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Abstract

The function of the Left Ventricle (LV) chamber of the heart is often examined by
measuring certain dimensions in echocardiography (echo) cine series including
the LV internal dimension and the thickness of the LV walls. The manual clini-
cal procedure to quantify these measurements involves pinpointing critical pixel
locations through visual inspection, which is extremely noisy due to the inherent
inter-observer variability. The need to reduce this variability and the emergence
of point-of-care ultrasound (POCUS) imaging devices, which are often used by
non-expert users, has sparked interest in automatic landmark detection methods.
Prior works in this domain are convolution-based where models are trained in a
supervised manner with pixel-level labels. We argue that since only a small number
of pixels are to be detected in a high-dimensional image, this task can benefit from
a hierarchical approach. More specifically, dividing the image into patches of
different granularity and performing patch-level landmark detection as an auxiliary
task can aid the main pixel-level task. Therefore, in this work, we introduce a
hierarchical landmark detection network that relies on the representative power
of graph neural networks (GNNs) to enable information propagation between
these auxiliary tasks and the main task. For each ultrasound image, we create a
single pixel-level grid graph and multiple graphs containing nodes corresponding
to patches of different sizes. GNNs are then used to perform node prediction to
indicate which patches and pixels include landmarks while enabling communica-
tion between the tasks. Across the three different landmark measurements, our
model achieves an average mean absolute error of 1.5 mm and a mean percent
error rate of 9.9% on a private LV Landmark dataset containing ultrasound images
from 23755 patients, which performs on par with state of the art without reliance
on sample rejections and any pretraining tasks. This shows that LV landmark
detection benefits from this hierarchical approach. Our code is publicly available
at: https://github.com/RCL-LVLD/gnn_lvl.

1 Introduction

Ultrasound imaging of the heart, also known as echocardiography (echo), is one of the fastest growing
imaging modalities used for diagnosis and intervention in clinical and point of care settings due to
its inherent safety, affordability, and real-time nature (1). In echo imaging, Parasternal Long Axis
(PLAX) view, one of the several standard echo views, is the optimal view to assess the function of
Left Ventricle (LV) through measuring certain dimensions such as: Left Ventricle Internal Diameter
(LVID), Interventricular Septal (IVS), and Left Ventricular Posterior Wall (LVPW). LVID and wall
thicknesses (IVS and LVPW) are then used to calculate LV mass and Relative Wall Thickness (RWT),
which help diagnose LV hypertrophy and risk of a stroke (2).
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The aforementioned measurements are done via placing clinical landmarks defining the two ends of a
linear distance. This procedure is subject to significant inter-observer variability due to differences
in operator experience. Moreover, variations in image quality across patients can majorly affect the
placement of clinical landmarks. Therefore, there is great need in echo imaging for the automation of
LV measurements from PLAX view, specifically in the context of point-of-care ultrasound (POCUS),
where non-expert users are usually involved. Automation of cardiac landmark detection, however,
proves to be challenging because the annotations are noisy and are sparsely recorded throughout the
echo. For instance, LVID is conventionally labeled only in two time steps.

The automatic approaches proposed to-date mainly use U-Nets(3) and Convolutional Neural Networks
(CNNs) as the backbone for their network architecture for either a direct regression of the landmark
coordinates (4; 5; 6; 7; 8; 9) or generation of heatmaps localizing the landmarks (10; 11; 12; 13; 14).
In this setting, there are no direct means of information propagation among the different landmark
locations. Additionally, the model has to detect only a few positive pixels among all the pixels in a
high-dimensional image.

In this work, to address these problems, we propose a hierarchical framework based on Graph Neural
Networks (GNNs) to detect LV landmarks in ultrasound images. This framework includes a main
pixel-level task and multiple patch-level auxiliary tasks with each task containing patches of different
granularity. For the main task, the ultrasound image is represented as a grid-graph where each pixel is
a node and has connections to its vertical and horizontal neighbour pixels/nodes. For each auxiliary
task, a similar grid-graph is constructed with the difference that the nodes correspond to patches in
the image rather than single pixels. The auxiliary graphs communicate with each other and with the
nodes in the main graph through the use of virtual nodes (15). This framework allows the model to
build inductive bias by learning simpler auxiliary tasks in conjunction with the difficult pixel-level
task. On a private LV landmark dataset containing ultrasound images for 23755 patients, our model
achieves mean absolute errors of 2.3 mm, 1.1 mm, 1.2 mm, and mean percent error rates of 5.1%,
11.8%, 12.9% for the landmarks of LVID, IVS, and LVPW respectively.

Our contributions are twofold:

• We introduce a novel, GNN-based, hierarchical framework for LV landmark detection and
pixel segmentation.

• We explore different approaches to building a hierarchical framework through the use of
CNNs, U-Nets and Average Pooling.

2 Related work

The first work to tackle the task of LVID detection was proposed by Sofka et al. (16), where they
performed regression of the corresponding clinical landmark coordinates using a CNN, with the
addition of Long Short-Term Memory (LSTM) units as a temporal regularizer. Gilbert et al. (17)
proposed a modified U-Net to effectively estimate LVID, IVS and LVPW measurements. Lin et
al. (18) proposed a landmark detection and tracking system with a cycle consistency loss to track the
landmarks through unlabeled echo frames. Finally, Jafari et al. (19) proposed an uncertainty-driven
video landmark and key frame detection framework.

These works are all convolution-based in a supervised learning setting for direct pixel-level predictions,
which require the model to predict only a few positive pixels in a high-dimensional image. To address
this, prior work smoothes the pixel labels by adding a Gaussian distribution around landmarks, which
introduces bias in the learning process. Additionally, during the training process, the location of each
landmark location is independent of other landmarks, which is not a correct assumption as landmarks
identifying LV walls are highly correlated. Our model aims to remedy the former problem by the
introduction of more tractable auxiliary tasks to guide the main pixel-level task so that the model
learns the location of the landmarks without reliance on Gaussian label smoothing and addresses the
latter problem by allowing communication among pixels through the message passing operations
inherent in GNNs (20).

Lastly, to the best of our knowledge, while GNNs have never been applied to the task of LV landmark
detection, they have been used for landmark detection in other domains. Li et al. (21) proposed to
perform landmark detection via modeling the landmarks with a graph, and performing a cascaded
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Figure 1: Hierarchical graph generation for K=3. Blue nodes are the non-landmark nodes, and red
nodes are nodes where the corresponding patch contains a landmark pixel.

regression of the locations. These models, however, do not have the same hierarchical approach as
our framework where auxiliary (and easier) tasks are learned in conjunction with the main task.

3 Method

3.1 Problem Setup

We consider the following supervised setting for LV wall landmark detection: We have a dataset
D = {X,Y } where |D| = n is the number of {xi, yi} pairs such that xi ∈ X and yi ∈ Y
where i ∈ [1..n]. Each xi ∈ RH×W is an ultrasound image of the heart where H and W
are height and width of the image respectively, and each yi is the set of 4 point coordinates
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4)] indicating the landmark locations in xi.

3.2 Hierarchical Graph Creation

Let us denote a graph with G(V,E) where V is the set of nodes, and E is the set of edges in the graph
such that if vi, vj ∈ V and there is an edge from vi to vj then ei,j ∈ E. During the training phase, for
each image xi ∈ Xtrain, K different graphs Gk(Vk, Ek) are constructed using the following steps
where for each k ∈ [1..K]:

1. 2k × 2k = 4k nodes are added to Vk to represent each patch in the image. Note that larger k
corresponds to graphs of finer resolution, while smaller k corresponds to coarser graphs.

2. Undirected edges are added in a grid like manner such that el−1,s, el+1,s, el,s−1, el,s+1 ∈ Ek

for each l, s ∈ [1..2k].

3. A patch feature embedding hk
j where j ∈ [1..4k] is associated with that patch’s node vj ∈ Vk.

Different patch feature generation techniques are described in Section 3.3.

4. Binary node labels ŷik ∈ {0, 1}4k are generated such that ŷikj = 1 if at least one of point
coordinates in yi falls within the patch associated with node vj ∈ Vk.

An example with K = 3 is shown in Figure 1.

3.3 Node Feature Creation

As described in Section 3.2, each node in an auxiliary graph corresponds to a patch in the input image.
Different methods of generating features for these nodes are explored in the following subsections.
Additionally, an ablation study is provided in Section 4.5 to show the effects of each one of these
approaches to generating node features.
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Figure 2: Different approaches to node feature generation: (A) 2D average pooling layers with
different kernel sizes are used to generate features for nodes of auxiliary graphs with different
coarseness levels. (B) Multiple CNN layers are used to transform the image, and the intermediate
features are used for node features such that deeper layers contain the features for coarser graphs. (C)
The intermediate features of the decoder part of a U-Net are used as node features such that deeper
representations correspond to node features of finer graphs.

2D Average Pooling: Inspired by (22), we can directly generate embeddings for each node by
extracting patches of different sizes from the image. To achieve this, depending on the coarseness of
the corresponding graph, we use 2D average pooling layers with different kernel sizes to summarize
patch-level information. That is, as shown in Figure 2A, for each k ∈ K, we use a 2D average
pooling layer with a kernel size of (⌊H/2k⌋, ⌊W/2k⌋) and a step size of (⌊H/2k⌋, ⌊W/2k⌋).
Intermediate CNN Features: As shown in Figure 2B, a multi-layer CNN is used to generate the
features for the auxiliary graphs such that deeper layers contain the features for coarser graphs.
The kernel size for each CNN layer is determined so that the resulting intermediate feature map’s
dimension matches the number of nodes in the corresponding graph. The intuition behind this
approach is that deeper features have larger receptive fields corresponding to large patches of the
original image.

Intermediate U-Net Features: In the CNN-approach to generating node features, the initial feature
embeddings are used for the main pixel-level graph, while deeper embeddings provide the features
for the auxiliary tasks. This may be a sub-optimal approach as the main graph lacks the more abstract
features obtained from the deeper CNN layers. To remedy this, as shown in Figure 2C, the decoder
part of a U-Net can be used to obtain node features such that deeper layer embeddings correspond to
the node features for the finer graphs. This means that the main pixel-level graph would have the
features from the last layer of the network.

3.4 Virtual Nodes and Inter-Task Communication

to summarize the information in each of the hierarchical graphs Gk, we add a virtual node VGk and
assume virtual edges between VGk and all nodes vj ∈ Vk exist. To allow inter-task communication,
all possible edges between these virtual nodes are also added as shown in Figure 3. The combination
of auxiliary graphs, the main pixel-level graph and the virtual nodes create a larger graph representing
each sample denoted by Gi where i ∈ [1..n].
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Figure 3: Overall graph for each sample: It consists of the main pixel-level graph and all auxiliary
graphs. Inter-task communication is enabled through the use of virtual nodes and connections between
them.

3.5 Training and Objective Functions

The graphs created for each sample are fed into GNN layers followed by an MLP layer such that:

hnodes = ReLU(GNNl(Gi)), for l in [1..L] (1)

hout = σ(MLP(hnodes)) (2)

Where σ is the Sigmoid function, hnodes ∈ R|V Gi|×d is the set of d-dimensional embeddings for
all nodes in the graph, and hout ∈ [0, 1]|V Gi|×4 is the 4-channel prediction for each node with each
channel corresponding to one of the pixel landmarks. In the inference time, the expected value of
each of the heatmaps are taken in x and y directions to extract the landmark coordinates.

To train the network the following objective function are considered: Binary Cross Entropy (BCE):
We use a BCE loss since each node should either be classified as a landmark or a non-landmark.
Weighted BCE: Since the number of landmark locations is much smaller than non-landmark locations,
we use a higher weight for landmark nodes. BCE + L2 regression of landmark coordinates: To
give the model better training signals, we add a regression loss term on top of a node classification
objective (such as BCE). The regression objective is the L2 loss on the predicted coorindantes vs. the
ground truth labels. The impact of these different training objectives is studied in Section 4.5.

4 Experiments

4.1 Dataset

For this study, a private dataset of 28,577 echo cine series of the PLAX from 23,755 patients is
used. The data is collected using cart-based ultrasound machines from various manufacturers and
annotated by experts for LVID, IVS, and LVPW, each marked by two landmarks on the frame. As
shown in Figure 4, landmarks of the lower IVS and the upper LVID, as well as the lower LVID
and upper LVPW are shared. Therefore, we summarize the problem to finding the location of four
landmarks. We split the dataset with the ratio of 80-10-10 percents for training, validation, and test
sets respectively while ensuring that the splits are patient-exclusive.

4.2 Quantitative Results

The four landmark coordinate predictions of the model and the expert annotations are used to create
the predicted and ground truth LVID, IVS and LVPW measurements. The unit for these measurements
is pixels and must be converted to millimeters (mm) using pixel to mm ratios, which are available
and specific to every frame.
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Figure 4: An example echo frame showing a line containing IVS, LVID and LVPW measurments
from top to bottom. These measurements require 6 pixel locations to be identified. However, as
seen in the figure, two pixel locations are shared between these lines, and therefore, 4 landmarks are
enough to characterize these measurements.

The model is evaluated in terms of how close predicted and ground truth errors are. More specifically,
the error is calculated using Mean Absolute Error (MAE) in mm, and Mean Percent Error (MPE) in
percents as follows:

MPE = 100×
|Lpred − Ltrue|

Ltrue
(3)

MAE = |Lpred − Ltrue| (4)

where Lpred, Ltrue are the prediction and ground truth values for every measurements. Our results
and comparisons to prior work are shown in Table 1. Additionally, scatter plots showing true and
predicted landmark locations are provided in Figure 6. A discussion of these results is provided in
Section 4.4.

Table 1: Quantitative results in terms of MAE and MPE on the test set. Lower values are better
for MAE and MPE. The code for some models is not available; therefore, results outside the ones
reported in the original papers cannot be obtained as indicated by "-" in the table. Modified U-Net
uses a U-Net with elongated Gaussian labels, while RDT attempts to track the landmarks through
consecutive frames using a cyclic consistency loss. Multi-Task U-Net, an orthogonal work of ours,
uses a multi-headed U-Net architecture and is semi-supervised on the annotated frames of the video.
Even though Multi-Task U-Net uses sample rejection and video data, we see that our model beats their
performance in some measurements and performs closely for others without any sample rejections
and only using individual frames.

Model MAE [mm] MPE [%]
LVID IVS LVPW LVID IVS LVPW

Modified U-Net (17) 34 - - 6.0 13.4 10.8
RDT (18) 8.1 - - - - -
Multi-Task U-Net 2.4 1.1 1.1 5.3 11.9 12.4
HiGNN (Ours) 2.3 1.1 1.2 5.1 11.8 12.9

4.3 Qualatative Results

As seen in Figure 5(LEFT), for an input echo frame with higher quality and clearer boundaries, the
model generates focused heatmaps at the locations of the landmarks, and the predictions are very
close to the ground truth. In Figure 5(RIGHT), a low quality case is shown where the model has
higher uncertainty. In this case, the prediction is diffused along the direction of the walls of the LV,
showing that the model has learned the approximate area of the landmarks, while not being confident
due to the noisy nature of the frame.
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Figure 5: Visualisation of model prediction heatmaps and ground truth labels. (LEFT) We see an
example where the image has high quality and the LV wall boundaries are clear. In this case, the
model’s heatmaps are more focused, and predicted landmarks have low error. (RIGHT) We see an
example where the image is noisy and of low quality, which results in the model being less confident
and its heatmaps being more diffused.

Figure 6: Scatter plots of the predicted measurements [mm] vs. ground truth [mm]. The ideal line is
shown in green.

4.4 Discussion

As shown in Table 1, our model outperforms the state of art in most measurements without any
reliance on sample rejections and only using individual frames rather than videos. Most prior work
put a Gaussian distribution around ground truth landmarks in order to ease the training procedure and
avoid having to detect a single positive pixel among many negative ones, which can introduce bias in
the learned coordinates. Additionally, sample rejection is usually used to ignore out of distribution
samples and increase test time performance. Furthermore, most models rely on pretraining to increase
convergence speed. Our model, however, is not using pretraining or any sample rejection tricks and
is using a Weighted BCE objective that does not rely on smoothed labels. Therefore, we argue that
the performance benefits of our model come from the following components:

• GNNs: Representing each frame and its coarser versions as grid graphs that have connections
between them, as shown in Figure 3, allows widespread message passing and communication
between pixels and tasks. Such communication is not possible in prior works that solely rely
on CNNs and U-Nets. This inter and intra-task communication allows the model to properly
capture dependencies among pixels.

• Hierarchical Framework: Allowing the model to attend to simpler tasks that correspond
to coarser versions of the main frame makes the learning process more tractable. This is
because the model applies the inductive bias learned from simpler tasks to the main difficult
task, allowing it to capture nuances and important information in the data.

4.5 Ablation Studies

As shown in Table 2, the impact of different node feature extraction methods on model performance
is studied. We see that the U-Net based model significantly outperforms others. We postulate that
the CNN and Average Pooling-based methods perform poorly because the shallow representations
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Table 2: Quantitative evaluation results for different node feature extraction methods on the validation
set. We see that the U-Net-based method outperforms others due to extracting features from deeper
layers of the model. Please note that all these models use the Weighted BCE variant of the training
objective

Model MAE [mm] MPE [%]
LVID IVS LVPW LVID IVS LVPW

Average Pooling 26.6 9.4 11.6 56.7 100 129.9
CNN 24.7 10.4 10.9 52.6 111.1 121.5
U-Net 2.4 1.3 1.2 5.2 13.9 13.4

for the main-level graph are insufficient in providing enough information for the task. On the other
hand, the U-Net-based method provides more abstract features for the graphs since the decoder is
positioned in deeper layers of the model.

As seen in Table 3, we also provide ablation results on different objective functions introduced in
Section 3.5. We see that the Weighted BCE + Regression variant outperforms all other objective
functions. As expected, the BCE objective performs the weakest due to the number of negative pixels
being larger than the positive ones, while the Weighted BCE accounts for such imbalance.

Table 3: Quantitative evaluation results for different training loss functions on the validation set.
Please note that all these models use the Average Pooling variant of the feature extractor. We see that
Weighted BCE + Regression outperforms all other model variants. Both Weighted BCE and Weighted
BCE + Regression variants outperform BCE because they account for the number of positive pixels
compared to negative ones.

Model MAE [mm] MPE [%]
LVID IVS LVPW LVID IVS LVPW

Weighted BCE + Regression 11.5 5.8 6.5 24.4 61.5 71.8
Weighted BCE 26.6 9.4 11.6 56.7 99.9 129.9
BCE 44 6.4 5.8 94.4 65.1 59.8

5 Conclusion and Future Work

In this work, we introduce a novel medical landmark detection model that incorporates GNNs into a
hierarchical framework. The model performs better than the state of the art on most measurements
without reliance on network pretraining, sample rejection or label smoothing and by only using a
single frame rather than an entire video. We postulate that the performance benefits of our model arise
from two architectural choices. Firstly, the use of GNNs allows communication between tasks and
pixels, enabling information to be propagated in ways that prior work lack. Secondly, the hierarchical
approach allows the model to build better inductive bias by solving simpler tasks in conjunction with
the main task and learning nuances in the data.

While the model shows promising performance, we believe that there are certain shortcomings that
must be addressed in future work. As an instance, for each task, the model builds a grid graph where
each node is connected to its horizontal and vertical neighbours. This assumption may not be suitable
since the pixel dependencies go beyond the 1-hop vertical and horizontal relationships. Moreover,
the content of echo frames have a conical shape, and reflecting this shape in the way the graphs
are built can help with the performance of the model. Another shortcoming of the model is that it
must learn proper initial node features along with the learning of landmark locations, which makes
convergence more difficult. We argue that using pretraining for the frame extraction network (e.g. the
initial U-Net model), significantly aids the model in finding an optimal solution by providing more
meaningful initial features for the nodes in the graph. Lastly, the model must be expanded to train
and infer on echo videos rather than individual frames, which is a challenging task in terms of how
the hierarchical graphs are created for video data.
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