
Improving Out-Of-Distribution Generalization of
Neural Algorithmic Reasoning Tasks

Sadegh Mahdavi
22542575

Abstract

Artificial Neural Networks have been successful in solving many tasks ranging
from natural language processing to computer vision. Yet, their performance is
still disappointing when training them to execute algorithmic tasks such as sorting,
breadth first search (BFS), and depth first search (DFS). This low performance
exacerbated when these networks are given test inputs of sizes larger than that of
the training data. In this project, we leverage Graph Neural Networks and propose
a method to improve the out-of-distribution generalization of neural algorithmic
reasoning tasks. Our key improvements are using a bidirectional graph neural
network and appending random features to the underlying graph. We evaluate
our method on the CLRS benchmark containing 30 algorithmic tasks and report
state-of-the art performance on this benchmark with 10.37%average improvement
over the previous methods.

1 Introduction

Algorithms have been a vital part of today’s computing systems, solving tasks ranging from schedul-
ing to finding shortest path in a real-world map. Algorithms come with several benefits, such as
performance guarantees, applicability to several tasks without any significant change, and transfer-
ability between tasks. Using them to solve tasks, however, is not straightforward in several situations.
For instance, for any task, a computer scientist has to come up with some algorithm to perform a task
and the process is hand-engineered. Moreover, to apply an algorithm on data, the raw data needs
to be processed and turned into an abstract form, which might lead to errors (e.g., turning a raw
image into a graph with edges estimated from a noisy data). Finally, some algorithms are lie in the
NP-Hard class and require exponential amount of time for execution, which makes it impossible to
execute on medium to large inputs. Coming up with run-time efficient approximate algorithms is
also challenging and sometimes requires several years of research. On the other hand, deep learning
has not only been successful in solving tasks of several domains, but also does not suffer from the
mentioned issues. A neural network contains almost zero hand-engineered features. For instance, a
transformer [3] could solve tasks of several domains with minor changes to its architecture. Moreover,
such networks are famous for their abilities in performing tasks end-to-end on raw noisy data. These
networks are also great function-approximators, having the ability to approximate any function to any
precision, given large enough capacity.

As a result, leveraging neural networks to mimic algorithms would come with several benefits of
both worlds: performance guarantees of algorithms, end-to-end training of neural networks, function
approximation of neural networks for time-complexity infeasible algorithms, and benefiting from
GPUs and TPUs for faster parallel execution of algorithms. Recently, researchers have been working
on this task and calling it Neural Algorithmic Reasoning [4].

Previous works have shown that performing such tasks is challenging, especially when the model
is evaluated on a test dataset with larger size than train dataset (i.e., fails to generalize to out-of-
distribution data) [6]. For example, while deep neural networks could be trained to perform sorting
on sequences of a given length, when faced with sequences of four times larger length, they fail



badly and poorly generalize. In this project, we seek to improve this out-of-distribution (OOD)
generalization of such tasks. To this end, we will propose a model with a graph neural network
architecture that acts as a neural algorithmic executor to execute algorithmic reasoning tasks. Finally,
we show that our model outperforms the baselines on the CLRS[6] benchmark which contains several
algorithmic reasoning tasks inspired by algorithms of the famous CLRS book.

2 Related Work

Recently, several works have been proposed to tackle challenges on the intersection of algorithms
and machine learning. [10] studied the relation between neural network architecture decision and
the accuracy on the underlying algorithmic task. [11] proposed a tweaked variant of transformers to
perform subroutines using neural networks. Although this work puts a step forward towards using
neural networks as computational subroutines and perhaps enabling execution of algorithms on GPUs
and TPUs (instead of CPUs), there is still the need for hand-engineering and putting together several
pieces of these algorithmic engines. Moving towards a more general-purpose method, [5] proposed a
framework to mimic individual steps of algorithms using an algorithm-agnostic processor. Despite
proposing a general recipe for all kinds of algorithms, the processor introduced in the paper operates
on intermediate steps of the algorithms, therefore making it challenging to apply it end-to-end, and
when it is applied end-to-end, the results on larger size inputs are not promising. The authors of [7]
proposed an architecture that operates on a selective set of nodes and hence brings sparsity, but again,
their approach is based on supervision on intermediate steps of the algorithm.

In search of a comprehensive and unified benchmark for comparing proposed methods on algorithmic
reasoning tasks, the authors of [6] proposed a benchmark containing 30 algorithmic tasks, ranging
from graph-based tasks such as BFS and Dijkstra, to scheduling and sorting tasks of sequences.
According to the baseline results reported in the benchmark, current well-known graph neural
network-based tasks lack the inductive bias of performing such algorithms and show poor results on
OOD data. This is the most relevant work to ours, since our setting is similar to theirs and we seek
to find a more expressive processor that could tackle the challenge of OOD generalization on this
benchmark. The baseline of the benchmark utilizes intermediate steps of algorithms (calling them
hints) in the training phase, and number of underlying intermediate steps at test time. This setting is
restrictive since (1) not all algorithms contain reasonable hints or number of hints (e.g., NP-Hard
algorithms) (2) when translating sequential algorithms to a parallel message-passing framework, the
hints become implementation-dependent and are no longer uniquely determined. This might make
the task of mimicing an implementation-specific version of an algorithm even harder than the actual
algorithm itself, especially for inefficient sequential algorithms which leads to oversmoothing issues
in GNNs[12] (3) knowing number of hints at test-time is not a realistic assumption (4) enforcing
inefficient hints prevents the processing unit from benefiting from the full power of message-passing
(e.g., forcing the processor to perform an algorithm step-by-step in 2n steps while it could have been
done intelligently in n steps). Hence, we focus on proposing an end-to-end trainable neural network
without utilizing any hints, as well as using an algorithm-independent number of processing steps.
Although, our setting comes at the cost of not being able to distinguish between algorithms of the
same output (e.g., between merge-sort, quick-sort, and bubble-sort).

3 Method

We address all algorithmic problems through the lens of graphs. That is, for sequences we assume a
fully-connected underlying graph and for graph structured problems, we consider the graph adjacency
matrix itself. This allows us to benefit from the rich literature on GNNs and solve problems in a
universal manner. So, for any reasoning task, we assume a (possibly fully connected) graph G with
n nodes V = {v1, v2, . . . , vn} and m edges E = {ei = (vi1 , vi2) : vi1 , vi2 ∈ V, 1 ≤ i ≤ m},
adjacency matrix A ∈ Rn×n, and edge features. Moreover, define N (vi) as the set of neighboring
nodes of vi. Also, for each node vi we assume a feature vector xvi ∈ Rdv (e.g., node index), for
each edge ei a feature vector xei ∈ Rde (e.g., edge weight), and finally a graph-level feature vector
xg ∈ Rdg for graph g (e.g., target scalar for binary search tree). We indicate output of the task by y
which could be a mask/pointer/categorical node/edge/graph level property depending on the task (e.g.,
pointer node level for the sorting tasks where each node points to its successor). Taking Breadth-first
search (BFS) algorithm as an example, the input will be an undirected graph, as well as a node index

2



Encode

Process

Decode

(a) Overall architecture

LayerNorm

+

FC

+

LayerNorm

GNN1GNN2

(b) Processor architecture

Figure 1: The architecture of our method. (a) shows the overall encode-decode-process architecture;
node features Xv , graph features Xg , and random features ϵv are concatenated and encoded as node
features. Edge features are fed to the processor at each recurrent step. The outputs are created after r
recursive steps using the decoder block (b) shows the processor architecture; similar to a pre-norm
transformer, but GNN layer instead of attention layer.

for the starting node. The output would be a pointer for each node, pointing to its parent in the BFS
algorithm. Therefore, set of nodes V will be the set of nodes of the underlying graph, matrix A
the symmetric adjacency matrix of the undirected graph, xvi

a pair (Indexvi , IsStartvi) for each
node vi where Indexvi denotes the index of the node, and IsStartv is a binary variable indicating
whether vi is the start node or not. Finally, the output is a pointer for each node yvi ∈ V indicating
the parent of the node after the execution of BFS.

3.1 Architecture

Our proposed method follows an encode-process-decode procedure[4]. Namely, we first encode all the
features into an embedding space using a neural network: hvi = fenc(xvi), then a processor P (which
is another neural network) is applied recursively and is supposed to perform one step of message-
passing: h(t+1)

vi = P (h
(t)
vi , h

(t)
N (vi)

, A) where h
(t)
vi is the embedding of node vi at step t. Finally, after

several steps of intermediate processing, the hidden representations of h(t)
vi would contain the output

of the algorithm. So, the outputs are computed using a neural network decoder: ŷ = fdec(xV ).
Previous methods also leverage the intermediate outputs of algorithms as a supervision, but, we
focus on an end-to-end training. We keep fenc and fdec as simple MLPs and focus on improving the
processor P .

3.1.1 Encoder

To encode the features of the given nodes, we concatenate all given node features (e.g., node index)
and all graph features (e.g., the query for binary search). Further, we append random uniform features
to the node features [2]. Therefore, the final node features would contain the following vector:

x′
vi = [xvi , xg, ϵvi ] ∀ 1 ≤ i ≤ n,

where ϵvi is a dϵ-dimensional vector with elements samples i.i.d. from a uniform distribution
U(−1, 1). Note that the random features are used as a data augmentation manner and are resampled
every time a datapoint is fed into the model. Finally, the features are encoded into a high-dimensional
space using a linear layer fenc:

h(0)
vi = fenc(x

′
vi) ∀ 1 ≤ i ≤ n.

3



3.1.2 Processor

The processor takes edge attributes and node embeddings at step t, performs one step of processing
and updates the embeddings of nodes to get the embeddings of step t + 1. As we do not use any
intermediate supervision, we keep the number of processing steps r independent of the underlying
algorithm. For simplicity, we keep it a large enough constant number.

The architecture of the processor is similar to a pre-norm transformer [9], except that it utilizes
GNNs heads instead of self-attention heads. Namely, the next step embedding is computed using the
following steps:

z1 = LayerNorm(h(t)
vi )

z2 = Concatenate([GNN1(z1), GNN2(z1)])

z3 = h(t)
vi + LayerNorm(z2)

h(t+1)
vi = LayerNorm(FC(z3)) + z3,

where h
(t)
vi , h

(t+1)
vi , z1, z2, z3 ∈ Rdmodel . Moreover, GNN1 and GNN2 are two separate graph

network blocks; GNN1 operates on incoming nodes of a graph (i.e., source to target message
passing) and GNN2 operates on outgoing nodes (i.e., target to source message passing). This
bidirectional design choice is to facilitate learning graph algorithms containing directed edges (e.g.,
DFS, DAG shortest path). For the GNN backbones, we use a general message passing neural network
analogous to EdgeConv[8]:

mvi,vj = FC([zvi , zvj , xevi,vj
]), z

′

v = max({mu,vi
|u ∈ N (vi)}) ∀ 1 ≤ i, j ≤ n,

where xevi,vj
is the edge features of the edge between node vi and vj , FC is a two-layer fully

connected neural network, and N (vi) is the set of neighbors of vi (i.e., incoming nodes for GNN1

and outgoing nodes for GNN2).

3.1.3 Decoder

After the execution of several steps of processing, the decoder fdec takes the node embeddings and
generates outputs of the underlying algorithmic task. Depending on the task, fdec is a two-layer
model.

4 Experiments

We mainly run our experiments on the CLRS benchmark. The benchmark contains 30 algorithmic
reasoning tasks. For each task, the training set contains 1000 graphs/sequences of length 16 (e.g.,
graph with 16 nodes). The validation set contains 32 graphs/sequences from the same distribution.
The test set contains 32 graphs/sequences of length 64 and same generation strategy as training. The
goal is to measure the generalization of a model on larger inputs. The graphs are generated using
Erdős–Rényi generation procedure, and all other inputs are generated uniformly at random for other
parts (see Appendix A for more details).

Implementation Details. We set dmodel = 128 as the embedding size of our architecture. We use
Adam optimizer with learning rate 0.0001 reduced to 0.00001 using a cosine annealing scheduler.
The gradients are clipped to a norm of 1.0. We fix the number of recursive steps to r = 64 steps.
Training is done for 30, 000 optimization steps and batch-size of 128. We use early stopping on
validation score and keep the model snapshot with highest validation accuracy. Since the experiments
are costly, we only run our method for each algorithm only once and do not rerun it for several seeds.

Evaluation Metrics. Each algorithmic task has a different type of output, and hence different
evaluation metric. For tasks with categorical/pointer outputs the metric is accuracy. For the rest of the
tasks with binary mask outputs, the metric is f1 metric to account for imbalanced classes. Moreover,
for models with more than one output, the score is the average of all outputs.

4



Table 1: Test scores of all 30 algorithms.
Method Ours CLRS PGN[6] CLRS MPNN[6]

articulation points 55.93 54.79 50.06
activity selector 89.05 66.40 92.98
bellman ford 55.62 66.26 66.60
bfs 94.73 87.74 82.32
binary search 17.38 25.00 21.88
bridges 64.41 31.31 30.04
bubble sort 77.29 22.80 37.50
dag shortest paths 85.55 62.35 74.80
dfs 20.65 7.03 6.20
dijkstra 55.62 76.86 73.34
find maximum subarray kadane 22.51 17.19 21.88
floyd warshall 23.02 25.92 28.17
graham scan 90.31 56.44 96.74
heapsort 77.29 27.00 33.30
insertion sort 77.29 28.32 26.66
jarvis march 90.31 58.15 95.18
kmp matcher 6.69 3.12 3.12
lcs length 85.84 60.18 57.24
matrix chain order 81.26 79.41 79.33
minimum 98.93 90.62 3.12
mst kruskal 52.96 72.51 70.47
mst prim 20.65 47.31 55.57
naive string matcher 7.08 3.12 0.00
optimal bst 74.93 73.38 72.32
quickselect 21.48 9.38 6.25
quicksort 77.29 29.39 38.04
segments intersect 89.92 80.00 91.43
strongly connected components 64.45 50.73 61.82
task scheduling 82.31 81.82 89.01
topological sort 77.69 62.79 61.87

Mean 61.28 48.58 50.91

4.1 Comparison with CLRS benchmark

In this section, we evaluate our proposed method on the 30 tasks of the CLRS benchmark and
compare with the baseline on all of them. Finally, we will report the mean accuracy on all tasks. The
results are shown in Table 1. As the results suggest, we achieve the state-of-the-art results on tasks on
OOD generalization

4.2 Infinite data regime

We run experiments on larger dataset to test if the in-distribution dataset is large enough or not.To this
end, we generate a larger version of CLRS benchmark and call it CLRS-large. This dataset contains
10 times more train/validation/test data (i.e. 10, 000 training sequences, 320 validation sequences,
and 320 test sequences). The results are shown in Table 2. Interestingly, the generalization of the
majority of tasks improve significantly with availability of more in-distribution data. Hence, the
CLRS dataset does not seem to contain enough datapoints for a model to generalize properly.

5 Conclusion

In this project, we proposed a graph neural networks-based architecture to execute algorithms using
deep learning. Our method exhibits a 10.37%average improvement over the baseline on the CLRS

5



Table 2: Test scores of our method on CLRS and CLRS-large (10X more data). While the score of
some tasks are saturated, the majority of tasks could benefit from larger in-distribution dataset to
significantly generalize out-of-distribution.

Dataset CLRS CLRS-large

articulation points 55.93 94.47
activity selector 89.05 94.72
bellman ford 55.62 84.31
bfs 94.73 98.02
binary search 17.38 17.78
bridges 64.41 96.64
bubble sort 77.29 78.42
dag shortest paths 85.55 95.01
dfs 20.65 20.03
dijkstra 55.62 84.31
find maximum subarray kadane 22.51 26.62
floyd warshall 23.02 19.20
graham scan 90.31 97.34
heapsort 77.29 78.42
insertion sort 77.29 78.42
jarvis march 90.31 97.34
kmp matcher 6.69 20.13
lcs length 85.84 86.62
matrix chain order 81.26 80.37
minimum 98.93 99.22
mst kruskal 52.96 79.65
mst prim 20.65 52.22
naive string matcher 7.08 30.79
optimal bst 74.93 72.79
quickselect 21.48 16.68
quicksort 77.29 78.42
segments intersect 89.92 96.73
strongly connected components 64.45 68.11
task scheduling 82.31 83.61
topological sort 77.69 84.12
Mean 61.28 70.35

benchmark. We further ran more experiments and showed that with more in-distribution datapoints,
the model could benefit from the data and further generalize to OOD.

Future work may work on improving the expressivity of our proposed architecture to further improve
the OOD generalization. Moreover, going beyond the message-passing bottleneck and using global
information is interesting – enabling the architecture to generalize to any graph-size without the need
to add more layers for larger sparser graphs. Finally, it would be interesting to apply our general-
purpose framework to NP-Hard problems and evaluate its performance in finding an approximate
solution those types of tasks.

References
[1] Gabriele Corso, Luca Cavalleri, D. Beaini, Pietro Lio’, and Petar Velickovic. Principal neigh-

bourhood aggregation for graph nets. ArXiv, abs/2004.05718, 2020.

[2] Ryoma Sato, Makoto Yamada, and Hisashi Kashima. Random features strengthen graph neural
networks. In Proceedings of the 2021 SIAM International Conference on Data Mining, SDM,
2021.

[3] Ashish Vaswani, Noam M. Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N.
Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. ArXiv, abs/1706.03762,

6



2017.

[4] Petar Velickovic and Charles Blundell. Neural algorithmic reasoning. Patterns, 2, 2021.

[5] Petar Velickovic, Rex Ying, Matilde Padovano, Raia Hadsell, and Charles Blundell. Neural
execution of graph algorithms. ArXiv, abs/1910.10593, 2020.

[6] Petar Veličković, Adrià Puigdomènech Badia, David Budden, Razvan Pascanu, Andrea Ban-
ino, Misha Dashevskiy, Raia Hadsell, and Charles Blundell. The clrs algorithmic reasoning
benchmark. 2021.

[7] Petar Velivckovi’c, Lars Buesing, Matthew Overlan, Razvan Pascanu, Oriol Vinyals, and Charles
Blundell. Pointer graph networks. ArXiv, abs/2006.06380, 2020.

[8] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E. Sarma, Michael M. Bronstein, and Justin M.
Solomon. Dynamic graph cnn for learning on point clouds. ACM Transactions on Graphics
(TOG), 2019.

[9] Ruibin Xiong, Yunchang Yang, Di He, Kai Zheng, Shuxin Zheng, Chen Xing, Huishuai
Zhang, Yanyan Lan, Liwei Wang, and Tie-Yan Liu. On layer normalization in the transformer
architecture. ArXiv, abs/2002.04745, 2020.

[10] Keyulu Xu, Jingling Li, Mozhi Zhang, Simon S. Du, Ken ichi Kawarabayashi, and Stefanie
Jegelka. What can neural networks reason about? In International Conference on Learning
Representations, 2020.

[11] Yujun Yan, Kevin Swersky, Danai Koutra, Parthasarathy Ranganathan, and Milad Hashemi.
Neural execution engines: Learning to execute subroutines. ArXiv, abs/2006.08084, 2020.

[12] Lingxiao Zhao and Leman Akoglu. Pairnorm: Tackling oversmoothing in gnns. In International
Conference on Learning Representations, 2020.

A Dataset Details

Here, we provide more details of the CLRS benchmark. The benchmark contains the following 30
algorithms: articulation points, activity selector, bellman ford, bfs, binary search, bridges, bubble
sort, dag shortest paths, dfs, dijkstra, find maximum subarray kadane, floyd warshall, graham scan,
heapsort, insertion sort, jarvis march, kmp matcher, lcs length, matrix chain order, minimum, mst
kruskal, mst prim, naive string matcher, optimal bst, quickselect, quicksort, segments intersect,
strongly connected components, task scheduling, topological sort.

Each tasks contains some inputs, and outputs. The benchmark also contains information about the
intermediate steps of each algorithm (calling them hints), which we do not use or discuss in our work.
Each input/output may be attributed to the following locations:

• Node: nodes attributes. For instance, node index, scalar value of an element in an array.

• Edge: edge attributes such as edge weights, edge mask (i.e., adjacency matrix).

• Graph: node/edge independent variables such as a query value for binary search tree.

Moreover, each input/output gets one of the following types:

• Scalar: scalar values. For example, values stored in an array, edge weights.

• Categorical: categorical values such as color of each node.

• Pointer: pointers to other entities. For instance, a pointer for each node in BFS and DFS
algorithms.

• Mask: binary masks on different entities such as adjacency matrix of a graph on edges or
output of a string matching algorithm on nodes.

7



Table 3: Test scores of our method on CLRS and CLRS-large with and without using random features.
Dataset CLRS CLRS CLRS-large CLRS-large
Random Features No Yes No Yes

articulation points 50.40 55.93 65.14 94.47
activity selector 75.77 89.05 91.72 94.72
bellman ford 48.05 55.62 79.03 84.31
bfs 82.03 94.73 93.97 98.02
binary search 23.24 17.38 24.53 17.78
bridges 43.47 64.41 81.06 96.64
bubble sort 43.60 77.29 62.74 78.42
dag shortest paths 81.20 85.55 94.34 95.01
dfs 11.23 20.65 21.02 20.03
dijkstra 48.05 55.62 79.03 84.31
find maximum subarray kadane 12.26 22.51 26.82 26.62
floyd warshall 13.43 23.02 11.81 19.20
graham scan 79.00 90.31 96.54 97.34
heapsort 43.60 77.29 62.74 78.42
insertion sort 43.60 77.29 62.74 78.42
jarvis march 79.00 90.31 96.54 97.34
kmp matcher 5.96 6.69 8.06 20.13
lcs length 86.39 85.84 85.40 86.62
matrix chain order 76.46 81.26 80.42 80.37
minimum 97.02 98.93 99.85 99.22
mst kruskal 29.54 52.96 66.97 79.65
mst prim 17.19 20.65 44.76 52.22
naive string matcher 6.01 7.08 8.42 30.79
optimal bst 73.08 74.93 73.62 72.79
quickselect 8.69 21.48 8.33 16.68
quicksort 43.60 77.29 62.74 78.42
segments intersect 88.57 89.92 96.50 96.73
strongly connected components 55.66 64.45 65.83 68.11
task scheduling 79.19 82.31 71.78 83.61
topological sort 76.88 77.69 84.88 84.12

Mean 50.74 61.28 63.58 70.35

B Ablation Studies

B.1 Random Features

To measure the effect of random features, we run experiment with and without the random features
on both CLRS dataset and CLRS-large dataset. the results are shown in Table 3, random features
play a huge role in the generalization of the model. However, their effect diminishes as the dataset
size gets larger. Hence, we speculate that it acts as a data-augmentation and regularization technique.

B.2 Processor Block

We try out different processor types as the GNN1 and GNN2 backbones. The baselines are as
follows:

• EdgesConv: The processor that we use in our method, with maximum aggregation.

• PNA[1]: This processor contains three aggregations, maximum, minimum, mean.

• Transformer: A transformer attention style graph neural network. On a fully connected
graph, the architecture would become exactly a pre-norm transformer[9].

• Top5 Trasnformer: A transformer self-attention variant which only keeps the attention of
top 5 neighbors. This is to enforce attention sparsity on the model.

8



Table 4: Test scores of using different processors on CLRS dataset. Symbol "-" means that particular
experiment exceeded the time/memory limit.

Method EdgeConv PNA Temp Trasnformer Top5 Trasnformer Transformer

articulation points 55.93 55.09 48.25 50.21 48.77
activity selector 89.05 59.35 83.64 77.51 74.50
bellman ford 55.62 43.99 79.10 78.56 -
bfs 94.73 92.43 97.75 97.07 96.88
binary search 17.38 16.80 17.43 15.58 19.92
bridges 64.41 78.78 39.57 49.28 53.34
bubble sort 77.29 79.74 84.13 74.46 11.52
dag shortest paths 85.55 78.61 95.41 93.85 93.16
dfs 20.65 8.69 12.21 20.41 19.14
dijkstra 55.62 48.49 76.03 74.17 78.37
find maximum subarray kadane 22.51 16.11 22.46 24.27 36.87
floyd warshall 23.02 11.74 16.35 21.69 14.94
graham scan 90.31 80.70 95.70 95.42 91.88
heapsort 77.29 84.96 73.58 52.15 12.30
insertion sort 77.29 71.58 62.50 77.59 10.60
jarvis march 90.31 78.81 93.87 95.03 92.15
kmp matcher 6.69 5.18 5.96 7.08 -
lcs length 85.84 85.10 85.72 80.99 -
matrix chain order 81.26 76.49 80.26 78.32 81.45
minimum 98.93 97.27 98.14 97.36 97.51
mst kruskal 52.96 64.66 77.37 67.23 -
mst prim 20.65 16.50 36.33 30.62 22.51
naive string matcher 7.08 3.76 7.03 6.88 7.13
optimal bst 74.93 69.61 73.07 65.61 70.76
quickselect 21.48 2.34 12.45 6.25 2.78
quicksort 77.29 52.64 83.20 74.32 8.84
segments intersect 89.92 92.06 88.79 85.46 82.27
strongly connected components 64.45 60.25 63.96 60.60 -
task scheduling 82.31 85.07 84.90 81.84 -
topological sort 77.69 75.39 80.15 80.47 81.57
Mean 61.28 56.41 62.51 60.68 -

• Temp Trasnformer: Another way of imposing attention sparsity to tansformer is to decrease
the temperature of its softmax. This way, the attention coefficients become sharper.

The results are present in Table 4. We observe that no processor dominate the others and each one
performs well in some subsets of tasks.

9


	Introduction
	Related Work
	Method
	Architecture
	Encoder
	Processor
	Decoder


	Experiments
	Comparison with CLRS benchmark
	Infinite data regime

	Conclusion
	Dataset Details
	Ablation Studies
	Random Features
	Processor Block


