY OF BRITISH COLUMBIA

€Ce

Electrical and
Computer
Engineering

Masked Filter

Masked 3 x 3 filter

a place of mind
THE UNIVERSITY OF BRITISH COLUMBIA

€Ce

Electrical and
Computer
Engineering

Masked Filter

Masked 3 x 3 filter

a place of mind
THE UNIVERSITY OF BRITISH COLUMBIA

€Ce

Electrical and
Computer
Engineering

Masked Filter

Masked 3 x 3 filter

Naively applying masked filter causes blind spots (blue area)!

a place of mind
THE UNIVERSITY OF BRITISH COLUMBIA

€Ce

Electrical and
Computer
Engineering

How to Resolve Blind Spots?

Applying two stacks of masked convolutions!

Vertical stack ‘T

<l— —
el Horizontal stack
Image Credit: [1]
UBC| aplaceofmind Electrical and
'W": THE UNIVERSITY OF BRITISH COLUMBIA €Ce | Computer
| Engineering

How to Resolve Blind Spots?

Horizontal Stack (Implemented by masked 2D convolution)

Horizontal Mask 1

Horizontal Mask 2

a place of mind
THE UNIVERSITY OF BRITISH COLUMBIA

€Ce

Electrical and
Computer
Engineering

How to Resolve Blind Spots?

Horizontal Stack (Implemented by masked 2D convolution)

Horizontal Mask 1

Mask 1 — Mask 2 — ... — Mask 2

a place of mind Electrical and
THE UNIVERSITY OF BRITISH COLUMBIA €Ce | Computer
Engineering

How to Resolve Blind Spots?

Horizontal Stack (Implemented by masked 2D convolution)

Horizontal Mask 1

Avoid using information at current location!

Mask 1 — Mask 2 — ... — Mask 2

a place of mind
THE UNIVERSITY OF BRITISH COLUMBIA

€Ce

Electrical and
Computer
Engineering

How to Resolve Blind Spots?

Horizontal Stack (Implemented by masked 2D convolution)

Note that the same masked filter is convolved everywhere!

Horizontal Mask 1

Avoid using information at current location!

Mask 1 — Mask 2 — ... — Mask 2

a place of mind
THE UNIVERSITY OF BRITISH COLUMBIA ece

Electrical and
Computer
Engineering

How to Resolve Blind Spots?

Horizontal Stack (Implemented by masked 2D convolution)

Horizontal Mask 2

Mask 1 - Mask 2 — ... — Mask 2

a place of mind Electrical and
THE UNIVERSITY OF BRITISH COLUMBIA €Ce | Computer
Engineering

How to Resolve Blind Spots?

Horizontal Stack (Implemented by masked 2D convolution)

Horizontal Mask 2

Mask 1 - Mask 2 — ... — Mask 2

a place of mind Electrical and
THE UNIVERSITY OF BRITISH COLUMBIA €Ce | Computer
Engineering

How to Resolve Blind Spots?

Horizontal Stack (Implemented by masked 2D convolution)

Horizontal Mask 2

Mask 1 — Mask 2 — ... — Mask 2

a place of mind Electrical and
THE UNIVERSITY OF BRITISH COLUMBIA €Ce | Computer
Engineering

How to Resolve Blind Spots?

Horizontal Stack (Implemented by masked 2D convolution)

Horizontal Mask 2

Mask 1 —» Mask 2 — ... - Mask 2

a place of mind Electrical and
THE UNIVERSITY OF BRITISH COLUMBIA €Ce | Computer
Engineering

How to Resolve Blind Spots?

Vertical Stack (Implemented by masked 2D convolution)

Vertical Mask 1

a place of mind
THE UNIVERSITY OF BRITISH COLUMBIA

€Ce

Electrical and
Computer
Engineering

How to Resolve Blind Spots?s

Vertical Stack (Implemented by masked 2D convolution)

Vertical Mask 1

Avoid using information at current location!

a place of mind
THE UNIVERSITY OF BRITISH COLUMBIA

€Ce

Electrical and
Computer
Engineering

How to Resolve Blind Spots?

Vertical Stack (Implemented by masked 2D convolution)

Vertical Mask 1

Applying vertical masked filter causes blind spots (blue area) too!

a place of mind
THE UNIVERSITY OF BRITISH COLUMBIA

€Ce

Electrical and
Computer
Engineering

How to Resolve Blind Spots?

Vertical Stack (Implemented by masked 2D convolution)

We again use two masked filters to remove blind spots!

Vertical Mask 1

Vertical Mask 2

a place of mind
THE UNIVERSITY OF BRITISH COLUMBIA

€Ce

Electrical and
Computer
Engineering

How to Resolve Blind Spots?

Vertical Stack (Implemented by masked 2D convolution)

Vertical Mask 1

Mask 1 — Mask 2 — ... — Mask 2

a place of mind Electrical and
THE UNIVERSITY OF BRITISH COLUMBIA €Ce | Computer
Engineering

How to Resolve Blind Spots?

Vertical Stack (Implemented by masked 2D convolution)

Vertical Mask 1

a place of mind
THE UNIVERSITY OF BRITISH COLUMBIA

Note that the same masked filter is convolved everywhere!

Mask 1 — Mask 2 — ... — Mask 2

€Ce

Electrical and
Computer
Engineering

How to Resolve Blind Spots?

Vertical Stack (Implemented by masked 2D convolution)

Vertical Mask 1

Mask 1 — Mask 2 — ... — Mask 2

a place of mind Electrical and
THE UNIVERSITY OF BRITISH COLUMBIA €Ce | Computer
Engineering

How to Resolve Blind Spots?

Vertical Stack (Implemented by masked 2D convolution)

Vertical Mask 1

Mask 1 — Mask 2 — ... — Mask 2

a place of mind Electrical and
THE UNIVERSITY OF BRITISH COLUMBIA €Ce | Computer
Engineering

How to Resolve Blind Spots?

Vertical Stack (Implemented by masked 2D convolution)

Vertical Mask 1

Mask 1 — Mask 2 — ... — Mask 2

a place of mind Electrical and
THE UNIVERSITY OF BRITISH COLUMBIA €Ce | Computer
Engineering

How to Resolve Blind Spots?

Vertical Stack (Implemented by masked 2D convolution)

Vertical Mask 1

Mask 1 — Mask 2 — ... — Mask 2

a place of mind Electrical and
THE UNIVERSITY OF BRITISH COLUMBIA €Ce | Computer
Engineering

How to Resolve Blind Spots?

Vertical Stack (Implemented by masked 2D convolution)

Vertical Mask 1

Mask 1 — Mask 2 — ... — Mask 2

a place of mind Electrical and
THE UNIVERSITY OF BRITISH COLUMBIA €Ce | Computer
Engineering

How to Resolve Blind Spots?

Vertical Stack (Implemented by masked 2D convolution)

Vertical Mask 1

Mask 1 — Mask 2 — ... — Mask 2

a place of mind Electrical and
THE UNIVERSITY OF BRITISH COLUMBIA €Ce | Computer
Engineering

How to Resolve Blind Spots?

Vertical Stack (Implemented by masked 2D convolution)

Vertical Mask 2

Mask 1 - Mask 2 — ... — Mask 2

a place of mind
THE UNIVERSITY OF BRITISH COLUMBIA ece

How to Resolve Blind Spots?

Vertical Stack (Implemented by masked 2D convolution)

Vertical Mask 2

Mask 1 — Mask 2 — ... — Mask 2

a place of mind
THE UNIVERSITY OF BRITISH COLUMBIA ece

How to Resolve Blind Spots?

Vertical Stack (Implemented by masked 2D convolution)

Vertical Mask 2

Mask 1 —» Mask 2 — ... - Mask 2

a place of mind
THE UNIVERSITY OF BRITISH COLUMBIA ece

How to Resolve Blind Spots?

Combine Horizontal and Vertical Stacks

Horizontal Mask 1

Vertical Mask 1

Layer 1 — Layer 2 — ... — Layer L

a place of mind Electrical and
THE UNIVERSITY OF BRITISH COLUMBIA €Ce | Computer
Engineering

How to Resolve Blind Spots?

Combine Horizontal and Vertical Stacks

Horizontal Mask 2

Vertical Mask 2

Layer 1 — Layer2 — ... — Layer L

a place of mind Electrical and
THE UNIVERSITY OF BRITISH COLUMBIA €Ce | Computer
Engineering

How to Resolve Blind Spots?

Combine Horizontal and Vertical Stacks

Horizontal Mask 2

Vertical Mask 2

Layer 1 — Layer2 — ... — Layer L

a place of mind Electrical and
THE UNIVERSITY OF BRITISH COLUMBIA €Ce | Computer
Engineering

How to Resolve Blind Spots?

Combine Horizontal and Vertical Stacks

Horizontal Mask 2

Vertical Mask 2

Layer 1 — Layer2 — ... — Layer L

a place of mind Electrical and
THE UNIVERSITY OF BRITISH COLUMBIA €Ce | Computer
Engineering

How to Resolve Blind Spots?

Combine Horizontal and Vertical Stacks

Horizontal Mask 2

Vertical Mask 2

Layer 1 — Layer2 — ... — Layer L

a place of mind Electrical and
THE UNIVERSITY OF BRITISH COLUMBIA €Ce | Computer
Engineering

Pixel CNN Process

Image

Horlzontal

<[Horizontal Horizontal
[Vertical Vertical

Output

=

a place of mind
THE UNIVERSITY OF BRITISH COLUMBIA

Vertlcal

€Ce

Pixel CNN Architecture

Gated Convolutions y = tanh (W;x) ® 0 (W, x)

1x1

Split feature maps

\ertical Horizontal

Image Credit: [1]

UBC a place of mind
Tﬁf“? THE UNIVERSITY OF BRITISH COLUMBIA

p = #feature maps

ece

Pros

+ Parallel Training

One forward pass to compute losses at all locations (i.e., all conditional probabilities)!
+ Strong Performances

PixeCNN++ [3] further improves performances by:

1. Softmax — discretized mixture of logistic distributions
2. Downsample & upsample, dropout, skip connections, etc.

0.010

0.008

K
v o~ Y mlogistic(u, s;) Pixel intensity distribution
i=1

0.006
>
g

K
P(z|m p,s) = Zm lo((z+ 0.5 —p)/si) —o((x — 0.5 — pi)/si)],

Image Credit: [3]

a place of mind
THE UNIVERSITY OF BRITISH COLUMBIA

Pros vs Cons

+ Parallel Training
One forward pass to compute losses at all locations (i.e., all conditional probabilities)!
+ Strong Performances
PixelCNN++ [3] further improves performances by:
1. Softmax — discretized mixture of logistic distributions
2. Downsample & upsample, dropout, skip connections, etc.

- Slow Sampling

This is due to the sequential nature of autoregressive sampling.
It could be further improved by methods, e.g., [5].

a place of mind
THE UNIVERSITY OF BRITISH COLUMBIA

References

Hugging Face (&) : https://huggingface.co/
Transformers (&) : https://huggingface.co/docs/transformers/en/index
More courses (&): https://huggingface.co/learn/nlp-course

[1] van den Oord, A., et al. “Conditional Image Generation with PixeICNN Decoders.” In Advances in Neural Information
Processing Systems 29, pp. 4790-4798 (2016).

[2] van den Oord, A., et al. “Pixel Recurrent Neural Networks.” arXiv preprint arXiv:1601.06759 (2016).

[3] Salimans, Tim, et al. “PixelCNN++: Improving the PixelCNN with Discretized Logistic Mixture Likelihood and Other
Modifications.” arXiv preprint arXiv:1701.05517 (2017).

[4] https://uvadlc-notebooks.readthedocs.io/en/latest/tutorial_notebooks/tutoriall2/Autoregressive_Image_Modeling.html

[5] Song, Y., Meng, C., Liao, R. and Ermon, S., 2021, July. Accelerating feedforward computation via parallel nonlinear
equation solving. In International Conference on Machine Learning (pp. 9791-9800). PMLR.

[6] https://en.wikipedia.org/wiki/Logistic_distribution

a place of mind
THE UNIVERSITY OF BRITISH COLUMBIA

75

https://huggingface.co/
https://huggingface.co/docs/transformers/en/index
https://huggingface.co/learn/nlp-course
https://uvadlc-notebooks.readthedocs.io/en/latest/tutorial_notebooks/tutorial12/Autoregressive_Image_Modeling.html
https://en.wikipedia.org/wiki/Logistic_distribution

	Default Section
	Slide 1: Hugging Face 🤗 Transformers
	Slide 2: Reminders
	Slide 3: Introduction
	Slide 4: Hugging Face🤗
	Slide 5: Transformers
	Slide 6: Transformers
	Slide 7: Installation
	Slide 8: Basic Usage
	Slide 9: Basic Usage
	Slide 10: Behind the pipeline
	Slide 11: Tokenizer
	Slide 12: Tokenizer
	Slide 13: Tokenizer
	Slide 14: Models
	Slide 15: Models
	Slide 16: Model heads
	Slide 17: Model heads
	Slide 18: Model heads
	Slide 19: Postprocessing the output
	Slide 20: Inference
	Slide 21: Training
	Slide 22: Processing the data
	Slide 23: Processing the data
	Slide 24: Processing the data
	Slide 25: Processing the data
	Slide 26: Training
	Slide 27: Training
	Slide 28: Evaluation
	Slide 29: Pixel CNN
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35: How to Implement?
	Slide 36
	Slide 37: Masked Filter
	Slide 38
	Slide 39
	Slide 40: Masked Filter
	Slide 41: Masked Filter
	Slide 42: How to Resolve Blind Spots?
	Slide 43: How to Resolve Blind Spots?
	Slide 44: How to Resolve Blind Spots?
	Slide 45: How to Resolve Blind Spots?
	Slide 46: How to Resolve Blind Spots?
	Slide 47: How to Resolve Blind Spots?
	Slide 48: How to Resolve Blind Spots?
	Slide 49: How to Resolve Blind Spots?
	Slide 50: How to Resolve Blind Spots?
	Slide 51: How to Resolve Blind Spots?
	Slide 52: How to Resolve Blind Spots?s
	Slide 53: How to Resolve Blind Spots?
	Slide 54: How to Resolve Blind Spots?
	Slide 55: How to Resolve Blind Spots?
	Slide 56: How to Resolve Blind Spots?
	Slide 57: How to Resolve Blind Spots?
	Slide 58: How to Resolve Blind Spots?
	Slide 59: How to Resolve Blind Spots?
	Slide 60: How to Resolve Blind Spots?
	Slide 61: How to Resolve Blind Spots?
	Slide 62: How to Resolve Blind Spots?
	Slide 63: How to Resolve Blind Spots?
	Slide 64: How to Resolve Blind Spots?
	Slide 65: How to Resolve Blind Spots?
	Slide 66: How to Resolve Blind Spots?
	Slide 67: How to Resolve Blind Spots?
	Slide 68: How to Resolve Blind Spots?
	Slide 69: How to Resolve Blind Spots?
	Slide 70: How to Resolve Blind Spots?
	Slide 71: PixelCNN Process
	Slide 72: PixelCNN Architecture
	Slide 73: Pros
	Slide 74: Pros vs Cons
	Slide 75: References

