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Abstract

Semantic segmentation has progressed substantially in the recent decade, thanks
to the emergence of expressive deep learning models. However, domain shift
still poses severe challenges to existing methods in that the neural models tend
to deliver degraded performance when faced with data out of the training set
distribution. Our work is dedicated to improving domain generalization for
segmentation tasks. Based on the state-of-the-art visual transformer backbone,
we incorporate a self-supervised framework of masked image modeling in the
pre-training phase. Further, we propose patch-wise style-mixing with pixel-
wise contrastive learning in the fine-tuning stage. We evaluate our proposed
approaches on the ACDC dataset [17], which contains four adverse and chal-
lenging visual conditions of drive scenes. Our method achieves over 3% mIoU
increase on four domains compared with the state-of-the-art CNN-based algo-
rithm and about 1% to 2% growth over the vanilla transformer-based algorithm.
We hope the proposed method may offer new perspectives on domain general-
ization for complex real-world applications. Our code is available at: https:
//github.com/czz1997/Swin-Transformer-Semantic-Segmentation.

1 Introduction

(a) Normal condition. (b) Adverse condition.

Figure 1: (a) Image semantic segmentation in normal condition [11]. (b) Domain shift: Semantic
segmentation in snowy scene with performance greatly deteriorated [17].

Image segmentation tasks have been long-standing critical topics in the computer vision community.
At the core of the task is the problem of grouping pixels by some criteria of interest. Commonly-
adopted segmentation tasks include panoptic segmentation, instance segmentation and semantic
segmentation which has dense pixel-level prediction. However, segmentation applications still suffer
unexpected performance drop due to the diverse and unseen scenarios they face in the deployment
of the real world. This problem is called domain shift where the test data is out of distribution of
source domains used in training. The trained model can be specific to the source domains and lack
of the ability to well generalize to arbitrary different domains in the wild. Fig.1 depicts the model
well-implemented in driving scene in clear weather can have severe degraded semantic segmentation
on the snowy scene. Sakaridis et. al [17] shows that even HRNet, one of the recent state-of-the-art
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segmentation networks, has about 5.4% of mIoU drop when it is deployed on adverse weather
conditions compared with that in the daytime and clear environment.

It is crucial to improve the domain generalization in the industry such as autonomous driving as
it requires the satisfactory performance of semantic segmentation even in adverse conditions of
driving scenes. To gain consistent performance on unseen or unknown domains, domain general-
ization (DG) techniques are studied to learn domain-invariant feature representations without the
auxiliary samples from target domains.Most of DG approaches are targeted to classification task
while DG on segmentation is less studied [4]. Through front-to-end architecture design, there are
potential approaches to improve the DG of segmentation. For backbone design, pioneered by vision
transformer(ViT) [6], transformer based backbone recently shows strong representation capabilities
that foster more potential improvement on multiple vision tasks. In the model pretraining phase,
self-supervised learning (SSL) prompts the model to generalize in an excellent way and provide
high-quality representations of the inputs,which then transfer well to downstream tasks and achieve
outperformed performance than supervised counterpart [9, 8]. There are multiple DG techniques
performed in fine tuning phase. Data augmentation [23, 13] is widely studied, which use various
transformations to increase the diversity of source domains in training. Contrastive representation
learning in supervised setting[10, 19] also shows good regularization on learned representations so
that enhance the robustness of vision tasks like semantic segmentation.

In this paper, we aim to study the segmentation architecture that is robust against data distribution
shift across domains and generalizes well to any unseen domains. Our work explores leveraging SSL,
data augmentation techniques and the contrastive representation learning in transformer architecture
to improve domain generalization on segmentation task. The main contributions of this paper are
summarized as follows:

• We explore SSL pretraining with masked image modeling in Swin-Transformer backbone to
learn generalized representation and benefit the domain generalized segmentation.

• We propose patch-wise style mixing based on MixStyle to enhance source domain diversity
so that our model can learn from more novel domains during training.

• We present contrastive learning with style mixing to facilitate learning domain-invariant
features.

• Our segmentor achieve considerable improvements over baseline models on the challenging
adverse domain dataset, ACDC. The results illustrate that style mixing with pixel-wise
contrastive learning can boost the segmentation performance and better generalize to unseen
domains.

2 Related Work

Transformer backbone. While the performance of vision applications with CNN backbones is
increasingly saturating, recent studies show transformer based backbones is competitive in repre-
sentation learning and have substantial room for improvement in dense recognition tasks such as
segmentation [7]. Vision Transformer(ViT) [6] is the first to use a pure transformer encoder as
backbone to process image patches for classification and shows better accuracy and computational
efficiency than CNN-based classification models. Swin Transformer [15](SwinTF) introduces useful
inductive biases of locality by processing self-attention within windows and re-partitioning windows
in each layer to obtain cross-window connections. It merges image patches after each transformer
block except the last one to obtain the hierarchical feature maps. This approach derives a transformer
with linear computational complexity to input image size and compatible for various image scale
and high-resolution images. The second version of SwinTF [14] already upgrades the capacity and
resolution to 1536 x 1536. It can work as a general backbone for multiple CV tasks and its informative
hierarchical feature maps benefit to following segmentation tasks.

Domain generalization. Self-supervised learning(SSL) recently also shows revolutionary trend
in computer vision that makes pre-trained representations well-generalized to various downstream
tasks [21]. There are two main frameworks for SSL pretraining in literature: masked signal modeling
framework and contrastive learning paradigms. Simmin [22] and MAE [8] are both based on masked
image modeling. By learning to predict the invisible part that are masked,the resulting pre-trained
transformers obtain strong representations. Contrastive learning framework learns similar/dissimilar
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(b) Supervised Fine-tuning Phase

Figure 2: Overview of our proposed approach. (a) In the pretraining phase, we adopt the masked
signal modeling to formulate a powerful SSL task. The network is trained to reconstruct the missing
portions of the input image. (a) On top of that, we design patch-wise style mixer to synthesize novel
domains and adopt pixel-wise contrastive learning to learn domain-invariant pixel embedding.

representations from data that are organized into similar/dissimilar pairs and uses the contrastive loss
like InfoNCE [16] for training. Chen et. al [2] explores the recipe of pre-training self-supervised
ViT in contrastive learning framework and introduces the MoCo-V3 to improve stability. MoBY [21]
is based on momentum contrast framework to implement SSL pretraining on SwinTF backbone and
achieve top performance on image classification.

Data augmentation is one of effective domain generalization techniques that regularize the model by
increasing the diversity of source domains. Zhou et al.[23] proposed MixStyle that mix the feature
statistics in instance level at the bottom layers of CNN to synthesize new style thereby increase the
diversity of the source domains. Li et al. [13] synthesize feature statistics to simulate uncertain
domain shift by randomly sample variants from the estimated Gaussian distribution.

Supervised contrastive learning is also widely used in fine-tuning phase to boost model generalization
ability. As indicated in [10], the contrastive learning loss could also be used in the supervised learning
setting. Closely related to our project, Wang et al. [19] provide a pixel-wise contrastive learning with
the CNN backbone,termed ContrastiveSeg.This method exploits the structures of labeled data and the
relations across images by gathering pixel embeddings with same class closer and diverge them from
different classes. It eventually enhances the robustness of semantic segmentation.

As current success of domain generalization methods like Mixstyle is mainly on image classification,
our project extend the idea to segmentation task with much dense prediction. Self-supervised learning
and supervised contrastive learning also show potentials to enhance model generalization ability
while they are less studied on domain generalization. Thurs we also explore their implementation on
transformer embedding space for domain generalized segmentation.

3 Method

Our work is based on the Swin Transformer backbone [15]. The overall structure of the proposed
method is shown in Fig. 2. In the self-supervised learning stage, we deploy masked signal modeling
for generalized representation learning. In supervised learning stage, we develop patch-wise style
mixing with contrastive loss for domain-invariant feature embedding learning.

3.1 Masked Signal Modeling SSL

SSL for vision tasks has been predominated by the contrastive learning in recent works [1, 9], with
the pretext task being a classification problem at the latent space. In the language domain, the
prevailing option, however, is to predict a portion of input signals that are masked out, e.g., sentence
auto-completion. The idea of masked signal modeling as such formulates a powerful SSL pretext
task requiring the model to encode sufficient information about the data distribution.

The visual transformer backbone employs the patch-wise visual representations as its token, making
it convenient to implement the patch-aligned imagery masking and prediction task as seen in Fig. 2.

3



Figure 3: Reference batch generated by shuffling patches across instance. x1 and x2 are instances of
input batch and y1 and y2 are instances of reference batch. xi,j is the jth patch of the ith instance of
the original batch. Different colors represent different domains.

The idea is intuitive and straightforward: we mask out several input image patches and adopt a
light prediction head to reconstruct the missing components. During the embedding stage, we use a
learnable mask token for the missing patches to be aligned with the standard practice in the NLP.

The visual masked signal modeling is equivalent to the image inpainting and is a generic SSL method
applicable to both CNN and transformer backbones. While it has been proven helpful for visual
transformers [3, 22] recently, whether it could still be promising for domain generalization tasks
remain unknown. The nuance is that the learned representations encoding inpainting information
may not be necessarily favorable for generalizing to new visual domains.

3.2 Patch-wise Style Mixing

In supervised fine-tuning phase, to make our model more robust to domain shift problems, we first
make our model learn from more diverse domains by generating synthetic domains that are not in
the training set. We design the patch-wise style mixer for Transformer based on MixStyle [23] to
diversify training domains.

In MixStyle, it generates a reference batch by randomly shuffling the instances in the original batch
and then mix the feature statistics of the instance in the input batch and the corresponding instance in
the reference batch with an instance-wise weight λ. With mixed feature statistics, it uses AdaIN to
apply styles to the feature map and then the model can learn from unseen domains. Since MixStyle
mixes styles of different instances and also adopts instance-wise weights, it is an instance-level
style mixing and is therefore heavily influenced by the batch size. When batch size grows, the
extra instances in the batch can help synthesize much more diverse domains for the model to learn.
However, large batch size is not awalys an option. For instance, in semantic segmentation with
Swin Transformer, a GPU with 16G VRAM is only able to accommodate 2 instances per batch.
With limited instances, it is unlikely that instance-level style mixing will be able to produce diverse
domains and as a result, MixStyle is prone to be ineffective.

To address the batch size issue with MixStyle, we propose to perform patch-wise style mixing instead
of mixing styles in the instanc level. The idea behind patch-wise style mixing is that a batch may
have limited number of instances, whereas each instance will have considerable number of patches
since we are using transformer as the backbone. Each patch can have different feature statistics than
other patches of the same image, because of different illumination, angles, etc. When we mix styles
of different patches, we can synthesize much more diverse styles even with very limited batch size.

Specifically, given an input batch x, we first shuffle patches across image to generate a reference
batch y, as shown in Fig. 3. Then we compute the mixed feature statistics γi,j and βi,j for each patch
by

γi,j = λi,jσ(xi,j) + (1− λi,j)σ(yi,j) (1)

βi,j = λi,jµ(xi,j) + (1− λi,j)µ(yi,j) (2)

where λi,j is sampled patch-wise from Beta distribution. We use patch-wise weights instead of
instance-wise weights to make the synthesized domains more diverse. Finally, we apply synthesized
styles to each patch by replacing the learned variable β and γ in layer norm with computed mixed
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Figure 4: Example of contrastive learning with style mixing. The figure shows a region of an image
where pixels are labeled as cloud. The region spreads to four patches, and pixels (circles) of different
patches are in different domains (colors) because of patch-wise style mixing. Useful postive pairs can
be constructed by sampling pixels from different patches.

feature statistics,

xi,j(mix) =
xi,j − µ(xi,j)

σ(xi,j)
∗ γi,j + βi,j (3)

Follow MixStyle, we apply our patch-wise style mixer after the first two layers, which are trans-
former’s equivalent of res1-2. It replaces the layer norm after the patch merging and before the next
transformer block.

3.3 Contrastive Learning with Style Mixing

In addition to synthesize diverse domains for training, we also make the feature embeddings invariant
to domain changes by explicitly pulling feature embeddings of the same class but different domains
together. We propose contrastive learning with style mixing, as shown in Fig. 4, which combines
patch-wise style mixing and pixel-wise contrastive learning [19].

In pixel-wise contrastive learning, pixel embeddings with the same class label will be considered
as the positive pairs and pixel embeddings with different class labels will be treated as the negative
pairs. Similar to MixStyle, this method is also heavily limited by the batch size and requires memory
bank to be effective, as it aims for cross image contrastive learning.

However, since we are using transformer as the backbone, pixels from the same object in an image can
spread across multiple patches, and each patch may be in very different domains than its neighboring
patches because of the style mixing. As a result, by pulling positive pairs of pixel embeddings from
the same object in an image but from different patches together, the model can learn to make pixel
embeddings invariant to domain shift. In this way, even if the batch size is small, we can still make
pixel-wise contrastive learning effective.

Specifically, follow [19], we take the output before the pixel classification layer and project the output
to pixel embeddings. After L2 normalizing the embeddings, we perform hard example mining and
use the hard examples to contruct postive and negative pairs to compute contrastive loss.

4 Experiments

4.1 Dataset

The Adverse Conditions Dataset with Correspondences (ACDC) [17] is used for training and testing
our semantic segmentation models on adverse visual conditions. It comprises a large set of 4006
images evenly distributed across fog, nighttime, rain, and snow conditions. Each image comes with a
high-quality refined pixel-level semantic annotation.

We adopt the leave-one-domain-out strategy [12] to preprocess the overall dataset and intentionally
formulate a challenging domain generalization task. Initially, each domain has a training set, a
validation set, and a hidden testing set. To speed up our validation, we discard all the testing set in
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Method Backbone SSL Fog Night Rain Snow Comment
HRNet [18] N/A N/A 71.9 30.9 69.2 66.3

Baseline
SwinTF vanilla [15]

Small
None

75.2 40.5 70.5 67.6
SwinTF+Style Mix-
ing+Contrast

76.1 42.2 72.2 70.0

OursSwinTF+SSL+Style SimMIM [22] 38.4 9.67 40.4 35.7
Mixing+Contrast MoBY [21] 41.4 8.80 39.6 34.1

Table 1: Quantitative results in the main experiments. The SwinTF backbone outperforms its
CNN counterpart by a non-trivial margin. Our proposed style mixing and contrastive learning
ingredients consistently improve the model performance across four domains. However, adding the
SSL pretraining degrades the performance considerably. Please refer to Sec. 4.4 for our discussion.

original partitions. For each domain, we take the original training and validation sets from the other
three domains as the new training data. All training and validation set associated with the current
domain act as its new validation set. For example, the fog domain training data consists of all publicly
available RGB images and annotations of the nighttime, rain, and now domains. Namely, the model
trained for the fog domain will never encounter any data in the fog domain during learning.

As for the evaluation metrics, we use the mean intersection over union (mIoU) for all experiments.

4.2 Baselines

Backbone. To verify the effectiveness of the transformer backbone, we compare the Swin Transformer
vanilla version (SwinTF) [15] followed by the UperNet [20] decoder and the state-of-the-art CNN-
based method HRNet [18]. Different variants of the SwinTF backbone are adopted, e.g., tiny, small
and base. The model capacity is: tiny < small < base. Please refer to [15] for more details.

SSL pretraining. We follow the implementation of SimMIM [22] for the masked signal modeling
introduced in Sec. 3.1. We compare the masked signal modeling SSL with the momentum contrast
(moco) [9] based SSL implemented in MoBY [21]. Both are tailored to the SwinTF backbone.

4.3 Main Results

The SwinTF-small backbone is adopted in our main experiments. We primarily construct three
kinds of models: 1) the SwinTF vanilla model; 2) incorporating the style mixing and contrastive
learning into the SwinTF; 3) further adding different SSL pretraining using the ACDC data. Please
note that the SSL pretraining tasks use the same ACDC dataset as the final semantic segmentation
tasks. Given our limited GPU resources, the pretraining tasks on the ImageNet dataset [5] are too
computation-intensive to finish. Please see Sec. 4.4 for a discussion on the SSL pretraining dataset.

4.3.1 Quantitative Results

The quantitative results are shown in Table. 1. Firstly, we verify that the transformer backbone is
more powerful than the state-of-the-art CNN architecture, even without further tuning. The SwinTF
outperforms the HRNet consistently across all experiments. Moreover, the SwinTF with our proposed
style mixing and supervised contrastive learning has considerable performance gains compared
to the SwinTF vanilla method. It achieves the best performance among all the models. Notably,
adding the SSL via masked signal modeling or momentum contrast does not help but degrade the
performance substantially. We conjecture that this is due to the limited size of the ACDC dataset in
contrast to the ImageNet dataset, the latter of which is frequently used in many SSL experiments.
The SSL pre-trained models may learn some naive representations that could not generalize well
for segmentation or memorize the original data. On the other hand, the non-SSL methods initiated
with the ImageNet classification pre-trained networks show much better performance than our SSL
variants. This indicates that the pretraining is crucial, yet the SSL pretraining on a small dataset may
not be as helpful.
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Figure 5: Qualitative results of different domain segmentation with different models

4.3.2 Qualitative Results

We get the qualitative results showing in Fig.5. We select one image from each domain and compare
the results among three models. Each column represents one domain, from left to right, we have the
results of fog, rain, night and snow domain respectively. From top to bottom, each row represents the
original RGB image, ground truth annotation, and results from HRNet, Swin-TF and our model.

We can clearly see that HRNet hardly works. All four results from HRNet are worst. Between
Swin-TF and our model, we can find that our model has a better annotation in some details. In fog
domain, our model has more standard square sign boards than Swin-TF model. The edges of cars
are clearer, no extra annotation around cars. In rain domain, our model can detect the small person
successfully and mark it with red annotation. In night domain, both models don’t work very well
but our model has less wrong green annotation on the sky than the Swin-TF baseline. In the snow
domain, edges of annotations are clearer and more completed.

4.4 Ablation Studies on SSL Pretraining

In this stage, we use the ImageNet dataset pretrained SSL models, obtained by the SimMIM and
MoBY open code. For SimMIM method, we use the SwinTF base backbone; and for MoBY method,
we use the SwinTF Tiny backbone.

Table. 2 and Table. 3 show the ablation experiment results.

Clearly, the performance degradation issue introduced by the SSL is now alleviated. This verifies our
assumption about the effects of datasets on the model pretraining.
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Method Backbone SSL Fog Night Rain Snow Comments
SwinTF vanilla [15]

Base

None
77.5 40.9 72.9 70.1 Baseline

SwinTF+Style Mix-
ing+Contrast

76.4 40.8 72.2 70.1 Ours

SwinTF+SSL+Style
Mixing+Contrast

SimMIM [22] 74.1 37.2 70.3 65.1 ImageNet SSL

Table 2: Quantitative Result on SwinTF Base backbone

Method Backbone SSL Fog Night Rain Snow Comments
SwinTF vanilla [15]

Tiny

None
74.2 33.6 69.1 66.4 Baseline

SwinTF+Style Mix-
ing+Contrast

73.8 34.2 70.2 66.2 Ours

SwinTF+SSL+Style
Mixing+Contrast

MoBY [21] 72.1 36.8 68.5 65.2 ImageNet SSL

Table 3: Quantitative Result on SwinTF Tiny backbone

5 Conclusion

In this paper, we propose a transformer-based segmentor that is robust to domain changes. We
aim to address the domain shift issue in two phases, pre-training phase and fine-tuning phase. We
pre-train the model with masked signal to learn constructive feature embeddings, and then fine-
tune the model with mixed patch-wise styles and contrastive loss to learn domain-invariant pixel
embeddings. Extensive experiment results demonstrate that the proposed algorithm outperforms
vanilla transformer.

Our approach explores three possible ways to counteract the domain shift problem, while the proposed
segmentor can still be further improved. For instance, mixing patch styles strategically based on
the regions or semantic labels instead of random shuffling may have a better performance, as styles
in certain regions may not make sense in other regions. In addition, We only explore style mixing
with the same patch size as a transformer block, while mixing styles of larger patches may generate
more meaningful feature statistics. Furthermore, contrastive learning with style mixing can also be
deployed in the self-supervised learning to see if it can also benefit pre-trained model.
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