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Abstract

A recent surge of research works apply graph neural networks for mesh-based
continuum mechanics simulations. Most of these works operate on graphs in which
each edge connects two nodes. A message-passing network defined on such a
graph mimics the finite volume method in computational mechanics. Inspired
by the data connectivity of another popular computational mechanics approach –
the finite element method, we connect the nodes by elements rather than edges,
effectively forming a hypergraph. A message-passing network is implemented on
such a node-element hypergraph, and applied to the modeling of fluid systems of
flow around a cylinder and flow around an airfoil. The experimental results show
that such a message-passing network defined on the node-element hypergraph is
able to generate more stable and accurate temporal roll-out predictions compared
to the baseline defined on a normal graph. Along with adaptations in activation
function and training loss, we expect this work to set a new strong baseline for
future explorations of mesh-based simulations with graph neural networks.

1 Introduction

Deep neural networks defined on a graph data structure are becoming increasingly popular in a wide
range of applications. Embedded with the relational inductive bias between inter-connected entities
[1], graph neural networks (GNN) are well-suited for learning physics-driven dynamics. Recently,
GNNs have been introduced to the field of continuum mechanics [2, 3]. Existing works include the
modeling of solid/structural systems [4, 5], fluid systems [6, 7, 8], as well as the interactions between
them [9].

Traditional computational mechanics approaches of continuum systems, including computational
fluid dynamics (CFD) and computational solid mechanics (CSM), usually discretize the simulation
domain into a mesh. It happens that such a mesh (like the one sketched in Fig. 1a) can be converted
to a graph G = (V, E) with nodes V connected by edges E rather easily. To the best knowledge of
the authors, two approaches of conversion exist. The first approach (Fig. 1b) converts each vertex of
the mesh to a node, and each cell boundary between two vertices to two directed edges. The second
approach (Fig. 1c) converts each cell within the mesh into a node, while each border between two
neighboring cells is converted to two directed edges.

With the system states originally attached to the mesh converted and re-attached to the graph as the
node and edge features, a graph neural network can be applied to the converted graph to learn the
temporal evolution of these features, effectively serving as a surrogate to the traditional CFD/CSM
model of the system. For a graph neural network that fits into the generalized graph message-passing
[1, 10] framework, each message-passing layer/step can be written as the combination of an edge
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Figure 1: Different approaches to convert from a computational mesh to a graph. (a) Schematic
of a computational mesh. (b) One approach to convert the mesh to a graph. (c) Another approach
to convert the mesh to a graph. (d) Conversion to an undirected hypergraph (e) Conversion to an
undirected node-element hypergraph, adopted in this work.

update stage
eij ← ϕe(eij , vi, vj), (1a)

and a node update stage,
vi ← ϕv(vi,AGGje′ji), (1b)

in which vi and vj denotes the node features attached to the nodes i and j respectively, and eij denotes
the edge feature attached to the directed edge pointing from node i to node j. The edge processor ϕe

and the node processor ϕv are some functions, e.g., multi-layer perceptrons. The function AGG is an
aggregation function that aggregates the information from all the edges pointing to each node i.

From a computational mechanics point of view, such a message-passing network defined on the graph
G mimics the finite volume method. Interpreting each node as a control volume, and each edge as the
boundary between neighboring control volumes, the edge update stage can be seen as calculating the
"flux" of information between the two cells, and the node update stage can be seen as updating the
information carried in each cell by all the incoming "flux". With a residual link for node and edge
features, each layer/step within the message-passing network can be explained as one iteration in the
iterative approximation to the ground truth flux and cell information updates.

Besides the finite volume method, many other approaches are available in computational mechanics.
Another popular approach, the finite element method, treats each cell within the mesh as an element
connecting all its vertices. During the computation, the vertices connected by each element interact
with each other. Inspired by this data connectivity, we propose to connect the nodes V by elements
E+, effectively forming a hypergraph, illustrated in Fig. 1d. Further modifications of the hypergraph
(detailed in Sec. 3.1) lead to a node-element hypergraph (Fig. 1e).

We implement a message-passing network that is defined on the node-element hypergraph converted
from mesh. The results from such a network are compared with the results of generalized message-
passing network [1, 3] defined on a normal graph converted from the same mesh. Experiments on
fluid systems of flow around a cylinder and flow around an airfoil show that such a message-passing
network defined on the node-element hypergraph can generate more stable and accurate predictions
than the baseline defined on the normal graph. With additional adjustments in the activation function
and loss function, we set up a new, strong baseline for future explorations.

The remaining part of this report is organized as follows: Section 2 contains the discussions on the
existing works that are closely related to this work. We then present the definitions and formulations
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of the node-element graph and node-element graph message-passing networks in Sec. 3. The
experiments and results are reported and discussed in Sec. 4. We conclude the work in Sec. 5.

2 Related works

GNN for physics simulations Graph neural network has been applied to the simulations of systems
governed by physics laws for several years. The first applications focus on Lagrangian systems, like
mass-spring systems [11] or fluid systems in which the continuous fluid flow is abstracted as moving
particles [12]. More recently, it is introduced to the field of continuum mechanics [2, 3], inspiring a
surge of works in the past two years. In particular, the encode-process-decode architecture adopted
by Pfaff et al. [3] with generalized graph message-passing layers [1, 10] see popularity in application.
Various techniques have been built above such an architecture, including field super-resolution [6],
multi-grid methods [7, 8, 13, 14], physical invariances and/or equivariances [7], among many more.

FEM-Inspired GNN applications Several existing works have already taken some inspiration
from finite element methods. Alet et al. [15], for example, constructs encoders and decoders that
interpolate between data at random points within the field and data on the nodes of the node-edge
graph, mimicking the behavior of shape function-based interpolation within the element in finite
element methods. More recently, a few works start to use finite-element concepts to calculate the loss
during the training process. Gao et al. [16], for example, proposed to calculate the loss by integrating
the prediction error over the simulation domain using Gaussian quadrature integration with high-order
shape functions instead of the traditional mean-squared loss on nodes.

Perhaps the most closely-related work to this research is the recent work by Lienen and Günnemann
[17], who use a single hypergraph message-passing step to estimate the time derivatives of features at
different time instants, which are then sent to an ODE solver to generate continuous predictions of the
features. Different from their approach, we choose to follow an approach more similar to that of Pfaff
et al. [3]: We stick to discrete time stepping with fixed intervals, the model is trained with one-step
supervision only, and the model directly predict the difference of system states between neighboring
time steps in a feed-forward manner rather than relying on an ODE solver. We also target generating
stable and accurate predictions for a very long period of time – up to more than a thousand time steps,
while the results reported by Lienen and Günnemann focus on predictions within a short period of
future – 60 time steps at most.

3 Methodology

In this section, we describe the node-element hypergraph and the message-passing network defined
on it. As the experiments reported in Sec. 4 are all 2D cases, we assume a 2D domain for simplicity.

3.1 Node-element hypergraph

Consider a bounded spatial domain that is meshed. The mesh can be converted to an undirected
hypergraph (Fig. 1d) by converting each vertex within the mesh to a node, and each cell within
the mesh to an undirected hyperedge connecting all vertices of the cell. Further instantiating each
hyperedge as an (undirected) "element", and explicitly defining the connection between each element
and each of the nodes it connects as an (undirected) element-node edge, we arrive at a node-element
hypergraph G = (V, E+, Ev), in which V is the set of all nodes, E+ is the set of all elements, and Ev
is the set of all element-node edges.

It should be mentioned that it is possible to adopt a directed hypergraph rather than an undirected
version. Ma et al. [18], for example, used a directed hypergraph for the simulation of particulate
suspensions. However, to achieve permutation invariance, each undirected hyperedge connecting k
nodes have to be converted to k! directed hyperedges. This means that the computational cost can
be prohibitively high when each hyperedge is connecting more than three nodes (e.g., hypergraphs
converted from quadrilateral or hexagonal meshes in 2D, or hypergraphs converted from meshes in
3D). We, therefore, choose to stick to an undirected hypergraph in this work.
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Figure 2: Schematic of the element and node update stages within each node-element hypergraph
message-passing layer. (a) The element update stage. (b) The node update stage.

3.2 Node-element hypergraph message-passing

With the node-element hypergraph defined, we proceed to define the message-passing network on
such a hypergraph. Similar to the generalized message-passing defined on a normal graph, one can
define each message-passing layer/step on a node-element hypergraph as two consecutive stages,
namely the element update stage and the node update stage. For the sake of consistency and simplicity
in symbols, we write the equations in this subsection assuming a node-element hypergraph converted
from the 2D quadrilateral mesh (with the conversion illustrated in Fig. 1).

For an element connecting four nodes with node features vi, vj , vk, and vl respectively, we can write
the element update stage in a reasonably general form,

e□ ← ϕe,e
(
e□,AGGeq

(
aqϕ

e,v(vq, e□, e□,q)
))
, (2a)

in which e□ is the element feature, e□,q is the feature carried by the element-node edge between
element □ and node q, q = i, j, k, l, aq is the (optional) attention weight, AGGe denotes a permutation-
invariant node aggregation function, and ϕe,v and ϕe,e are two functions that are preferably non-linear.

The subsequent node updating stage, in a similar level of generality, can be defined as

vi ← ϕv,v
(
vi,AGGv□

(
aiϕ

v,e(vi, ei□, ei□,i)
))
, (2b)

in which the subscript ei□ denotes the element feature of any element that connects node i with some
other nodes, ei□,i denotes the corresponding element-node feature for node i within such an element,
and ϕv,e and ϕv,v are two functions that are preferably non-linear. Similar to the element update step,
the element aggregation function AGGv should also be permutation-invariant.

In practice, these two update stages can be simplified significantly. In the experiments described in
Sec. 4, we adopt simplified element and node update stages

e′□ = AGGq
(
ϕe(vq, e□, e□,q)

)
, (3a)

v′i = ϕv(vi,
∑
□

ei□), (3b)

which reduces the computational overhead to a level comparable to the generalized message-passing
network defined in Eq. 1, and also rather easy to implement using a gather-scatter scheme similar to
that in Pytorch Geometric [19].

An illustration of the two hypergraph message-passing stages described in Eq. 3 is attached in Fig. 2.

3.3 Model architecture

In general, we follow the same encode-process-decode architecture and forward Euler time stepping
in the MeshGraphNet baseline [3]. At roll-out time step tn, the neural network output ψ̂ is added to
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Figure 3: Schematic of the model architecture. The inputs are first encoded, then pass through nl = 15
message-passing layers, and then the node features are decoded to generate the neural network output.
Residual links are used for the node and edge/element features for the message-passing layers.

the state parameters sn to generate the predicted state parameters ŝn+1 for time step tn+1,

sn+1 ≈ ŝn+1 = sn + ψ̂ (4)

The neural network itself includes an encoder, a series of message-passing layers, and a decoder,
stacked together in a feedforward fashion. The encoder, decoder, and the processors in the message-
passing layers are selected to be multi-layer perceptrons in this work for the sake of consistency with
the baseline, but it should be noted that other choices are also possible.

The model architecture is summarized in Fig. 3.

3.4 Choice of activation function

Most of the existing works discussed in Sec. 2 use Rectified linear Units (ReLU) or ReLU-like
activation functions. We notice that the use of the sinusoidal activation function [20] improves the
accuracy and smoothness of the captured details compared to ReLU in shape representation tasks.
It is therefore reasonable to hypothesize that it should also help in capturing smooth and accurate
system dynamics when used as the activation function for the encoders, decoders, and processors in
the graph neural network. In Sec. 4, we report the results for both when ReLU/ReLU-alike activation
functions are used, and when sinusoidal activation functions are used.

3.5 Adaptive smooth L1 loss

Most of the existing works discussed in Sec. 2 adopt mean squared error (MSE) as the training loss.
When training the node-element hypergraph with sinusoidal activation functions, however, we found
that the use of MSE loss leads to instability in the training process. We therefore seek an alternative
training loss. Another typical loss, the L1 loss, might not be preferable in this case since it is not
smooth at zero, and we therefore adopt a smooth-L1 loss [21] function, which states that for ground
truth ψ and its neural network prediction ψ̂, the loss

Li(ψi, ψ̂i) =


(ψi−ψ̂i)

2

2β , if |ψi − ψ̂i| < β∣∣∣ψi − ψ̂i∣∣∣− β
2 , if |ψi − ψ̂i| ≥ β

(5)

in which β is a non-negative parameter that controls the transition point between the L2 loss region
and the L1 loss region. The subscript i here denotes entry-by-entry calculation. A fixed β value is not
preferable, since the loss function is not very different from the L1 loss when β is too small and will
converge to a scaled L2 loss during training when β is too large. For the present case, the instability in
training occurs when the training MSE error is relatively low, so an adaptive scheme for β is preferred.
Assuming that the distribution of error during the training (approximately) follows a symmetric
distribution centered at zero, the target is to make sure that the two tails of the distribution fall into the
L1 loss region so that they do not lead to instability. More complex on-the-fly β adaptation algorithms
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like references [22, 23, 24] exist, but we choose to control it in this work using a simpler approach by
setting β2 as the variance of the model prediction error

β2 = Var(ψ − ψ̂) ≈ MSE(ψtrain − ψ̂train) (6)

based on the idea that at least part of the two tails of any zero-centered symmetric distribution
would reside more than one standard deviation away from zero. The variance of prediction error
is approximated by computing the MSE error between the predicted and ground truth value of the
whole training set, which can be further approximated on-the-fly by an exponential moving average

β2 ← (1− 1

Nb
)β2 +

1

Nb
MSE(ψbatch − ψ̂batch) (7)

in which Nb is the total number of training steps within each epoch. We further stabilize the process
by preventing β from increasing, i.e.,

β2 ← (1− 1

Nb
)β2 +

1

Nb
min{β2,MSE(ψbatch − ψ̂batch)} (8)

for each training step.

4 Experiments

In this section, we apply the network described in Eq. 3 to the modeling and prediction of two fluid
systems. In the subsequent subsections, we will first briefly describe the data sets used, then present
the details on the setup of the proposed and baseline models, and finally demonstrate the results. All
experiments are performed with all random seeds fixed at 1.

4.1 Experimental setup

Data sets We choose two typical fluid flow systems for the experiments: The flow around a circular
cylinder and the flow around an airfoil. The flow around the cylinder is simulated at Reynolds number
Re = 200, and used to test the capability of the neural network in learning a certain dynamic without
overfitting to it. The flow around the airfoil is simulated at multiple Reynolds numbers (with the flow
at each Reynolds number forming a separate "trajectory") within the range Re ∈ [1000, 4000], and
used to test the capability of the network to interpolate within a range of dynamics and extrapolate
out of the range. Both flow data sets are generated via a finite element solver written in Matlab.
The simulated flow data are interpolated onto a coarser mesh before subsequent conversion to
graph/hypergraph. More details on the data sets used are provided in appendix A.

Models & implementation We choose the state-of-the-art MeshGraphNet [3] as our baseline
model. Apart from the baseline, the performance of three other models are evaluated and reported:
The alternative MeshGraphNet with activation function changed to a sine function (abbreviated as
Node-edge-sin), the node-element hypergraph message-passing network with Relu-like activation
function (Node-elem), and the node-element hypergraph message-passing network with sinusoidal
activation function (Node-elem-sin). All models are implemented in PyTorch [25]. The message-
passing layers are implemented through a gather-scatter scheme similar to that in PyTorch Geometric
[19]. Different from the practice in the original MeshGraphNet, we follow the adaptation suggested
by Lino et al. [7] to temporally evolve the pressure along with the velocity.

Training We train all models with an Adam [26] optimizer for a total of 207 epochs with batch
size 4. Mean-squared loss is used when ReLU-alike activation functions are used following the
practice in the MeshGraphNet baseline, while adaptive smooth L1 loss described in Sec. 3.5 is used
when the sinusoidal activation function is used. It should be emphasized that we choose to NOT use
any training noise for all the cases reported, as it is too computationally expensive to optimize this
hyperparameter for a fair comparison.

More implementation and training details are attached in appendix B.

6



0 200 400 600 800 1000 1200
0.95

0.975

1

MeshGraphNet
Node-edge-sin
Node-elem
Node-elem-sin

Roll-out time step

Figure 4: Coefficient of determination R2 of the predicted pressure field over 1200 steps for the flow
around cylinder data set.

4.2 Evaluation metric

The trained models are evaluated on the test data sets. It should be noted that no cross-validation
data sets are needed as we do not tune the hyperparameters, but rather follow the choices of the
MeshGraphNet baseline. As the main purpose of the neural network surrogate model is to generate
accurate roll-out simulations, we evaluate the models by feeding the state of the system at a certain
time step (the first time step within each of the test data sets) to the model and compare the predicted
system states over the next hundreds of time steps with the ground truth. Specifically, we quantitatively
compare the similarity between the ground truth non-dimensionalized pressure field p∗ and the
predicted pressure field p̂∗ over the predicted time steps by calculating the coefficient of determination

R2 = 1− ∥p
∗ − p̂∗∥22

∥p∗ − p∗∥22
, (9)

in which the overline (·) denotes the mean operation. A higher coefficient of determination indicates
a more accurate prediction, up to R2 = 1 which means perfectly accurate predictions.

4.3 Results and discussions

Starting from the first time step in each of the test data sets, the models generate roll-out predictions
of the states of the fluid systems over the future time steps. For the flow around cylinder data set,
predictions for 1200 future time steps are generated. For the flow around airfoil data set, predictions
for 800 future time steps are generated for each Reynolds number. In this subsection, we report these
evaluation results, using the metric described in Sec. 4.2.

Learning a certain flow dynamic Figure 4 shows the coefficient of determination of the predicted
non-dimensionalized pressure field p̂∗ for the flow around cylinder data set. It is clear that the node-
element hypergraph message-passing networks are able to produce stable and accurate predictions
for a longer period of time compared to the baseline MeshGraphNet. The use of the sinusoidal
activation function proves to be helpful for the node-element hypergraph message-passing network,
verifying the hypothesis in Sec. 3.4. In the meantime, we notice that the opposite is true for the
generalized message-passing network on a normal graph. As the training mean-squared error for both
architectures reaches about 4× 10−9 when the sinusoidal activation function is used, we conclude
that the message-passing network on a normal graph is more prone to overfitting when used to learn a
certain flow dynamic.

Interpolation & extrapolation Figure 5 shows the coefficient of determination of the predicted
non-dimensionalized pressure field p̂∗ for the flow around airfoil data sets at different Reynolds
numbers. Note that the flow at each testing Reynolds number (i.e., each testing "trajectory") is tested
separately, using the system state of the first time step of each testing "trajectory" as the input to
the model. The Reynolds number range of the training ’trajectories’ is marked out. Within the
interpolation range, we observe that the node-element hypergraph message-passing networks are able
to generate accurate roll-out predictions for a longer period of time.

In the meantime, all models do not perform well in extrapolating out of the training range. This is
within expectation, especially for MeshGraphNet, since all of its components are linear or piecewise
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Figure 5: Coefficient of determination R2 of the predicted pressure field over the prediction roll-out
for the flow around airfoil data set for all testing Reynolds numbers, sampled at roll-out time step
200, 400, 600, and 800.

linear functions, which means that the network output ψ̂ is a piecewise linear function of its inputs.
Empirical results [27] show that this kind of network extrapolates linearly outside of the training
range. Since the dynamics of a fluid flow system, governed by the Navier-Stokes equations, is not
linear, the network is not expected to be able to extrapolate outside of the training Reynolds number
range. The same conclusion is also approximately (and only approximately as GeLU activation
function is used) true for node-elem model. For models with sinusoidal activation functions, the
extrapolation pattern is not completely clear, but the results in Fig. 5 show that they are also not able
to extrapolate well.

Additional results on the inference speed of the models are reported in Appendix C.

5 Conclusion

Targeting Eulerian mesh-based simulations with GNN, we propose to convert the computational
mesh to a node-element hypergraph rather than a normal graph. We implement a message-passing
network on such a hypergraph and showed that the network is able to generate stable and accurate
roll-out predictions for a longer period of time compared with the baseline defined on a normal graph.
We further demonstrate that the use of sinusoidal activation functions is preferable compared with
ReLU-like activation functions.

As the proposed network architecture only changes the graph connectivity and message-passing
strategy at individual graph levels, it should be compatible (after minor modifications) with most
existing techniques like multi-grid methods and physical invariance/equivariance that were originally
built upon graph neural networks. This means that we have established a new, stronger baseline for
future research efforts in mesh-based simulations with GNN.

It should be noted that the current model only takes inspiration from the graph connectivity of the
finite element method, but would it be possible to construct a network architecture that is strictly a
neural network version of the finite element method (i.e., a step further from this work and the work
by Lienen and Günnemann [17])? In our future work, we plan to explore such possibility.
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A Details of the data sets used

Two data sets are used for the evaluation of the model. In this appendix, we provide the detailed
description of these data sets.

A.1 Data generation, train-test split

Both flow data sets are 2-D incompressible fluid flow simulated at laminar flow condition. The
computational meshes are drawn with Gmsh [28]. The momentum equations are solved using
a Petrov-Galerkin finite element solver with a semi-discrete time-stepping scheme [29] written
in Matlab. The domain for the two sets of simulations are plotted in Fig. 6. The inlet features
a uniform flow ux = U∞ = 1, uy = 0 condition, the outlet Γout is set to be traction free,
while top and bottom of the boundary conditions Γtop and Γbottom are set to be slip-wall. The
computational meshes are shown in Fig. 7a and Fig. 8a. For the flow around cylinder, a total
of 6499 continuous time steps are sampled with non-dimensionalized time step ∆t∗ = 0.04 at
Reynolds number Re = 200. For the flow around airfoil, flow data are sampled at Reynolds number
Re = {1000, 1100, . . . , 2000, 2033.33, 2050, 2066.67, 2100, 2133.33, . . . , 3000, 3100, . . . , 4000}.
For each of the sampled Reynolds number, 4500 continuous time steps are sampled with non-
dimensionalized time step ∆t∗ = 0.0167.

For the neural network, we use coarser meshes (also generated by Gmsh) for both cases, plotted in
Fig. 7b and 8b. It should be noted that the meshes for the flow around cylinder are the same as the
one used for the fluid-structure interaction between fluid flow and an elastically mounted cylinder
in reference [9]. The statistics about the number of nodes, edges and elements for the two data sets
are reported in Table 1. The simulated flow data on the dense CFD mesh are interpolated onto the
coarse neural network mesh via a clough-tocher interpolator available in SciPy package [30]. The
two data sets after interpolation are publically available at https://drive.google.com/drive/
folders/17sLVTbcDP5Y5-x4FcHumTbaBtR5xyxNj?usp=sharing. The original CFD data sets
are also available on request.

Table 1: Statistics of the converted graph/hypergraph for the data sets used

Data set Nodes Edges Elements Element-node
edges

Cylinder 2204 8728 2160 8640
Airfoil 3653 14486 3590 14360

The interpolated data sets are then split into train and test data sets, as listed in Table 2. Separate
cross-validation data sets are not necessary, since we do not fine-tune the hyperparameters of the
model, but rather follow the choices in the MeshGraphNet baseline [3].
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Figure 6: Schematic of the computational domain for the two data sets. (a) Flow around cylinder (b)
Flow around airfoil.

Table 2: Train-test split of the data sets. The a : b : c notation denotes a series of values starting from
a and ends at c, with interval b.

Data set Training
Reynolds number(s)

Testing
Reynolds number(s)

Time steps per
training trajectory

Time steps per
testing trajectory

Cylinder 200 200 2048 1200

Airfoil 2000:1003 :3000
1000:100:1900
2050:100:2950
3100:100:4000

512 800

A.2 Graph feature attachment

After being interpolated onto the coarser mesh, the flow data are then converted and re-attached to
the graph/hypergraph that is converted from the coarse mesh (cf. Fig. 1). As the two data sets used in
this work are both fluid flow data sets, they share the same feature attachment procedure. For features
on the normal graph (the MeshGraphNet baseline), the node features are the velocity and pressure, as
well as the boundary condition (encoded as a one-hot vector):

vi = [ux,i, uy,i, pi, γi] , (10)
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Figure 7: Schematic of the mesh used for the flow around cylinder case. (a) Computational mesh for
the CFD solver. (b) Coarser mesh to be converted to graph/hypergraph for neural network.

The edge features encode the relative location information

eij = [xi − xj , yi − yj ,
√
(xi − xj)2 + (yi − yj)2], (11)

For the node-element hypergraph, the node features are the same as that of the normal graph. The
features on the element-node edges are used to encode the relative location information. For an
element connecting four nodes i, j, k, and l, the element-node features

e□,p =

xp − 1

4

∑
r=i,j,k,l

xr, yp −
1

4

∑
r=i,j,k,l

yr

 (12)

for p = i, j, k, l. The features on each element encode the area of the corresponding cell S□,
e□ = [S□,−S□] (13)

To avoid a feature vector of length 1, we augment the feature vector by concatenating it with its
negative vector.

B Details of implementation and training

We use PyTorch [25] to implement all the models. In all reported message-passing models, all
MLPs (encoders, decoders, processors) have two hidden layers with hidden layer width 128. A
total of 15 message-passing layers are used for all reported models. Residual links are added for all
message-passing layers. In order to improve convergence, layer normalization [31] is added at the
end of all encoders and processors for models with ReLU-like activation functions. All trainings
are performed with all random seeds fixed at 1 and batch size 4, using an Adam [26] optimizer with
PyTorch default setup, and lasts for 207 epochs. In the warmup stage (first 7 epochs), the momentum
of the Adam optimizer is reset at the start of each epoch. The detailed training scheme is reported in
Table 3. All trainings and evaluations are completed on a single Nvidia RTX 3090 GPU with CPU
being AMD Ryzen 9 5900 @ 3 GHz × 12 cores.

For the MeshGraphNet baseline, we translate from the TensorFlow implementation provided by Pfaff
et al. [3]. It should be noted that our implementation is different from the original version in that:

1. We no longer gather normalization statistics (mean and standard deviaton of inputs and outputs)
on-the-fly, but rather use the whole training data set to directly calculate them in pre-processing
stage.

2. We adopt the modification suggested by Lino et al. [7] to also include pressure in the temporal
roll-out, in addition to the velocity. Due to this modification, the outputs of the neural network at
the domain boundaries are now included in the calculation of loss.
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(a)
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Figure 8: Schematic of the mesh used for the flow around airfoil case. (a) Computational mesh for
the CFD solver. (b) Coarser mesh to be converted to graph/hypergraph for the graph neural network.

3. The results reported, except specifically mentioned, are generated from models trained without
the use of training noise. This is because we notice that the optimal amount of training noise
varies with the data sets and networks used, leading to another hyper-parameters that is too
computationally expensive to optimize for fair comparison.

4. The training scheme is slightly different from the original implementation. We add a learning
rate warm up stage of 7 epochs, and the learning rate do not decay immediately from the start.
The max learning rate (10−4) and min learning rate (10−6) are kept the same as original training
scheme in MeshGraphNet. We apply the same training scheme for all reported models.

For the node-element message-passing with ReLU-like activation functions, we use Gaussian Error
Linear Units (GELU) [32] activation function rather than ReLU in the MeshGraphNet baseline. This
is because MeshGraphNet gives better results with ReLU compared to GELU, while the reverse is
true for node-element hypergraph message-passing networks.

For the message-passing networks with sinusoidal activation function, we use the sine activation [20]
along with the specific initialization schemes described in the work.
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Table 3: Neural network training scheme

Stage Batch size Epochs Starting
learning rate

Learning rate
decay per epoch

Reset momentum
at every epoch

1

4

7 10−6 2.152 True
2 50 10−4 1 False
3 100 10−4 0.955 False
4 50 10−6 1 False

Table 4: Inference time per prediction roll-out step

Data set MeshGraphNet Node-edge-sin Node-elem Node-elem-sin

Cylinder ≈ 13.6 ms ≈ 15.9 ms ≈ 14.3 ms ≈ 17.2 ms
Airfoil ≈ 14.3 ms ≈ 16.7 ms ≈ 14.9 ms ≈ 15.4 ms

The message-passing layers are implemented in a gather-scatter scheme, which is similar to that in
PyTorch Geometric [19] but not exactly the same. Due to the use of the GPU atomic operation in the
scatter functions, the training and evaluation processes are not deterministic even when all random
numbers are fixed, and some differences are expected between the network parameters obtained from
running the provided code and the trained network parameters provided.

C Additional results

Inference speed Theoretically, the computational complexity of the models in concern should
be similar, as a generalized graph message-passing layer and a node-element hypergraph message-
passing layer require almost the same number of gather functions, scatter functions, and MLP
evaluations. The actual inference time cost per step for both data sets during evaluation, reported
in Table 4, confirms this hypothesis. The node-element hypergraph message-passing networks run
slightly slower than the graph message-passing layers, probably due to the fact that there is a data
copying step in the implementation of node-element hypergraph message-passing layer that we found
unnecessary in theory, but difficult to circumvent in practice. When using sinusoidal activation
functions, the networks generally run slightly slower (except Node-elem-sin for airfoil data sets),
probably due to the fact that the evaluation of sine function is slower than ReLU or ReLU-like
activation functions.
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