CPEN 455: Deep Learning — HW1 Tutorial

Presented by: Jia Jun Cheng Xian

October 6, 2025

Setup: Single-hidden-layer MLP with Dropout

Model (hidden pre-activation and activation):
h=o(Wx+ b) e RM*1 5 = RelU

Dropout during training:

h= 1L ®h, mli] ~ Bernoulli(1 — p) i.i.d.
—p

At test time: use h = h (no masking).

» © denotes elementwise (Hadamard) product.

P> pis the drop probability; 1 — p is the keep probability.

1.1 Why scale by 1/(1 — p)?

Goal: Keep the layer's expected output magnitude the same between train and test.

E[m]

T, OFlN = MM E[h].

E[f] = ELTP © h]

» Without the factor, E[m ® h] = (1 — p)E[h] # E[h].
» Scaling by 1/(1 — p) makes train-time expectation match test-time expectation.

1.2 Variance of h (before Dropout) under given assumptions

Assumptions: x ~ N(0,/), b=0, WWT = Iy, 0 = ReLU.
» Then z := Wx + b ~ N(0, Iyy) and h[i] = max{0, z[i]}.
» For z ~ N(0,1):

E[A[i]] = E[max(0, 2)] = \/12? E[h[i]?] = %
Hence 1 1
Varlhll) = E[H[] ~ EIAE = & — -

> Since coordinates are independent here, Var[h] = diag(3 — 5=).

1.2 Variance after Dropout: h = 11 ® h
—p

Key facts: m[i] € {0,1}, E[m[i]] =1 — p, E[m[i]?] = 1 — p, and m is independent of
h.

(1_1,3)2 Var[mli] A[il]
1 12 12 112)

= o (BEmPIBIHGT) ~ Bl)

~ap(a-pi-a-ptd)

1 1

20—p) 2n

Var[h[i]] =

~ 1 1
Matrix form: Var[h] = diag<2(1_p) - 277)

1.3 How many units are kept?

Each unit is kept i.i.d. with probability 1 — p:

M
K =) 1{mli] = 1} ~ Binomial(M, 1 — p).
i=1
» Expectation: E[K] = M(1 — p).
> PMF: Pr(K = k) = (") (1 — p)pM~* for k =0,1,..., M.

1.4 Poisson limit (large M, rare keep)

Regime: M — oo, 1 — p — 0 with A := M(1 — p) fixed.
» Then the binomial K ~ Binomial(M,1 — p) converges in distribution to

d JAK
K — Poisson(), Pr(K=k)=¢e" L

> Intuition: many trials, very small keep-probability = rare-event process.

1.5 Random width M ~ Poisson(\) (thinning)

Setup: Draw M ~ Poisson(\) units, then keep each independently with prob. 1 — p.
» By Poisson thinning, the kept-count is

K ~ Poisson(A(1 — p)).

» Proof sketch: condition on M, K|M ~ Binomial(M, 1 — p); marginalizing over M
yields Poisson with mean A(1 — p).

Key Takeaways (Q1)

» Scaling by 1/(1 — p) preserves the expected activation at train time.

» Under Gaussian+ReLU assumptions, Var[h[i]] = % - % and
» Kept-unit count is Binomial(M, 1 — p); admits Poisson limit and Poisson thinning
variants.

Setup: Single hidden layer with batch inputs

Inputs: X € REXN (rows are samples)
Pre-activations: Y = XW ' + b" ¢ REXM
Activation: H = o(Y') with ReLU o(u) = max(0, v)

Broadcasting: XW T € REXM pT c RIXM 560 Y = XWT + bT adds row-wise.

Batch Normalization on Y:

1 B B
il =g oYU = EZ Vi) - plil)’

YU = pl]

VVIil+e '

with learnable v, 3 € RM*! and small € > 0.

20ij] = Y[i,jl = vL121i, 4] + B,

2.1 Why do we need €7

» Numerical stability: protects division by 0 or very small v[j] when a feature is
(near) constant in a mini-batch.

» Stabilizes gradients (denominator \/v[j] + £ bounded away from 0), preventing
exploding updates.

» Has no effect asymptotically when v[j] > ¢; typically € € [1075,1073].

2.2 Mean and variance of Y (ignore ¢ for this part)

Y
Define Z[i,j] = -] = uli} . By construction:

i

E[Z][i,/]] =0, Var[Z][i,j]] = 1.
Since Y[i,j] = v[j] Z[i,j] + Blj] is an affine transform,
E[Y[i.jl = BL1, Var(Y[i.j]) = [

Takeaway: BN recenters to 3 and rescales variance to 72 (per feature).

2.3 Backprop: overview of the computation graph

X ——>Y=XWT +b" —— Y =BN(Y;v,3) — H=ReLU(Y) — {(H)
Given upstream gradient g—f, € REXM e backprop:

ol ol

v 6H®1{Y>O}

2.3 Backprop through BN: parameter gradients

Work featurewise (j =1,..., M). Let g[i,j] =

e
%[/] Zg[w]

a L/] Zg[u] 21i,j].

Define gz[i,j] = gli,Jj] v[j] and std[j] = v/ v[j] + € for brevity.

2.3 Backprop through BN: input gradients

Per-feature scalar form (for fixed j):

ot ZB: ot aVIijl

il ~ “ oy, ovl]

B
= 3 eeli A (YT - i) (-)l
i=1 i=1
aﬁ_i ot aYlij] ot ovlj]
ouli] — oYl ouli] ovlj] oul]

IR A1 Gl —2By,_ _
= el (sl ™) + 5 g 0 -,
o ot aY[ijl , 9t o] o0 aulj]
oVl ~ avlij) oVl ovi] oYl ouli] aY[iJ]
- 1— o 2 . . or 1
= gz[i,j] stdlj] ™t + g 5 Ul + 5

Key Takeaways (Q2)

» ¢ provides numerical stability by preventing division by tiny variances.
» Ignoring £, BN makes each feature have mean /3 and variance 2.
» Backprop: ReLU mask = BN param grads (3,7) = BN input grads .

Setup (notation)

> hj =o(W;hi_1+bj) fori=1,...,L; hg = x.

he[K]
» Softmax readout: yx = e CE loss: £(7,y) = — Zk)_/[k] jog y[K].

Zj ehtlil’
> Shapes: W; € RP*Pi-1 p; e RP*L p; e RPiXL,

3.1: 0¢/0h, (softmax + CE)

) ot ot gy
Chain rule: 78hL = By ohL’
ol Yk _
> | —| =-= -hot y).
[3y:|k Yk (One © }/)
6y . T
> - = —_ .
Oh, diag(y) —yy

ov
Result: o, =y—y.

dy .

ehw P
Wlth Yk = ?Y S = Zj:l ehj,

8yk B e”kék,-
ohj S
. Oy _
Thus componentwise = yi(Oki
Oh;
dy

oh

el 9S
TS an YkOki — YkYi-

— i), which stacks to

= = diag(y) —yy .

3.1: Gradient w.r.t. a hidden layer h; (chain rule)
Layer relations: zj.1 = Wii1hi + bjt1, hiv1 = o(zit1).
Jacobian (reference form):

Ohii1
Oh;

Ji = = diag(a'(z,-H)) Wi € RDi+1xDi

Chain rule for hidden layers:

o _ oo
ohi 7' Ohiya

= Sy

ol
Using a—hl_ = y — y from the previous slide,

ov

oh L1diag(o'(zis1)) - W, diag(o’(21)) (v - 7)-

3.2 Gradients w.r.t. parameters

Let z; = W;h;_1 + b; and §; := 0¢/0z.

14
§i=0l0 88h- (RPi>1y
O _ 5 e RO,

ob;

3.3 Goal: Preserve Var[h/]

Objective. Choose the weight variance so that activation variance is stable across
layers:

Var[hj] ~ Var[hj_1] for all i.
We assume:
» z; = W;h;_1 + b;, with b; = 0 at init and W, i.i.d., zero mean.

P> Pre-activations z; are approximately zero-mean and symmetric; activation
hi = ReLU(z).
» Fan-inn=D;_;.

3.3 Deriving Var|[z]

Di_1
Zlj] = > wi hia[k]
k=1
Using independence and zero-mean weights,
Var[z,-] = D,'_l Var[w;h,-_l]
D, (Var[w;] Var[h;_1] + Var[w;] (E[hi_1])* + Var[h;_] (E[W,-])2)
- D;_l(Var[W,-] Var[h;_1] + Var[w;] (]E[h,-_l])2) (E[w;] = 0)
= D;_1 Var[w,] E[r?_,].

3.3 E[z?] via symmetry through RelLU

If wj_1 is symmetric about 0 and b;_; = 0, then z;_; is symmetric about 0. Hence for
h,‘ = ReLU(Z;_l),

+o0
E[#?] = E[ReLU%(z;_1)] = / (max(0, z 1) p(z1) dz_1
+o0) - +o0)
= / zi_1 p(zi-1) dzj-1 = %/ zi_1 p(zi-1) dzj—1
0 —00

= 3E[z4] = 3 Var[zi1] (Elzi-1] =0).

So qi :=E[m?] = % Var[z;_4].

3.3 Solve Var[w] with variance preservation

Now we have "

Var[hj] = <%) Var[h;_1].
Enforcing Var[h;] =~ Var[h;_1] yields
2 2

2
W D;_1 fan-in

g

— the standard He/Kaiming initialization for RelLU.

Recap

» Softmax gradient: J = diag(y) — yy' = 9¢/0h, =y — .

» Parameter grads: 90¢/0W; = 6,~h7_1, 0l/0b; = §;.

> Reference-aligned steps: Var[z;] = D;_1 Var[w;]JE[h? ;] and E[z?] = J Var[z_4].
» He init (ReLU): Var[w] = 2/fan-in.

