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1 Abstract

Inverse imaging problems are common in science, and can be approached with stochastic variational
amortized inference. Here we focus on one such inverse problem, single particle electron cryomi-
croscopy (cryo-EM) of biomolecules, and employ a probabilistic programming perspective where the
decoder uses physics equations of the forward model of image formation to map latents to observes
(i.e. simulated data, including noise), and the encoder predicts the posterior of the latents from
observes (i.e. here I use simulated data to stand in for experimentally measured data). The cryo-EM
forward model employed accounts for the effect of the microscope (contrast transfer function), the
unknown global 3D pose of the biomolecule, and continuous single particle heterogeneity. I model
heterogeneity as an eigendecomposition of an energy based model to second order whose Hessian
has a convenient analytical form based on distances between pseudo-atoms. Learning more of the
latent space in the forward model from cryo-EM images should allows the conformational ensemble
of atomic positions of a biomolecule to be disentangled, which are of basic scientific interest and
have applications in domains such as material design and drug development–small molecule and
biologics–in the pharmaceutical industry.

2 Introduction

Biomolecular structures are the angstrom-scale formal causes that underlie the unity of a whole
living organism. Structural biology represents the flow of energy and information of molecular life
in a visual manner. Humans find images and movies of biomolecules intuitive for thinking about
causal relationships that mirror physical interactions they are familiar with, and that corresponds
to physical modelling that draws on the theories of electrostatics and statistical thermodynamics
[6]. Since Perutz and Kendrew’s Nobel in 1962, various Nobel prizes have been granted for solving
atomic resolution bio-molecular structures, and the Nobel coverage emphasizes the importance for
basic biological discovery and applied biomedical application, including the Chemistry Nobel in
2017 "for developing cryo-electron microscopy for the high-resolution structure determination of
biomolecules in solution".

While some structural biology techniques are spectroscopic, single particle electron cryomicroscopy
(cryo-EM) is an imaging technique for obtaining magnified images of biomolecules. In a typical cryo-
EM experiment a physical liquid sample is prepared of a solubilized biomolecule–each biomolecule
has ∼ 104 − 105 atoms–in a biochemically homogenous/purified aqueous environment. A few
microliters are placed on an electron microscope grid, thinned out through wicking, immobilized
through cryogenic freezing, spread on a 2D supporting grid, and imaged in a transmission electron
microscope [7]. Thousands of images (∼ 40002 pixels), each with hundreds of copies of the same
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type of biomolecule ("particle", about 1002 − 5002 pixels) are captured at different 3D poses, and
data processing algorithms reconstruct the underling atomic structure.

Pharmaceutical companies and academic research institutes have heavily invested in equipment and
personnel for cryo-EM over the last ∼ 5−7 years. After months or even years of biochemical sample
optimization, a homogeneous biomolecular preparation is imaged with a high resolution transmission
electron microscope, and data processing algorithms reconstruct the underling atomic structure, or
distribution of structures.

I propose a method to learn an ensemble of atomic structures directly from raw 2D cryo-EM
measurements, performing inference on continuous conformational heterogeneity, the defocus of the
contrast transfer function (CTF), and global rotation. I choose to approach this problem in a stochastic
variational amortized inference setting, using the deep probabilistic programming framework Pyro
[23, 4, 12]. I take a stochastic variational amortized inference approach (similar to [18]) as a point of
departure, with the following features:

1. Perform inference on global 3D pose (rotation in SO(3)), conformational heterogeneity, and
CTF defocus through deep encoder neural network architectures.

2. Scale the forward model to tens of thousands of pseudo-atoms in a large box size, with an
fast approximate projection of the biomolecular potential via a Gaussian kernel applied to
pseudo-atoms.

3. Characterize the posterior of the global rotation with a mixture of Projected Normal dis-
tributions – a directional distribution similar to the Von-Misses or Kent distributions, but
reparametrizable and therefore suitable for training [9].

3 Related Work

Currently, most structural biology research project uses various software packages [19, 17, 22, 15]
to transform raw 2D microsocpe images into one or more voxelized 3D maps. The "reconstruction
problem" that averages 2D images together into a 3D map of the Coulumbic density historically grew
out of a tradition of digital signal processing and computerized tomography [10, 20, 15]. Instead of
representing the biomolecular potential as a 3D voxelized arrray, recent work has focused on an atom
or pseudo-atom encoding [26, 18].

In Cryofold [26], Zhong and co-authors represent the biomolcule as a set of coarse grained pseudo-
atoms. They learn each Gaussian centre, and global intensity and global Gaussian variance, which
control how intense and how spread out the Gaussian kernels are. They use a variational auto-encoder
(VAE) to learn offsets to Gaussian centers. The loss term includes harmonic terms that restrain
(1) the protein (a type of biomolecule) backbone and side chain pseudo-atoms and (2) consecutive
backbone pseudo-atoms each around a respective global reference value, which takes into account
the polymeric nature of a protein polypeptide. No source code is available.

In atomVAE, Rosenbaum and authors from DeepMind proposed a method that learns a conformational
ensemble from synthetic cryo-EM measurements using a variational auto-encoder approach [18].
They used a multilayer perceptrons (MLP) neural network architecture to learn the 3D pose and
conformation of an coarse grained atomic representation, where each amino acid residue is one
Gaussian sphere. The sampled pseudo-atoms are projected through a simple model of image formation
that treats each residue as a spherical Gaussian density. The simulated image is convoluted with
the (known/fixed) microscope parameters, which are not learned. All distributions used to sample
are Gaussian. The paper references a backbone continuity loss, to regularize the output of the
conformational encoder and thus keep it close to the reference conformation. However no details
(equations, etc) are given. No source code is available.

4 Method

4.1 General overview

The forward model is a physics aware decoder that maps the latent space of physically interpretable
distribution parameters through linking functions that act as a high fidelity stochastic physics simulator,
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which incorporates information about the distribution of unknown parameters. The inverse guide
function that maps from observable to latent is a series of deep neural net encoders, or a guide for
stochastic variational inference in Pyro’s pyro.infer.SVI [4]. Here the rotation and microscope
effects are typically considered nuisance variables for most research questions, and the structural
biologist is interested in characterizing the posterior on the conformational heterogeneity. Under the
problem formulation chosen, each particle maps to a distribution of atomic states characterized by
the posterior of the conformational heterogeneity, which can be sampled from, and this is represented
by the distribution of the scalar component of perturbation eigenvector fields from a type of elastic
network models called anisotropic network models, and will be referred to as "normal modes". A
graphical model is shown in Figure 1 and a schematic of deep neural network architecture in the
learned posterior is shown in Figure 2. Here I simply use three neural networks (one for each of
the three latents normal mode, pose, CTF) with convolutional neural network (CNN) and MLP
based architecture with no conditioning or weight sharing, an encoder architectures similar to those
previously published in [16, 13].
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Figure 1: Graphical model of the stochastic physics simulator of cryo-EM image formation. M ∈
R3na is the center positions of Gaussian pseudo-atoms, that are additive perturbations to a reference
conformation M0 along a vector fields um defined by the engendecomposition of its Hessian with
respect the directional derivatives of each pseudo atom centre. The fixed eigenvector(field) is scaled
by a sampled Gaussian with prior variance σαm

. µq is a prior mean and concentration of a unit
4-vector that is converted into a 3D rotation matrix Ri ∈ R3×3. zi is defocus in point spread function
of the objective lens of the electron microscope and is sampled from a Gaussian with mean and
variance µz, σ

2
z . The final measurement Yi is a projection onto a 2D gridded array (square pixelated

detector) of the Gaussian (of width σa) blobs around the atom centres, with additive Gaussian noise
with mean zero and variance σ2

n. Np particles are iid.

4.2 Stochastic forward model (decoder)

The observed image Y is simulated by a stochastic forward model, summarized by Figure 1
and the model outlined in Algorithm 1, with further detail given in Appendix-1. To simulate
data from the model, one simply returns samples Y_dist.sample(), as the observe statement
pyro.sample(’noise’,Y_dist, obs=...) is used in variational inference (see section 4.3), and
not to simulate data.

4.3 Stochastic variational inference

Stochastic variational inference in the framework provided by the deep probabilistic programming
language Pyro (pyro.infer.SVI) minimizes the evidence lower bound:

ELBO ≡ Eqϕ(z) [log pθ(x, z)− log qϕ(z)] (1)

3



Figure 2: The deep neural net guide / encoder consumes the measured observable and maps this to an
interpretable latent space. It contains a neural network for each latent and a chosen distribution. The
architecture is three convolution modules (Conv2d, ReLU, Conv2d, ReLU, MaxPool2d), which are
flattened and input to three linear layers MLP of size 2048 (for 32 pixel sized input image). The final
output size (-) is 2 for the CTF neuran network (µz, σz), 2 for the normal modes (µα0 , σα0)), and
10 for the mixture of poses (8 for the direction of µqi , i = 1, 2, 2 for their magnitudes, two for the
mixture weights). In total each neural net has 1.6 million parameters.

Algorithm 1 Stochastic forward model of image formation
α0 = pyro.sample(’enm_scale’, N (0, σα0))
M = M0 + α0u0

q = pyro.sample(’rotation’,PN (µq))
R = rotation_from_quaternion(q) ▷ pytorch3d.transforms.quaternion_to_matrix
V2D = project(M, σa) ▷ fast approx. projection with torch.sparse_coo_tensor
zi = pyro.sample(’defocus’,N (µz, σz))
CTF = make_ctf(zi)
Y_dist = N (V2D ⊛ CTF, σn)
Y = pyro.sample(’measurement’,Y_dist, obs=...) ▷ FFT based convolution

Here the stochastic forward model is pθ(x, z) = pθ(x|z)pθ(z) is called a model in Pyro. The learned
posterior is qϕ(z), is called a guide. The guide is the encoder that consumes the measured data and
maps it to latent space: qϕ(z). Here the model does not contain any trainable parameters and θ ∈ {}.

Here the latents are the return of the pyro.sample statements. Notice that they are named with
a string label in 1-1 between model and guide. The model also contains an additional observe
statement: pyro.sample(...,obs=...), which is not included in the guide. This book-keeping a
key feature of a probabilistic programming language, and will be done for each trace (execution of
the probabilistic program) through the computational graph defined by the model.

Every gradient step in pyro.infer.SVI calls the stochastic forward model, and go through the
deterministic computations in it. The structure of the guide is shown in Algorithm 2, and further
detail, along with the neural network architectures are in outlined in the Appendix-2.

4.4 Training

Training / optimizing the objective with pyro.infer.SVI is as simple as passing it a
model, guide, optimizer, and loss. Here the Trace_ELBO loss is used. Here we used the
pyro.optim.ClippedAdam optimizer with default parameters, unless otherwise specified.

The parameters in the guide are registered for optimization with pyro.module. To "freeze weights"
one simply omits this, and they are detached from the computational graph (i.e. .detach() in
Pytorch). The pyro.optim.ClippedAdam optimizer with a learning rate in the range of 10−2−10−7,
large batch sizes (50-2000) are used, with 10000 training examples (i.e. no test/train split, only
training).
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Algorithm 2 Deep inverse guide to learn the posterior
Require: fz, fα0 , fq ▷ neural networks
Require: int nmix
µz|data, log σz|data = fz(data)
zi = pyro.sample(’defocus’,N (µz|data, σz|data))
µα0|data, log σα0|data = fα0

(data)
α0 = pyro.sample(’enm_scale’, N (µα0|data, σα0|data))
µq1:nmix|data , log c1:nmix|data, logw1:nmix|data = fq(data) ▷ mean, conc., mixture weights
mix_dist = Cat(w1:nmix|data)
comp_dist = PN (µc1:nmix|dataq1:nmix|data)
qmm_dist = MixtureSameFamily(mix_dist,comp_dist) ▷ unit quat. mixture model

▷ torch.distributions.MixtureSameFamily
q = pyro.sample(’rotation’,qmm_dist)

5 Data Sets

I generated synthetic data from using the stochastic forward model of same biomolecule as in [18],
Aurora A Kinase, but with a smaller box size (32 pixels instead of 64), and only every second alpha
carbon (PDB: 1OL5), and thus the protein is coarse grained as 133 pseudo-atoms. Unless otherwise
noted, data was generated with the same parameters in the model (its prior): µz = 20, σz = 5 for
the CTF defocus, µαm = 0 ∀m, σα0 = 1 and σalpham = 0 ∀m ̸= 0 for the normal modes, and
σn = 0.06 − 0.3 for the measurement noise, corresponding to a signal to noise (signal variance /
noise variance) of 20. A pose prior µq = (0, 0, 0, 0) was used while the simulated data used µq

such that µq

||µq||2 = (1, 0, 0, 0) with ||µq||2 being various concentrations for the pose ranging 0-1000.
For the deterministic projection a Gaussian spread of σa = 0.8 pixels was used and densities were
truncated to within a 52 pixel patch centred at each atom. Representative simulated data is shown in
Figure 3.

6 Experiments

6.1 Stochastic Forward Model

Each gradient step depends on an evaluation of the stochastic forward model, which involves
stochastic sampling from distributions characterizing the latents, and deterministic computations
defining the distributional parameters. Thus compute efficiency is critical. The compute bottleneck is
the projection of the mean atom positions to a 2D array the same size as the simulated image (Table
1). This speed up has been achieved by precomputing the offsets of pixel indeces around each atom,
and using a data structure in PyTorch for sparse uncoalesced (repeated indices for when density from
pseudo-atoms overlap on the same pixel) tensors on the GPU.

Table 1: Stochastic Forward Model Runtime

Subroutine Time (µs/projection)
normal mode 2-3

Rotation 2-3
3D → 2D projection 34-36

CTF 10-13
Shot noise 30-33

Runtime for na = 133 pseudo-atoms, batch size of 1000 (projections/batch), npix = 128, σa = 2
(pix), 3D→2D projection truncation box length n_trunc= 6σa = 12 (pix).
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Figure 3: Simulated data with ground truth labels. Three examples are shown for simulated data with
only one latent (columns 1-3), or all three applied (last column).

6.2 Inferring individual latents

As a proof of principle, synthetic data was generated with only one latent variable (either CTF, normal
mode, or pose) and then the posterior was characterized through training. Learning the CTF (with
no normal mode perturbation and fixed pose) and the normal mode perturbation (with CTF = 1,
fixed pose) was feasible to a high correlation of the sampled latent to the ground truth value (pearson
correlation > 0.9).

In contrast, characterizing the pose (with CTF = 1, no normal mode) ran into numerical stabil-
ity issues scoring pyro.distributions.ProjectedNormal (Figure 4) and the Appendix (Fig-
ure A1). While training, scoring the Projected Normal resulted in nan being returned from the
ProjectedNormal.log_prob, which then propagated to the neural network weights, and then the
returned distributional parameters for the ProjectedNormal that were all nan (every element). The
following aggrevated this issue: less shot noise, a more concentrated ProjectedNormal prior, larger
step size, smaller batch size. In order to overcome this, the returned (log) concentrations from fq were
clamped in the guide before being making the mixture of Projected Normals. The concentration was
clamped such that any sample should return a finite log_prob, which turned out to be ∼ 4.13, which
is still fairly spread out (Appendix Figure A1). The posterior distribution was therefore prevented
from becoming more sharply peaked, and samples are spread out such that the reconstruction would
be inaccurate. I am currently in contact with he Pyro development team and working on a numerically
stable fix (Appendix 4).
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Figure 4: Samples from the individually learned latents are close to their ground truth values: left
column pose, middle normal mode, right CTF defocus. For pose prediction, the noise free projection
from the predicted pose (mean rotation for the maximal mixture component) is shown above the
simulated image (with noise).

6.3 Inference of multiple latents

At fixed pose (i.e. no rotation applied in the model or guide, and the parameters of fq not optimized)
the CTF defocus and normal mode component could be inferred accurately (Figure 5). A learning
schedule was used with a learning rate of 0.0005 where fα0

was optimized for 20 epochs (batch
size 500, 400 gradient steps), until the predicted normal modes had high correlation (Figure 5, left
panel). It was important to not optimize fz at this point to avoid the CTF from becoming poorly
characterized - the known µz in the guide keeps the fluctuating around reasonable values (Figure 5,
left panel). Then the weights of fα0

were frozen and fz was optimized for a similar 20 epochs, after
which is also had high correlation (Figure 5, right panel).

Figure 5: All latents can be jointly inferred from the data. Samples from the learned posterior are
close to their ground truth values, and spread with increased noise. Note that in the right panel the
have less points plotted that the left due to low GPU memory issues after training.

7 Conclusion and Future Work

The overarching goal of this physics aware approach is to incorporate information from past charac-
terization of the latents (e.g. whole micrograph CTF parameter estimates, noise level, atomic model
estimate or past published structure) in a principled manner, and jointly infer a latent space that is
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disentangled through an interpretable forward model that is a physics simulation of the imaging
process.

Here I have shown for the first time inference of the CTF defocus using a deep neural network, used
a mixture model of 4 dimensional Projected Normals to characterize the posterior of 3D pose, and
jointly predicted normal mode based conformational heterogenity and CTF. This method can be
readily extended to incorporate more complex forward models, include conditioning in the guide,
and alternative neural network architectures. However some issues first need to be overcome.

In order to infer the pose together with the CTF defocus and component along the normal mode(s),
the numerical instabilities in the log_prob of the Projected Normal should be overcome in order to
more tightly characterized the posterior of pose. Furthermore, another distribution altogether could be
used. For instance previous studies have used s2_s2 encoding of rotations, one future area to explore
is sampling R6 with Gaussian distributions, and converting this to a rotation as in [18, 13, 27].

Using (multiple) ANM normal modes reduces the degrees of freedom of the atomic centers to
scalars along fixed vector fields, and the relative ranking of the modes allows only a few degrees of
freedom to express some physically plausible conformational heterogenity. Here only one has been
used as a proof in principle, but could be extended to several modes, which typically capture some
dominating breathing motions [5] of proteins in thermal equilibrium, but not things like large rigid
body rototranslations or subtle rearangement of local catalytic sites [14, 25, 3]. This is arguably more
physically interpretable than the way the conformational heterogeneity was output in [18] by the VAE
decoder that output a final linear layer ∈ R9·Nres . The nine (9) components for each residue are used
to define the translation (R3) and rotation (R6 → R3×3 through Gram-Schmidt orthogonalization).

Some disadvantages of the normal modes are (1) if the reference atom position M0 is updated, the
normal modes need to be recomputed with an expensive engendecomposition (e.g. SVD on hundreds
to thousands of nodes). (2) If pseudo-atoms are not in proximity to a cluster of other psdueo-atoms
the eigenvector at that location has a very large magnitude - e.g. flexible loops. In practice these
can be and often are "trimmed" in a pre-processing step, or anchored as a rigid body [21]. This
suggests that the low modes will tend to express flexible and floppy regions of biomolecules which
have small projected potential associated with them and therefore may be hard to learn because the
sigmal for them in the projection is small. It may be possible to learn the normal modes themselves,
by predicting an additive pertubation vector field as an output from a neural network.

In conclusion, by using a probabilistic programming framework such as Pyro, I am striving to achieve
a rapid development cycle that easily allows researchers to extend the forward model to higher
levels of theory and more physically accurate measurement/noise models; to model conformational
heterogeneity with an appropriate level of granularity/coarseness; to input domain knowledge of
electron optics priors and priors on atomic conformations. These sources of inductive bias should
make the optimization more favourable, and inference more interpretable. For structural biologists,
interpretability means representations of the microscopic formal causes in a familiar format that is
shared between imaging and spectroscopic modalities, such as atomic conformations as the 50+ years
of the Protein Data Bank attests to [2, 1, 8, 24]. The payoff of interpretability is to more deeply
engage with the angstrom level mysteries of living nature that challenge our scientific imaginations
to respond with principled rigour [11].
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Appendix: Physics aware joint inference for the
cryo-EM inverse problem: normal modes, global 3D

pose and CTF defocus.
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1 Stochastic forward model

1.1 Conformational heterogeneity

The conformational heterogeneity can be understood from the perspective of an energy model
physically inspired by each pseudo-atom being a "ball" attached by "springs" to other pseudo-atoms
[2].

P(M) = Z−1 exp[−βU(M)] (1)

Uanm =
γ

2

∑
ij

(rij − r0,ij)
2 (2)

The anisotropic network model has energy Uanm, where rij is the distance between pseudo-atom pair
ij in the sample M, r0,ij is the corresponding reference distance in M0, and γ is a spring constant.
The second derivative elements of the 3na × 3na Hessian has a convenient analytical form with 3× 3
symmetric ij submatrices given by

Hij =
γ

r2ij

 x2
ij xijyij xijzij

xijyij y2ij yijzij
xijzij yijzij z2ij

 (3)

And the ii diagonal submatrices given by the row/column sum Hii =
∑

j ̸=i Hij . The anisotropic
network model is anisotripic in the sense that each xyz direction has its own Hessian component and
can be different–this makes it directional. The probability is then approximated by a second order
Taylor expansion about a reference pseudo-atomic configuration M0:

U(M) = U(M0)−
1

2
(M−M0)

TH(M−M0) (4)

The eigendecomposition of H = UΛ−1UT, enables to project any pseudo-atom configuration M
onto components of U, because αm = uT

m(M − M0)∀m. Thus M is a deterministic change of
basis to the set {αm}3na

1 .
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This exponential pdf reduces the probability to a diagonal multivariate Gaussian through the orthogo-
nality of the basis.

P(M) = P({αm}) (5)

= (det [2πΛ])−1/2
∏
m

exp−β
α2
m

λm
(6)

=
∏
m

P(αm) (7)

Thus a sample of pseudo-atomic positions is obtained by additively perturbing the mean pseudo-
atomic positions M0 ∈ R3na by a perturbation vector, uperturb =

∑
m αmum ∈ R3na , where each

αm is sampled from a Gaussian distribution, and each elastic network mode are fixed for constant
M0.

M = M0 + uperturb (8)

In the simplified model employed here, uperturb is restricted the single lowest mode u0, ranked
by eigenvalue λ0 < λm, ∀ m ̸= 0, and thus M is being sampling according to the distribution
p(M|σα0 , {σαm = 0}m ̸=0) = p(α0|α1 = 0, ..., αna−1 = 0) ∝ N (αm|0, σαm = λ0

2β )

Thus I explicitly compose the Hessian H of a reference conformation M0, compute its low mode
eigenvectors and values, and keep this precomputed in memory. During stochastic simulation I
sample a Gaussian scalar and additively perturb the reference conformation. Thus stochastic sampling
of M is as fast as sampling Gaussians, scaling their corresponding eigenvectors, summing them to
one eigenvector, and adding this perturbation to the reference conformation M0.

1.2 Global rotation

A global rotation is sampled from the uniform distribution on SO(3), and the rotated pseudo-atoms
are projected along the imaging axis: Rq; q ∼ PN [µq], where q is a unit quaternion and which
is sampled by the Projected Normal distribution [4]. In contrast to voxel based rotations, and
Fourier slices, the potential is parametrized by pseudo-atoms in R3, where each pseudo-atomic xyz
poisition µk ∈ R3 are simply rotated through fast vectorized matrix multiplication: M → RM with
{RM}k = Rµk

RM =

 Rµ1
Rµ2
...

Rµna

 (9)

1.3 Projection

The 2D projected potential is the integral of the 3D potential, along the direction of the imaging
axis z: V2D =

∫
dz V (x, y, z). The potential is assumed to be an additive sum of non interacting

pseudo-atomic densities, via a Gaussian kernel: V (x, y, z) =
∑na

k=1 exp[
−||(x,y,z)T−Rµk]||2

2σ2
a

]. Since
the size of pixels on the order σa, and a Gaussian is extremely close to zero after a few σa. In
particular exp[−(nσa)

2

2σ2
a

] = exp(−n2/2) = 0.01 for n = 3 or 0.0003 for n = 4, and so I truncate the
Gaussian to zero after several σ. I leverage this for a GPU sped up projection deterministic linking
function, which can project tens of thousands of pseudo-atoms to a 5122 sized image in hundreds of
µ seconds, and which does not experience a memory bottleneck for large box sizes.

1.4 Microscope optics

The microscope’s point spread function, i.e. the contrast transfer function, CTF = sin[2πχ], is here
assumed to be a circular symmetric polynomial in frequency k, although our method can be extended
to higher order abberations [3].

χ =
−zλk2

2
− Csλ

3k4

4
. (10)
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The wave length λ and spherical abberation Cs are assumed to be known, global, and fixed (distributed
by the delta distribution). The defocus z is distributed by a Gaussian centred at a known mean z0,
given, for example from whole micrograph CTF estimation: z ∼ N (µz, σz).

The CTF is applied in Fourier space via the Fast Fourier Transform (FFT). This means that each
simulation of the forward model involves an FFT on the simulated projection, constructing the CTF
given the sample of the defocus, element wise multiplication, and an inverse Fast Fourier transform.

1.5 Measurement

The distributional parameters to the final observed image Y is the 2D projected potential, V2D =∫
dz V (x, y, z), convoluted with a circular symmetric sinusoidal CTF = sin[2πχ].

The effects of the detector (shot noise, point spread function), electronic read out noise, solvent noise,
sample damage and unmodeled density ("stuff") are all modelled by additive white Gaussian noise.

Y ∼ N (Y|µY = V2D ⊛ CTF, σn) (11)

1.6 Probabilistic structure

Each measurement Yi is i.i.d with global rotation Ri, defocus scalar zi, and conformational hetero-
geneity scalar αi being i.i.d. to each other, and factorizing as

P(data|model) = P({Yi}|{αi}, {Ri}, {zi}) (12)

=
∏
i

P(Yi|αi,Ri, zi) (13)

=
∏
i

P(Yi|αi,Ri, zi) (14)

=
∏
i

P(Yi|µY, σn)P(αi)P(Ri)P(zi) (15)

Such a forward model yields Np = 104 − 106 i.i.d simulated particles.

2 Inverse guide (encoder)

In Pyro’s stochastic variational inference setting, the model (decoder) can express a stochastic
forward model of image formation with arbitrary control flow, and this physics-awareness makes it
interpretable. The guide can contain rich distributions to characterize the posterior distribution of the
unobserved latent variables in the computational graph, and learn the parameters of the distributions
with deep architectures. Including learnable parameters in the model generalized amortized inference
to model learning. Choosing the architecture of the guide, and the control flow of the inverse function
corresponds to a choice on the inverse computational graph. For instance, one can first sample
the microscope parameters, and then incorporate this sample and the observed data into another
deep net that samples the pose, and then incorporate the sample of the microscope parameters and
pose into another deep net that samples conformational heterogeneity. This was done for pose and
conformation in [7] When possible, the observed data can be modified to "undo" the effect of latent
variable, e.g. unshifting or un-rotating an in-plane shift of 2D rotation, deconvolution of a point
spread function.

In Pyro’s pyro.infer.SVI the guide passes the samples to the model, which just uses them and
evaluates the joint probability–the likelihood and prior under the distribution in the model. So the
pyro.sample statements in the model should be thought about as instructions to "go to guide and
get sample".

In the guide a pyro.sample statement is needed for every pyro.sample statement in the model,
with the names, but not necessarily the type of distribution, lining up 1-1. There are no observe
statements in the guide. The distribution type in the guide is chosen so that the samples from it fall in
the support of the model’s distribution. So, for example, a Gaussian distribution in the guide would
not be a good match for a uniform distribution in the model, since a sample from the guide outside
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of the support of the Uniform would be impossible and the .log_prob for a zero probability event
would hypothetically be negative infinity.

I use a mixture of ProjectedNormal for the rotation. A multimodel distribution of the pose
posterior would be possible to characterize with a mixture distribution, and if there were many
modes (6-12 or higher is not unseen in membrane proteins and bacterial injection systems) for higher
symmetry specimens (discussed in [6, 5]) the mixture model could have increased components to
better characterize higher symmetries.

3 Training

Other versions of the loss are available in Pyro besides Trace_ELBO, for when the distributions aren’t
reparametrizable (do not have an .rsample() method) and require approaches like REINFORCE to
esimate the gradient. See discussion http://pyro.ai/examples/svi_part_iii.html).

4 Projected normal numerical stability

During training the returned distributional parameters from neural networks characterizing the pro-
jected normal distribution frequently returned a tensor of all nan valuess. Upon further investigation
and discussion with the Pyro development team 1, the cause is likely to be a numerically unstable
implementation of the log_prob. Uniform samples from SO(3) have a log_prob of nan values
when the distribution they are scored under has concentration > 4.13, which is fairly diffuse over
SO(3) as shown in Figure S1.

Figure 1: Rotations were projected onto the sphere along the vertical axis: R(0, 0, 1)T at various
concentrations (left and right panels; 1000 points plotted). The log_prob of Projected Normal
distributions of various concentrations (3.8, 3.9, 4, 4.1, 4.2, 4.3, 4.4) were computed for 106 samples
(from a Projected Normal with zero concentration) and the percentage of nans returned was (0, 0, 0,
0, 0.0275, 0.1111, 0.2588)% respectively (center panel).

The ELBO loss term itself involves scoring samples (from the guide) with the prior distribution in
the model (zero concentration) and the posterior distribution in the guide (learned concentration).
While this term should not evaluate uniform samples by a concentrated distribution, the gradient term
is a likely candidate and is consistent with this issue arising during training even when the learned
posterior concentration is clamped to be < 4.13, for example at 4. See [1] ref for a similar issue, and

1https://forum.pyro.ai/t/svi-nans-from-guide-when-trace-elbo-drops/4102/2
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comments on the numerical instabilities in the modified Bessel function. The numerical instabilities
are likely to arise from the para_part in _log_prob_4 2.

Listing 1: Pyro Projected Normal: Suspected numerical instability in
pyro.ProjectedNormal._log_prob_4
p a r a _ p a r t = (

(2 + t 2 ) *
t 2 . mul ( − 0 . 5 ) . exp ( ) / (2 * math . p i ) ** 0 . 5 +
t * (3 + t 2 ) *
(1 + ( t * 0 . 5 * * 0 . 5 ) . e r f ( ) ) / 2

) . l o g ( )

This is
log[fsq ∗ fexp + fcub ∗ ferf] (16)

where

fsq = 2 + t2 (17)

fexp =
1√
2π

exp[
−t2

2
] (18)

fcub = t(3 + t3) (19)

ferf =
1

2
(1 + erf[t/

√
2]) (20)

Scoring low probability events corresponds to "large" negative t, where large is t < −4.10. Taking a
closer look into the numerical pieces shows low probability events occur when the additive terms
cancel each other out, fcub ∗ ferf = −fsq ∗ fexp, and we try to log a negative number. However, the
integral that gives rise to this, 1√

2π

∫∞
0

dx x3 exp[−(x − t)2/2] should be non-negative and only
approach zero as t → −∞, when we handle the asymptotic analytically. The fcub ∗ ferf piece lacks
numerical stability for large negative t likely because fcub sharply increases while ferf decreases, and
their multiplication is too negative, making the log negative.

After bringing this to the attention of the Pyro development team, and providing evidence in some
worked examples illustrating numerical instability 3 the pull request was submitted by Fritz Obermeyer
to "Numerically stabilize ProjectedNormal.log_prob() via logaddexp" 4. However, this initial fix did
not work for negative t, and further work needs to be done. Numerically stabilizing it could using a
logsumexp implementation that can factor out a common multiplicative factor fo fcub and ferf to
make their produce more stable, and an additive factor of fsqfexp and fcub ∗ ferf to make taking the
log more numerically stable.

References
[1] Tim R. Davidson, Luca Falorsi, Nicola De Cao, Thomas Kipf, and Jakub M. Tomczak. Hyper-

spherical variational auto-encoders. 34th Conference on Uncertainty in Artificial Intelligence
2018, UAI 2018, 2:856–865, 2018.

[2] Ken Dill, Robert L. Jernigan, and Ivet Bahar. Protein Actions. Garland Science, New York, NY :
Garland Science, Taylor Francis Group, LLC, [2017] |, sep 2017.

[3] Robert M Glaeser, Eva Nogales, and Wah Chiu, editors. Single-particle Cryo-EM of Biological
Macromolecules. IOP Publishing, may 2021.

[4] Daniel Hernandez-Stumpfhauser, F. Jay Breidt, and Mark J. van der Woerd. The general projected
normal distribution of arbitrary dimension: Modeling and Bayesian inference. Bayesian Analysis,
12(1):113–133, 2017.

2https://docs.pyro.ai/en/dev/_modules/pyro/distributions/projected_normal.html
3https://colab.research.google.com/gist/geoffwoollard/7422a99189bb26a1189f053cc39b1bf0/

pyro_projectednormal_numerical_stability.ipynb
4https://github.com/pyro-ppl/pyro/pull/3071

5

https://docs.pyro.ai/en/dev/_modules/pyro/distributions/projected_normal.html
https://colab.research.google.com/gist/geoffwoollard/7422a99189bb26a1189f053cc39b1bf0/pyro_projectednormal_numerical_stability.ipynb
https://colab.research.google.com/gist/geoffwoollard/7422a99189bb26a1189f053cc39b1bf0/pyro_projectednormal_numerical_stability.ipynb
https://github.com/pyro-ppl/pyro/pull/3071


[5] Axel Levy, Frédéric Poitevin, Julien Martel, Youssef Nashed, Ariana Peck, Nina Miolane, Daniel
Ratner, Mike Dunne, and Gordon Wetzstein. CryoAI: Amortized Inference of Poses for Ab Initio
Reconstruction of 3D Molecular Volumes from Real Cryo-EM Images. mar 2022.

[6] Ruyi Lian, Bingyao Huang, Liguo Wang, Qun Liu, Yuewei Lin, and Haibin Ling. End-to-end
orientation estimation from 2D cryo-EM images. Acta Crystallographica Section D Structural
Biology, 78(2):174–186, 2022.

[7] Dan Rosenbaum, Marta Garnelo, Michal Zielinski, Charlie Beattie, Ellen Clancy, Andrea Hu-
ber, Pushmeet Kohli, Andrew W. Senior, John Jumper, Carl Doersch, S. M. Ali Eslami, Olaf
Ronneberger, and Jonas Adler. Inferring a Continuous Distribution of Atom Coordinates from
Cryo-EM Images using VAEs. arXiv, pages 1–15, 2021.

6


