CPEN 455: Deep Learning — HW1 Tutorial

Presented by: Jia Jun Cheng Xian

October 6, 2025

Setup: Single-hidden-layer MLP with Dropout

Model (hidden pre-activation and activation):

$$h = \sigma(Wx + b) \in \mathbb{R}^{M \times 1}, \quad \sigma = \mathsf{ReLU}$$

Dropout during training:

$$\tilde{h} = \frac{m}{1-p} \odot h, \qquad m[i] \sim \mathsf{Bernoulli}(1-p) \mathsf{ i.i.d.}$$

At test time: use $\tilde{h} = h$ (no masking).

- o denotes elementwise (Hadamard) product.
- \triangleright p is the drop probability; 1-p is the keep probability.

1.1 Why scale by 1/(1-p)?

Goal: Keep the layer's *expected* output magnitude the same between train and test.

$$\mathbb{E}[\tilde{h}] = \mathbb{E}\left[\frac{m}{1-
ho}\odot h
ight] = rac{\mathbb{E}[m]}{1-
ho}\odot \mathbb{E}[h] = rac{1-
ho}{1-
ho}\,\mathbb{E}[h] = \mathbb{E}[h].$$

- ▶ Without the factor, $\mathbb{E}[m \odot h] = (1 p)\mathbb{E}[h] \neq \mathbb{E}[h]$.
- ightharpoonup Scaling by 1/(1-p) makes train-time expectation match test-time expectation.

1.2 Variance of h (before Dropout) under given assumptions

Assumptions: $x \sim \mathcal{N}(0, I)$, b = 0, $WW^{\top} = I_M$, $\sigma = \text{ReLU}$.

- ▶ Then $z := Wx + b \sim \mathcal{N}(0, I_M)$ and $h[i] = \max\{0, z[i]\}$.
- ▶ For $z \sim \mathcal{N}(0,1)$:

$$\mathbb{E}[h[i]] = \mathbb{E}[\max(0,z)] = \frac{1}{\sqrt{2\pi}}, \qquad \mathbb{E}[h[i]^2] = \frac{1}{2}.$$

Hence

$$\mathsf{Var}[h[i]] = \mathbb{E}[h[i]^2] - \mathbb{E}[h[i]]^2 = \frac{1}{2} - \frac{1}{2\pi}.$$

► Since coordinates are independent here, $Var[h] = diag(\frac{1}{2} - \frac{1}{2\pi})$.

1.2 Variance after Dropout: $\tilde{h} = \frac{m}{1-p} \odot h$

Key facts: $m[i] \in \{0,1\}$, $\mathbb{E}[m[i]] = 1 - p$, $\mathbb{E}[m[i]^2] = 1 - p$, and m is independent of h.

$$\begin{aligned} \mathsf{Var}[\tilde{h}[i]] &= \frac{1}{(1-p)^2} \, \mathsf{Var}[m[i] \, h[i]] \\ &= \frac{1}{(1-p)^2} \Big(\mathbb{E}[m[i]^2] \mathbb{E}[h[i]^2] - \mathbb{E}[m[i]]^2 \, \mathbb{E}[h[i]]^2 \Big) \\ &= \frac{1}{(1-p)^2} \Big((1-p) \cdot \frac{1}{2} - (1-p)^2 \cdot \frac{1}{2\pi} \Big) \\ &= \frac{1}{2(1-p)} - \frac{1}{2\pi}. \end{aligned}$$

Matrix form: $Var[\tilde{h}] = diag \left(\frac{1}{2(1-p)} - \frac{1}{2\pi} \right)$.

1.3 How many units are kept?

Each unit is kept i.i.d. with probability 1 - p:

$$\mathcal{K} := \sum_{i=1}^{M} \mathbf{1}\{m[i] = 1\} \sim \operatorname{Binomial}(M, 1 - p).$$

- ▶ Expectation: $\mathbb{E}[K] = M(1 p)$.
- ► PMF: $Pr(K = k) = {M \choose k} (1-p)^k p^{M-k}$ for k = 0, 1, ..., M.

1.4 Poisson limit (large M, rare keep)

Regime: $M \to \infty$, $1 - p \to 0$ with $\lambda := M(1 - p)$ fixed.

▶ Then the binomial $K \sim \text{Binomial}(M, 1 - p)$ converges in distribution to

$$K \xrightarrow{d} \text{Poisson}(\lambda), \qquad \text{Pr}(K = k) = e^{-\lambda} \frac{\lambda^k}{k!}.$$

▶ Intuition: many trials, very small keep-probability ⇒ rare-event process.

1.5 Random width $M \sim \text{Poisson}(\lambda)$ (thinning)

Setup: Draw $M \sim \text{Poisson}(\lambda)$ units, then keep each independently with prob. 1 - p.

▶ By *Poisson thinning*, the kept-count is

$$K \sim \text{Poisson}(\lambda(1-p)).$$

▶ Proof sketch: condition on M, $K|M \sim \text{Binomial}(M, 1-p)$; marginalizing over M yields Poisson with mean $\lambda(1-p)$.

Key Takeaways (Q1)

- ▶ Scaling by 1/(1-p) preserves the expected activation at train time.
- ▶ Under Gaussian+ReLU assumptions, $Var[h[i]] = \frac{1}{2} \frac{1}{2\pi}$ and $Var[\tilde{h}[i]] = \frac{1}{2(1-p)} \frac{1}{2\pi}$.
- ▶ Kept-unit count is Binomial(M, 1 p); admits Poisson limit and Poisson thinning variants.

Setup: Single hidden layer with batch inputs

Inputs: $X \in \mathbb{R}^{B \times N}$ (rows are samples)

Pre-activations: $Y = XW^{\top} + b^{\top} \in \mathbb{R}^{B \times M}$

Activation: $H = \sigma(Y)$ with ReLU $\sigma(u) = \max(0, u)$

Broadcasting: $XW^{\top} \in \mathbb{R}^{B \times M}$, $b^{\top} \in \mathbb{R}^{1 \times M}$, so $Y = XW^{\top} + b^{\top}$ adds row-wise.

Batch Normalization on *Y***:**

$$\mu[j] = \frac{1}{B} \sum_{i=1}^{B} Y[i,j], \qquad \nu[j] = \frac{1}{B} \sum_{i=1}^{B} \left(Y[i,j] - \mu[j] \right)^{2},$$

$$\hat{Z}[i,j] = \frac{Y[i,j] - \mu[j]}{\sqrt{\nu[j] + \varepsilon}}, \qquad \hat{Y}[i,j] = \gamma[j] \hat{Z}[i,j] + \beta[j],$$

with learnable $\gamma, \beta \in \mathbb{R}^{M \times 1}$ and small $\varepsilon > 0$.

2.1 Why do we need ε ?

- Numerical stability: protects division by 0 or very small v[j] when a feature is (near) constant in a mini-batch.
- ▶ Stabilizes gradients (denominator $\sqrt{v[j] + \varepsilon}$ bounded away from 0), preventing exploding updates.
- ▶ Has no effect asymptotically when $v[j] \gg \varepsilon$; typically $\varepsilon \in [10^{-5}, 10^{-3}]$.

2.2 Mean and variance of \hat{Y} (ignore ε for this part)

Define
$$Z[i,j] = \frac{Y[i,j] - \mu[j]}{\sqrt{v[j]}}$$
. By construction:

$$\mathbb{E}[Z[i,j]] = 0, \qquad \mathsf{Var}[Z[i,j]] = 1.$$

Since $\hat{Y}[i,j] = \gamma[j] Z[i,j] + \beta[j]$ is an affine transform,

$$\mathbb{E}[\hat{Y}[i,j]] = \beta[j], \qquad \mathsf{Var}(\hat{Y}[i,j]) = \gamma[j]^2.$$

Takeaway: BN recenters to β and rescales variance to γ^2 (per feature).

2.3 Backprop: overview of the computation graph

$$X \longrightarrow Y = XW^{\top} + b^{\top} \longrightarrow \hat{Y} = \mathrm{BN}(Y; \gamma, \beta) \longrightarrow H = \mathrm{ReLU}(\hat{Y}) \longrightarrow \ell(H)$$
 Given upstream gradient $\frac{\partial \ell}{\partial \hat{Y}} \in \mathbb{R}^{B \times M}$, we backprop:
$$\frac{\partial \ell}{\partial \hat{Y}} = \frac{\partial \ell}{\partial H} \odot \mathbf{1}\{\hat{Y} > 0\}.$$

2.3 Backprop through BN: parameter gradients

Work featurewise
$$(j=1,\ldots,M)$$
. Let $g[i,j]=rac{\partial \ell}{\partial \hat{Y}[i,j]}$.

$$\frac{\partial \ell}{\partial \beta[j]} = \sum_{i=1}^{B} g[i,j],$$
$$\frac{\partial \ell}{\partial \gamma[j]} = \sum_{i=1}^{B} g[i,j] \hat{Z}[i,j].$$

Define
$$g_Z[i,j] = g[i,j] \gamma[j]$$
 and $\operatorname{std}[j] = \sqrt{v[j] + \varepsilon}$ for brevity.

2.3 Backprop through BN: input gradients

Per-feature scalar form (for fixed j):

$$\frac{\partial \ell}{\partial v[j]} = \sum_{i=1}^{B} \frac{\partial \ell}{\partial \hat{Y}[i,j]} \frac{\partial \hat{Y}[i,j]}{\partial v[j]} = \sum_{i=1}^{B} g_{Z}[i,j] (Y[i,j] - \mu[j]) \left(-\frac{1}{2}\right) \operatorname{std}[j]^{-3},$$

$$\frac{\partial \ell}{\partial \mu[j]} = \sum_{i=1}^{B} \frac{\partial \ell}{\partial \hat{Y}[i,j]} \frac{\partial \hat{Y}[i,j]}{\partial \mu[j]} + \frac{\partial \ell}{\partial v[j]} \frac{\partial v[j]}{\partial \mu[j]}$$

$$= \sum_{i=1}^{B} g_{Z}[i,j] \left(-\operatorname{std}[j]^{-1}\right) + \frac{\partial \ell}{\partial v[j]} \cdot \frac{-2}{B} \sum_{i=1}^{B} (Y[i,j] - \mu[j]),$$

$$\frac{\partial \ell}{\partial Y[i,j]} = \frac{\partial \ell}{\partial \hat{Y}[i,j]} \frac{\partial \hat{Y}[i,j]}{\partial Y[i,j]} + \frac{\partial \ell}{\partial v[j]} \frac{\partial v[j]}{\partial Y[i,j]} + \frac{\partial \ell}{\partial \mu[j]} \frac{\partial \mu[j]}{\partial Y[i,j]}$$

$$= g_{Z}[i,j] \operatorname{std}[j]^{-1} + \frac{\partial \ell}{\partial v[j]} \cdot \frac{2}{B} (Y[i,j] - \mu[j]) + \frac{\partial \ell}{\partial \mu[j]} \cdot \frac{1}{B}.$$

Key Takeaways (Q2)

- \triangleright ε provides numerical stability by preventing division by tiny variances.
- ▶ Ignoring ε , BN makes each feature have mean β and variance γ^2 .
- ▶ Backprop: ReLU mask \Rightarrow BN param grads $(\beta, \gamma) \Rightarrow$ BN input grads .

Setup (notation)

- $h_i = \sigma(W_i h_{i-1} + b_i)$ for i = 1, ..., L; $h_0 = x$.
- Softmax readout: $y_k = \frac{e^{h_L[k]}}{\sum_i e^{h_L[j]}}$, CE loss: $\ell(\bar{y}, y) = -\sum_k \bar{y}[k] \log y[k]$.
- ▶ Shapes: $W_i \in \mathbb{R}^{D_i \times D_{i-1}}$, $b_i \in \mathbb{R}^{D_i \times 1}$, $h_i \in \mathbb{R}^{D_i \times 1}$.

$3.1: \partial \ell/\partial h_L$ (softmax + CE)

Chain rule:
$$\frac{\partial \ell}{\partial h_L} = \frac{\partial \ell}{\partial y} \frac{\partial y}{\partial h_L}$$
.

Result:
$$\frac{\partial \ell}{\partial h_i} = y - \bar{y}$$
.

3.1: Why
$$\frac{\partial y}{\partial h_i} = \operatorname{diag}(y) - yy^{\top}$$
?

With
$$y_k = \frac{e^{h_k}}{S}$$
, $S = \sum_{j=1}^{K} e^{h_j}$,

$$\frac{\partial y_k}{\partial h_i} = \frac{e^{h_k} \delta_{ki}}{S} - \frac{e^{h_k}}{S^2} \frac{\partial S}{\partial h_i} = y_k \delta_{ki} - y_k y_i.$$

Thus componentwise $\frac{\partial y_k}{\partial h} = y_k(\delta_{ki} - y_i)$, which stacks to

$$\frac{\partial y}{\partial h} = \mathsf{diag}(y) - yy^{\top}$$
.

3.1: Gradient w.r.t. a hidden layer h_i (chain rule)

Layer relations: $z_{i+1} = W_{i+1}h_i + b_{i+1}, h_{i+1} = \sigma(z_{i+1}).$

Jacobian (reference form):

$$J_i := \frac{\partial h_{i+1}}{\partial h_i} = \operatorname{diag}(\sigma'(z_{i+1})) W_{i+1} \in \mathbb{R}^{D_{i+1} \times D_i}.$$

Chain rule for hidden layers:

$$\frac{\partial \ell}{\partial h_i} = J_i^{\top} \frac{\partial \ell}{\partial h_{i+1}} = J_i^{\top} J_{i+1}^{\top} \cdots J_{L-1}^{\top} \frac{\partial \ell}{\partial h_L}$$

Using $\frac{\partial \ell}{\partial h_{\ell}} = y - \bar{y}$ from the previous slide,

$$\frac{\partial \ell}{\partial h_i} = W_{i+1}^{\top} \operatorname{diag}(\sigma'(z_{i+1})) \cdots W_{L}^{\top} \operatorname{diag}(\sigma'(z_{L})) (y - \bar{y}).$$

3.2 Gradients w.r.t. parameters

Let
$$z_i = W_i h_{i-1} + b_i$$
 and $\delta_i := \partial \ell / \partial z_i$.
$$\delta_i = \sigma_i' \odot \frac{\partial \ell}{\partial h_i} \qquad (\mathbb{R}^{D_i \times 1})$$
$$\frac{\partial \ell}{\partial W_i} = \delta_i \ h_{i-1}^\top \ \in \ \mathbb{R}^{D_i \times D_{i-1}},$$
$$\frac{\partial \ell}{\partial b_i} = \delta_i \ \in \ \mathbb{R}^{D_i \times 1}.$$

3.3 Goal: Preserve $Var[h_i]$

Objective. Choose the weight variance so that activation variance is stable across layers:

$$Var[h_i] \approx Var[h_{i-1}]$$
 for all i .

We assume:

- $ightharpoonup z_i = W_i h_{i-1} + b_i$, with $b_i = 0$ at init and W_i i.i.d., zero mean.
- Pre-activations z_i are approximately zero-mean and symmetric; activation $h_i = \text{ReLU}(z_i)$.
- Fan-in $n = D_{i-1}$.

3.3 Deriving $Var[z_i]$

$$z_i[j] = \sum_{k=1}^{D_{i-1}} w_{jk} h_{i-1}[k]$$

Using independence and zero-mean weights,

$$\begin{aligned} \mathsf{Var}[z_{i}] &= D_{i-1} \; \mathsf{Var}[w_{i}h_{i-1}] \\ &= D_{i-1} \Big(\mathsf{Var}[w_{i}] \; \mathsf{Var}[h_{i-1}] + \mathsf{Var}[w_{i}] \big(\mathbb{E}[h_{i-1}] \big)^{2} + \mathsf{Var}[h_{i-1}] \big(\mathbb{E}[w_{i}] \big)^{2} \Big) \\ &= D_{i-1} \Big(\mathsf{Var}[w_{i}] \; \mathsf{Var}[h_{i-1}] + \mathsf{Var}[w_{i}] \big(\mathbb{E}[h_{i-1}] \big)^{2} \Big) \qquad (\mathbb{E}[w_{i}] = 0) \\ &= D_{i-1} \; \mathsf{Var}[w_{i}] \; \mathbb{E}[h_{i-1}^{2}] \; . \end{aligned}$$

3.3 $\mathbb{E}[z_i^2]$ via symmetry through ReLU

If w_{i-1} is symmetric about 0 and $b_{i-1}=0$, then z_{i-1} is symmetric about 0. Hence for $h_i=\mathrm{ReLU}(z_{i-1})$,

$$\begin{split} \mathbb{E}[h_i^2] &= \mathbb{E}[\operatorname{ReLU}^2(z_{i-1})] = \int_{-\infty}^{+\infty} [\max(0, z_{i-1})]^2 \, \rho(z_{i-1}) \, dz_{i-1} \\ &= \int_0^{+\infty} z_{i-1}^2 \, \rho(z_{i-1}) \, dz_{i-1} = \frac{1}{2} \int_{-\infty}^{+\infty} z_{i-1}^2 \, \rho(z_{i-1}) \, dz_{i-1} \\ &= \frac{1}{2} \, \mathbb{E}[z_{i-1}^2] \, = \, \frac{1}{2} \, \operatorname{Var}[z_{i-1}] \quad (\mathbb{E}[z_{i-1}] = 0). \end{split}$$

So
$$q_i := \mathbb{E}[h_i^2] = \frac{1}{2} \text{ Var}[z_{i-1}].$$

3.3 Solve Var[w] with variance preservation

Now we have

$$Var[h_i] = \left(\frac{D_{i-1} \sigma_w^2}{2}\right) Var[h_{i-1}].$$

Enforcing $Var[h_i] \approx Var[h_{i-1}]$ yields

$$\sigma_w^2 = \frac{2}{D_{i-1}} = \frac{2}{\text{fan-in}}$$

— the standard **He/Kaiming** initialization for ReLU.

Recap

- ▶ Softmax gradient: $J = \text{diag}(y) yy^{\top} \Rightarrow \partial \ell / \partial h_L = y \bar{y}$.
- ▶ Parameter grads: $\partial \ell / \partial W_i = \delta_i h_{i-1}^{\top}$, $\partial \ell / \partial b_i = \delta_i$.
- ▶ Reference-aligned steps: $Var[z_i] = D_{i-1} Var[w_i] \mathbb{E}[h_{i-1}^2]$ and $\mathbb{E}[z_i^2] = \frac{1}{2} Var[z_{i-1}]$.
- ▶ He init (ReLU): Var[w] = 2/fan-in.