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Abstract

Real-time estimation of ejection fraction and measuring left ventricle volume from
echocardiography are crucial for some clinical applications in cardiology. Man-
ual processing and expert labelling of ultrasound video frames suffer from both
intra- and interobserver variability which increases the need for automating cardiac
measurements. Also, the corruption of frames with noise and the sophisticated
anatomical structure of the heart makes it difficult to efficiently train networks
from scratch. We present a novel transformer-based architecture inspired by Times-
former, a video transformer that has achieved state-of-the-art performance on many
action recognition datasets. We propose a convolution-free, fully attention-based
Spatio-temporal architecture to predict the EF from Echo videos in an end-to-
end approach. We build on top of this architecture for cardiac ultrasound video
analysis and study its feasibility for echocardiography video regression tasks by
adding knowledge distillation techniques to be able to train with fewer data. We
apply self-attention using a divided space-time scheme which calculates attention
over both spatial and temporal dimensions. We evaluate model’s performance on
learning temporal content. Our experiment shows this architecture significantly
outperforms the previously proposed transformer-based network, the ultrasound
transformer. Our end-to-end EF estimation approach can estimate the ejection
fraction with an RMSE of 6.48. We also visualized the explainability of the pro-
posed model by drawing attention maps and its T-SNE. Our code can be found on:
https://github.com/MohammadMahdiKazemi/571MFinalProject

1 Introduction

The human cardiac cycle consists of two periods: diastole and systole. The heart ventricles relax and
expand during diastole, filling the chambers with blood. Next, systole is characterized by the heart
muscles contracting and pushing blood out of the ventricles, through arteries and veins, to the lungs
and other organs. Ejection Fraction (EF) is the ratio of the blood pumped out of the ventricle (stroke
volume) to the maximum amount of blood in the ventricle (end-diastolic volume). EF is a commonly
used metric for determining functional cardiac health and is used for various clinical evaluations
and diagnoses. By accurately measuring EF in an accessible manner, clinicians have easy access to
critical information that can help diagnose and treat cardiac patients. A normal EF is typically within
the range EF = 65%± 10% [7].

In recent years, artificial intelligence (AI) technology has become a research hot-spot in cardiovascular
imaging, diagnosis, and treatment of heart diseases. Many deep convolutional neural networks were
previously applied to cardiac ultrasound videos for measuring ejection fraction by either segmenting
the left ventricle or minimizing a regression loss [14, 13, 6, 7].
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The features relevant to the estimation of the EF are embedded in End-Systolic (Es) and End-Diastolic
(ED) frames, which makes learning long-term temporal dependencies crucial for the estimation of EF.
Recent works show transformers significantly improve long-term temporal feature extraction and
have recently been used for many Language processing and vision tasks[3, 19, 12, 2, 8].

In this work, we leverage transformers’ superior performance for the task of EF estimation from
echocardiograms by proposing a novel architecture based on TimeSformer architecture [3], a video
transformer that has achieved the state-of-the-art performance on many action recognition datasets.
Action recognition tasks in computer vision are closely related to EF estimation as capturing long-term
Spatio-temporal dependencies is their crucial ingredient.

Our contribution can be summarized as (a) proposing a convolution-free, fully attention-based, Spatio-
temporal architecture to predict the EF from Echo videos in an end-to-end approach. We also validate
this network on EchoNet-Dynamic (Echo-Net)[9] dataset. (b) We leverage information captured by
deep convolutional networks that has been shown to perform well on this dataset. We specifically
deploy the state-of-the-art knowledge distillation techniques for regression tasks [15, 16]. (c) We
show the explainablity of our proposed model by visualizing its attention maps in both spatial and
temporal dimensions.

2 Related Work

Methods for fully automatic volume and EF measurements Fast, accurate and explainable echo
measurements as the main point-of-care imaging modality are crucial in clinical workflows. Early
methods extensively used different deep convolutional neural networks (DCNNs) for various tasks.
As left ventricular ejection fraction (LVEF) is usually calculated from the AP4 view of the heart,
some applications have used CNNs [10] for view classification before assessing further tasks. In [14],
the authors segmented the left ventricle from US videos using UNET architecture to predict the ES
and ED frames. Also, a few works have calculated LVEF without segmentation using Conv3D [13],
ResNet(2+1)D [17] and CNN+LSTM architectures [6] by directly minimizing a regression loss. Other
segmentation techniques were also used, including [21] which used co-learning from appearance
and shape to increase both temporal and spatial accuracy. Previous works that have used RNN and
LSTM-based architectures to extract temporal features suffer from forgetting initial elements, and
most of them only accept a fixed number of frames as input [20]. Transformers show great success
on video data, and they overcome the mentioned flaws. To the best of our knowledge [11] is the first
and only work that uses a transformer-based architecture to predict ejection fraction. They first apply
a Residual Auto-Encoder Network to input video to reduce its dimensionality. Then, a BERT model
is adapted for token classification, which provides a reasoning ability in the Spatio-temporal domain.
This work estimates LVEF by straightly using a regression network rather than segmenting the left
ventricle.

Vision Transformers Vision Transformers were originally proposed for image data. One proposed
transformer-based network architecture explicitly designed for medical image segmentation tasks
is Gated Axial-Attention for Medical Image Segmentation [19]. This work proposes a Medical-
Transformer (MedT) built upon a gated position-sensitive axial attention mechanism with a control
mechanism added to the self-attention module, which adapts a Local-Global training strategy (LoGo).
This work was mostly used for CT and MRI images but not videos. Video Transformers (VTs)
[12] mainly are derived from previous transformer designs, especially the ones applied to image
domains. However, the inherent structure of videos causes them to have large dimensionality,
which exacerbates Transformer limitations. Still, at the same time, it increases the ability to define
embeddings, tokenization strategies, and architectures. [2] is a new vision transformer also known
as Vivit. They proposed different variations of their transformer, which are different in factorizing
spatial and temporal dimensions. This model first applies a linear operation on frames of the input
video and rasterizes them into a 1D Spatio-temporal token. A series of transformer layers then
encode generated tokens. They propose three different factorizing methods to increase efficiency and
scalability, including Spatio-temporal attention, Factorised encoder, and Factorised self-attention. A
lot of novel video transformers were used for action detection, such as [8]. The swin transformer
is one of the benchmarks that have comparable results to the state-of-the-art methods for multiple
datasets. In this work, we want to make use of TimeSformer. In [3] they argue that replacing
convolutional layers in transformer with self-attention the network has the potential of overcoming a
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few inherent limitations observed in CNN models and gives the architecture the ability to capture
both local and global dependencies by operating on spatial and temporal domain. Our work plans
to use the suggested platform and propose a novel convolution-free transformer-based architecture
for cardiac video analysis. Also, as it finds the relation among different patches, we can visualize its
explainability by drawing attention maps which is essential for medical usage.

3 Method

In this work, we propose a novel video transformer architecture based on [3] (see Figure 1), which
to the best of our knowledge, is the current state-of-the-art for Spatio-temporal video classification.
We construct our model by introducing architectural changes to adapt it for the task of predicting EF
from echo cines.

Figure 1: Architecture of proposed model:(a)Decomposing input video into patches, (b) Overall
network architecture, (c)Architecture of each attention block

3.1 Input video

The input to our model will be a sequence of video frames X ∈ ℜH,W,3,F sampled from an echo
cine where H, W, 3, F represent the height, width, RGB channels and number of sampled frames,
respectively. Each frame is then decomposed into P partitions of size N × N (non-overlapping
patches that cover the entire frame) i.e. PN2 = HW . In each frame, patches are stacked to form a
vector of size 3P 2. Finally, the input to the timeSformer is defined as xp,f

0 ∈ ℜh with p = 1, 2, · · · , P
where p specifies each positional embedding and f defines the frame number. A sample of input
transformation has been shown in Figure 1,a.

3.2 TimeSformer Model

The Transformer consists of linear embedding and L encoding blocks. Each block is divided into five
sections which have been described below. The overall architecture has been shown in Figure 1,c.

Linear Embedding Each feature vector is linearly mapped to an embedding vector lp,f0 ∈ ℜh with
p = 1, 2, · · · , P and f = 1, 2, · · · , F . Here, the number of dimensions of the embedded space is
denoted by h. Formally we can write

lp,f0 = Exp,f + ep,f , (1)

where E is the embedding matrix with the appropriate dimensions and e denotes the corresponding
positional embedding similar to the same operation for text positional embedding. As in [5], in the
first position of the embedded sequence, we enter a learnable vector that represents the token of
classification l00,0 ∈ ℜh. xp,f also represents pth patch from input X corresponding to the fth
frame.

Query-Key-Value computation For each attention head input of each attention, the block is fed to a
Layer Norm which creates and embeds for query, key, and value for each patch. The input to each
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block is the representation l
(l−1)
p,f encoded by the preceding block.

ql,ap,f = W l,a
Q LinearNorm(zl−1

p,f ) ∈ ℜh, (2)

kl,ap,f = W l,a
K LinearNorm(zl−1

p,f ) ∈ ℜh, (3)

vl,ap,f = W l,a
V LinearNorm(zl−1

p,f ) ∈ ℜh, (4)

Where a denotes the index of attention head.

Self-attention computation In this work, attention is computed over two dimensions (spatial and
temporal). For divided space-time attention, NF + 1 query-key comparisons are made. The self-
attention weights are computed using a dot product between query patch (p, f) with keys of other
patches in the same frame and keys of the same spatial position in other frames. Self-attention weights
a
(l,a)
p,f ∈ ℜNF+1 are calculated as below:

a
(l,a)
p,f = softmax(q

(l,a)
p,f /

√
h.(k

(l,a)
0,0 [k

(p′,f ′)
p=1,···,P,f=1,···,F ])) (5)

Encoding Having attention weights, weighted sum of value vectors is computed using self-attention
coefficients from each attention head. Then, the vectors from all heads are concatenation and passed
through an MLP, using residual connections after each operation. Together, these two layers create
the encoding l

(l)
p,f which will be the input to the next block.

s
(l,a)
p,f = a

(l,a)
p,f,(0,0)v

(l,a)
0,0 +

N∑
p′=1

F∑
f ′=1

a
(l,a)
p,f,(p′,f ′)v

(l,a)
p′,f ′ (6)

l
′(l)
p,f = W0[s

(l,1)
p,f · · · s(l,A)

p,f ].T + l
(l−1)
p,f (7)

l
(l)
p,f = MLP (LinearNorm(l

′(l)
p,f )) + l

′(l)
p,f (8)

Regression Embedding The initial token of encoding computed from the final block is fed into a
linear layer with a fixed bias of 55 to calculate a single value which is the predicted ejection fraction.

EF = LinearNorm(lL0,0) (9)

Divided Space-Time Attention In this work, computing attention uses the “Divided Space-Time
Attention” architecture proposed in [3], where temporal attention and spatial attention are separately
applied one after the other. This architecture saves a lot of computation compared to Joint Space-Time
attention and performs better than calculating space attention alone. For Divided Attention, within
each block, first temporal attention is computed by comparing each patch with all the patches at the
same spatial location in the other frames:

a
(l,a)
p,f = softmax(q

(l,a)
p,f /

√
h.(k

(l,a)
0,0 [k

(p,f ′)
f=1,···,F ])) (10)

Then temporal attention is fed to spatial attention computation. We will use divided Spatio-temporal
attention since it is algorithmically aligned with how humans compute EF. Then, we feed the output
of the self-attention units to a Multi-Layer Perceptron to get the output embedding. Therefore distinct
query, key, and value matrices should be learned for Time and Space dimensions. Overall, per each
patch, NF + 1 comparisons should be calculated. Figure 2 gives a representation of this mechanism.

In this work, we predict the volume of the left ventricle at ES and ED frames along with the EF as a
percentage. We train the model using Mean squared loss for the EF and volume estimation.

Knowledge Distillation High-performance vision transformers are pre-trained with millions of
images. TimeSformer has shown to perform well when pre-trained on the ImageNet dataset [4]. The
Echo-Net dataset contains about 10000 videos which are not enough to train the model from the
scratch without over-fitting. Knowledge distillation is a training strategy to recover accuracy drop
that uses a model that performs well on a dataset as a teacher network and transfers its knowledge to
a student model that requires a big amount of data to be appropriately trained. This helps the student
model to mimic soft labels coming from a strong teacher network instead of being trained on hard
labels.
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Figure 2: Visualization of the divided space-time self-attention schemes, Each video clip is viewed as
a sequence of frame-level patches with a size of 16 × 16 pixels. Temporal attention is illustrated as
comparison of red patches and spatial attention is shown as comparison of green patches. Note that
self-attention is computed for every single patch in the video clip. We also note that although the
attention pattern is shown for only two adjacent frames, it extends in the same fashion to all frames
of the clip

Distillation through attention Due to the different structure of timeSformer compared to convolu-
tional networks, knowledge distillation should be defined differently. This is done by adding a new
token [16], the distillation token, to the patches and class token. The distillation token goes through
self-supervised attention, similar to other tokens. In the final layer, the distillation embeddings learn
from the last layer embedding of the teacher network while remaining complementary to the class
embedding. Figure 3 However, knowledge distillation is usually adapted in classification problems
since it has the advantage of “dark knowledge” and logits outputs in teacher can provide more
information for student model compared to the one-hot encoding of the class label. For regression, on
the other hand, distillation does not pass any distribution over classes by the teacher to aid learning.
The network predicts a continuous value with the same characteristics as the ground truth, with an
unknown error distribution. Therefore, we used a regression error as our distillation error to help the
distillation token help adjust model weights through backpropagation.

Figure 3: Knowledge distillation process

Distilling Knowledge From Regression Networks Adding a distillation token changes the network
structure. Therefore the pre-trained weights on the Imagenet cannot be used, which has a consider-
able impact on final accuracy that the knowledge distilled to the network from the teacher cannot
compensate. Without access to any dark knowledge, we used another method to blend the loss of
student network prediction and the teacher’s prediction. We define imitation loss as the MSE loss
between teacher and student network’s outputs, and student loss as the MSE loss of student network
outputs with respect to the ground truth. Similar to work proposed by [15] an attentive imitation loss
can be used to model the uncertainty in the imitation loss with a weight based on how reliable the
teacher prediction is. To model a parametric distribution of teacher’s reliability, the teacher loss can
be used as below:

loss = αMSE(oT , ogt) + (1− α) ∗ ϕ ∗MSE(oT , ogt) (11)

ϕi = (1− MSE(oT , ogt)i
η

) (12)

η = max(eT )−min(eT ) (13)

eT = {||oT − ogt||2j : j = 1, ..., N} (14)
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where ϕi is the scale the student network learns from the teacher for each training batch, eT is a set
of teacher loss from entire training data, and η is a normalization parameter that we can retrieve from
subtracting the maximum and the minimum of eT . Here, i is a representation of each batch index (i
= 1, ..., n) and j represents the index of each training sample (j = 1, ..., N).

4 Experiments

We adopt the timesformer architecture pretrained on the ImageNet dataset for each experiment. Clips
are used with a size of 3 × 32 × 112 × 112, with frames sampled with a period of 2 from a random
start-point to make sure we have at least one heart cycle in the input video. The patch size is 16 × 16
pixels( 49 (7 × 7) tokens represent the whole frame) and 12 attention blocks are used in the structure.

Comparison to CNNs We chose transformers due to their higher explainability compared to CNNs
and their ability to apply temporal and spatial attention. We performed an empirical study and
demonstrated Table 3 the preliminary results of ejection fraction prediction for different architectures
by reporting the root mean squared error. The results show that our proposed architecture outper-
forms the previously proposed ultrasound transformer by a large margin. However, convolutional
architectures generally have better performance in comparison to both transformers. The reason
behind this is that the size of our dataset is relatively small to train transformers, and it can’t find the
complex relations among all patches. However, the inductive bias in convolutional neural networks
helps them to be able to train with a lower amount of data. our architecture has 121.4 M parameters,
which leads to a large learning capacity. However, in contrast to CNN architectures, this model does
not use any convolutional layers, which decreases its inference cost (0.59 TFLOPs) and increases its
capacity while maintaining its efficiency.

Architectures RMSE Loss Params
CNN Resnet (2+1)D-18 5.8 33.3M

Tiny VideoNet 6.28 11.2M
Transformer Ultrasound Transformer 8.38 346.8M

TimeSformer(ours) 6.48 121.4M

Table 1: Video-level ejection fraction MSE loss on different video architectures

Varying the Number of Tokens The structure of TimeSformer allows the model to operate on any
number of video frames and any spatial resolution with a size of 16k *16k, where k is an integer.
Studies show that increasing spatial resolution and the number of frames can help the overall accuracy
of the model. However, higher resolution and more frames both result in a higher number of patches,
increasing the number of tokens. This can make the computational cost very expensive.

4.1 Knowledge distillation

We experimented with both explained knowledge distillation techniques and compared their impact
on the final performance of the network. As stated before, the problem with adding a distillation token
is that we cannot use pre-trained weights, and therefore, we cannot see a good overall RMSE loss for
it. The second method helps the network throughout the training, and the RMSE loss improves.

Knowledge Distillation Method RMSE Loss
Distillation through Attention 7.65
Distillation through Regression 6.34

Table 2: Using Knowledge distillation to help transformer learn from state of the art network

4.2 Multi head output

In addition to EF, we trained the model in a multi-output regression heads framework to predict the
LV volume at ES and ED frames. To prevent the outputs from bouncing around and making the
optimization unstable, we preset the bias weights of each output head to a fixed value equal to the
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mean of the specific label computed from the training set and don’t apply gradient updates to these
weights. In other words, the bias weights of the last fully connected layer are set to constant values
that don’t change during the training. This way, we managed to achieve the best RMSE reported in
Table 3.

4.3 Additional Ablations

To find the right size for timeSformer, we performed an ablation study. We investigated the different
sizes of depth, path, and various optimizers and used the best hyperparameters for the final model.
Smaller and Larger Transformers We experimented the timeSformer with a different number of
blocks. As the size of the input and output embedding at each block does not change throughout the
model, adding or reducing blocks has no impact on the weights and structure of the rest of the model.
However, reducing the number of blocks resulted in a higher loss.

Larger Patch Size We also experimented with different patch sizes, P = 32. As choosing a larger
patch size reduces spatial granularity, this variant of our model also produced worse RMSE loss than
the default variant with a patch size of 16. Another reason behind this is that we were unable to use
pre-trained model weights trained on the Imagenet dataset in this variation, which can significantly
impact the final result. We did not train any models with P values lower than 16 as those models have
a much higher computational cost.

The Order of Space and Time Self-Attention Our proposed “Divided Space-Time Attention”
scheme applies temporal attention and spatial attention one after the other. In our preliminary results,
we saw that using time attention before spatial attention resulted in a better performance compared to
the other way around.

Depth Patch size Loss Function Optimizer training RMSE Validation RMSE
12 16 MSE Adam 3.18 8.12
12 28 MSE Adam 4.28 8.41
8 16 MSE Adam 4.81 8.72
12 16 MSE SGD 2.02 6.48
12 28 MSE SGD 2.23 7.93
8 16 MSE SGD 2.91 8.11

Table 3: Video-level ejection fraction MSE loss on different video architectures

4.4 Explainability and Visualization

Visualizing Learned Space-Time Attention In order to visualize the learned attention, the Attention
Rollout scheme was used [1]. Attention maps in transformers give a good visualization of what
individual activations look like, but they don’t show us how attention flows within different layers. At
the end of each block, an attention matrix(A) will be obtained. Element i,j in this matrix defines how
much attention is going to flow from token j in the previous layer to token i in the next layer, and
multiplying 2 attentions from subsequent layers will define the flow. We took the minimum among
attention heads, discarded low attention values, and calculated the attention rollout as below:

AttentionRolloutL = (AL + I)AttentionRolloutL−1 (15)

This value is normalized after each layer and at the final layer the classification token is discarded and

Figure 4: Attention Rollout computation
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(a) (b)

Figure 5: Visualizations: (a)EF values have been divided into bounds based on clinical purposes and
the figure shows how output embeddings are able to learn separable features for different EF values.
(b) Visualization of attention maps from the output token to the input space on Echo-Net dataset. Our
model learns to focus on the relevant parts in the video to perform spatiotemporal reasoning

49 remaining tokens for each frame are reshaped to a 7*7 image. Figure 4 shows the resized attention
map fed onto the initial frame. Our results suggest that the model focuses on relevant regions in the
video and also the attention value increases in frames with more information. This shows that the
model is learning both temporal and spatial reasoning.

Visualizing Learned Feature Embeddings

This visualization shows how feature embeddings vary for different EF values. However, because
showing a 768 dimensional embedding is not possible, first we decrease the embedding size to 2
using t-SNE algorithm. In the visualization, each point represents a single video, and different colors
depict different bounds of EF based on medical definitions. Based on this illustration, we observe
that TimeSformer with divided space-time attention learns semantically separable features Figure 5,b.

EchoNet-Dynamic Dataset The EchoNet-Dynamic dataset [9] was created by Standford University.
It is a large echocardiography dataset for studying cardiac motions and changes in Left ventrical
volume and shape in cardiac cycles. It consists of 10,036 videos of apical four-chamber (A4C) view
for patients who had echocardiography between 2016 and 2018 at Stanford Health Care. Each video
is labeled with the corresponding left ventricle border tracing, EF, ED and ES frame indexes and
volume of the left ventricle at end-systole and end-diastole by expert sonographers. For each video,
two frames (ES and ED) are annotated with manual segmentation.

Computational Resources We used four NVIDIA Tesla V100 GPUs with 32GB of memory from
UBC ARC Sockeye [18] for training and evaluation.

5 Conclusions

In this work, we proposed a fully attention-based transformer to predict ejection fraction and validated
it on the Echonet-Dynamic dataset. We built our model based on timesformer, which applies separate
spatial and temporal attentions sequentially. This would lead to a less complex network with fewer
parameters, given that bias of attention should be only in one dimension, training the network is more
manageable with fewer data. The results have shown that although we outperform the state-of-the-art
transformer-based models, convolutional neural networks perform better. We decided to leverage
information captured by SOTA convolutional neural network to our proposed timesformer using
knowledge distillation. We applied two different approaches: distillation through attention and
distilling knowledge from a regression network. Finally, to show the explainability of our proposed
network, we visualized attention maps and did an ablation study over different hyper-parameters.
Although there is still a gap between our results and CNN-based SOTA methods, improvements of
the proposed network compared to SOTA transformers-based networks and its high explainability
potential proves that using transformers can be a good approach for learning medical imaging task.
As a future work, we suggest trying different distillation techniques and optimization regularizations
specifically proposed to train transformers.
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