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Abstract

Quantum tomography is the process of characterizing a quantum system through a
series of measurements. Recent experimental realizations of increasingly large and
complex quantum information processing devices have led to a need for resource
efficient and accurate tomography techniques. An important problem in quantum
tomography is the exponential scaling of resources with system size. In this project,
we explore a recent work which applies transformer neural networks to improve
resource efficiency of quantum state tomography by modelling correlations in mea-
surement outcomes. We perform empirical evaluation of the framework on different
quantum states of interest in quantum information processing, and benchmark its
performance against standard techniques in quantum state tomography.

1 Introduction

Quantum information processing is experiencing a resurgence of interest in a very similar manner
to deep learning. Originally proposed by Richard Feynman in 1982 to simulate physical quantum
systems [1]], quantum computation is currently being explored to solve challenging problems in
many disciplines including biology [2l], chemistry [3]], and finance [4]. On the experimental frontier,
increasingly large and complex quantum devices with longer coherence times and higher fidelities are
being developed [3}16]. Accurate and resource efficient techniques for characterization and validation
of these devices is crucial to the development of large-scale quantum computers.

Quantum tomography is the process of characterizing a quantum system by performing a set of
different measurements. The aim of quantum state tomography (QST) is to reconstruct the quantum
state of a system by analyzing the outcomes of a set of measurements on identically prepared copies
of the system. The number of degrees of freedom of a quantum system grows exponentially with
system size. This leads to an exponential growth in the number of measurements and the amount of
computing resources required to performing exact QST, rendering it intractable for large quantum
systems [[7]].

2 Background

Density matrix A density matrix p is a positive semi-definite matrix with Tr[p] = 1. It provides the
most general description of a many-body quantum system. For a system consisting of N, qubits, it is
a d x d matrix, where d is the size of the Hilbert space, d = 2Ng,

POVM A positive-operator valued measurement (POVM) is a set of d x d positive semi-definite
operators { E; },x € {1,..., N, } where each z is a possible measurement outcome and NN,,, is the no.
of possible measurement outcomes associated with the set. Born’s rule in quantum mechanics states
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that for a system described by a density matrix p, the probability to measure and observe an outcome z
is given by p,(z) = Tr[E, p]. For multi-qubit systems with N, qubits, we often use a tensor-product
POVM where measurement outcomes are vectors, x = [z!, 22, ....2Ne],x € {1,..., N,,}®Na
and POVM elements are tensor products of single-qubit POVM elements E, = {E,}®N¢ x €
{1,..., N}

Measurement Dataset The measurement outcome dataset X = {x;}¥; consists of N one-shot
local measurements where each x; € {1,..., Nm}®N 4 is a vector sampled from the distribution:

P (x) = Tr[Exp] ey

where Iy are elements of the tensor-product POVM. A key thing to note here is that since the
measurement outcomes are discrete, p,(x) is a probability mass function and can be represented as a

probability vector of size Nf,\{q.

Linear inversion Given such dataset X, linear inversion is the simplest procedure to reconstruct the
density matrix from measurement outcomes. It requires constructing a probability vector p(x) which
is a frequency-based estimate to p,(x). This is then inverted using the following equation to obtain
an estimate for the density matrix p:

p= PO o Exr 2

s

where T(;,l 1) is an element of the inverse of the POVM T-matrix where each element T,/ xy =
Tr[Ex Ex]. It should be noted that since p(x) is a frequency-based approximation to p,(x), the
accuracy of the reconstruction p is highly dependent on the no. of measurements performed. This is
especially problematic if NV is small where the reconstructed density matrix p has been observed to
not satisfy the positivity and trace conditions. Although p(x) approaches p,(x) in the limit N' — oo,

in practice only a finite no. of measurements can be performed.

Maximum Likelihood Estimation [8| 9] MLE is another standard procedure to obtain an estimate
of the density matrix from measurement data. This is achieved by finding an estimate p which

maximizes the likelihood
L(p) = [[xilolx;)’ 3)
J
where each x; is a different possible outcomes, and f; is its observed relative frequency in the dataset,
je{l,.., N }. The MLE estimate for the density matrix is then

p = argmax L(p) )
P
This procedure is preferred over linear inversion since it easily allow for constraints on positive
semi-definiteness and trace of the density matrix to be incorporated in the optimization. Gaussian
MLE is a popular variant of standard MLE that considers measurement outcomes as being subjected
to an additive Gaussian noise, and has been shown to work well in practice [10]].

3 Related work

In recent years, there has been a growing interest in applying ML tools to characterize quantum many-
body systems [L1]]. This is achieved by either reconstructing the quantum wavefunction |¢) or the full
density matrix p. In most works, generative models based on Restricted Boltzmann Machines (RBMs)
[12H14]] and Recurrent Neural Networks (RNNs) [[15}[16]] are trained on measurement datasets. The
goal is to obtain a generative model py(x) which represents the many-body wavefunction and
provides tractable sampling for efficient calculation of physical properties such as ground-state
energies, correlation functions and entanglement entropies.

In one of the earliest works in this area [12], the authors applied RBMs with complex-valued weights
to represent many-body quantum wavefunctions. The main idea was that once trained, the RBM can
output both the amplitude and the phase of the many-body wavefunction for any configuration of the
system. The authors showed the model can be used to find ground states and simulate time-evolution
of several quantum many-body systems of interest in physics. The above approach was extended to
quantum state tomography (QST) in [13]] with two RBM networks py (x) and ¢, (x) representing the



amplitude and phase of the wavefunction. The author demonstrated the ability to perform QST of a
W state [[17] and the transverse-field Ising model. It was shown that unsupervised machine learning
approaches are able to reconstruct complex many-body quantum systems with only a limited number
of measurements.

Other works in this area include explorations of different neural-network architectures such as
convolutional neural networks (CNNs) [18]], as well as explorations of deep generative models
including variational autoencoders (VAEs) [19] and generative adversarial networks (GANSs) [20].
Attention-based Quantum Tomography (AQT) [21} 22] is a recent development which applies
transformer neural networks as generative models of quantum many-body systems. The framework is
motivated by the success of RNNs for QST, and aims to address their limitations such as restricted
ability to capture long-range correlations.

4 Methodology

Attention-based Quantum Tomography (AQT) In this project, we studied AQT which applies
transformers [23] to construct a probability vector pr(x) as an approximation to p,(x) (see eq. [I).

A key idea behind the model is that for entangled many-body quantum systems, the measurement

outcomes x; = [z}, 27, ..., z; ‘] exhibit short and long-range correlations which is quite similar to

the short and long-term correlations exhibited by words in sentences in natural language processing
(NLP). Additionally, similar to words, the measurement outcomes for individual qubits {2 } come
from a dictionary of fixed size, i.e. zJ € {1,..., Ny, }.

Dataset We train on a dataset X consisting of samples from p,(x) (see Measurement Dataset [2)

where each sample is a POVM outcome sequence x; = [z}, 22, ... ,sz»Vq] of length IN,. In order to

train the transformer, each measurement sequence x; is pre-processed by appending start and end
tokens i.e. [1] and [2] respectively and adding an offset of 3 to each ] to obtain Z7. (see ﬁgure
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Figure 1: The workflow to obtain the measurement outcome dataset X. A set of POVM measurements
(each multiple times) are performed on identically prepared copies of a quantum system.

Model In order to capture correlations in the measurement outcomes of different qubits, the AQT
model factorizes pr(x) as a fully auto-regressive model:

Nq
pr(x) = [[po(a?]2"<7) ©)
j=1

In the framework, a standard transformer decoder consisting of N; layers of two successive masked
multi-headed self attention layers followed by a position-wise feed-forward network is used to
parameterize py. The standard positional encoding scheme from [23] is used to take into account
qubit indices. The output of the transformer decoder is passed through a linear projection layer
followed by a softmax to yield pg(27|2?<7). The model is trained using label smoothing loss [24]
which regularizes the softmax prediction of the next token in the sequence. (see figure[2)

POVM Inversion Once trained, the AQT model is used to build a probability table pr(s) by passing

all possible POVM outcome sequences s;,7 = {1,.. ., N,{nv“} and computing pr(s) under the trained
model. Standard linear inversion (Eq. [2) can then be performed in order to obtain a reconstruction of
the density matrix p. (see figure 3)
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Figure 2: AQT transformer decoder consisting of N; layers of two successive masked multi-headed
self attention layers followed by a feed-forward layer with ReLu activation.
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Figure 3: POVM inversion to obtain a reconstruction of the density matrix p. The probability of all
possible outcome sequences under the model distribution is computed to build the probability table.

5 Experiments

In this project, one of the main goals in addition to understanding the AQT framework, was to
benchmark it against standard linear inversion and maximum likelihood estimation. We extend the
empirical results of the original work [21] by testing AQT on new quantum states with different forms
and amounts of entanglement. We also provide a key comparison to standard techniques in terms of
the quantum fidelity which was not included in the original work.

Quantum fidelity (which lies between 0 and 1) is a measure of the "closeness" of two quantum states
given by

Fo(ps,p2) =(Te[Voreevr] ) ©

In the case of pure states which we explore in this project, this is simplified to Fiy(p1, p2) =

|(11]102)|?, where p1 = [11) (1] and pa = |th2) (1)2]. We also note that although the original work
had some qualitative results and evaluation metrics, the accuracy of the reconstruction of the density
matrix was only measured in terms of the classical fidelity

NNa
FC(Pl,P2) = Z Pl(Si)Pz(Sz') @)
i=1



Classical fidelity only provides an upper bound on the quantum fidelity, and it has been noted that the
discrepancy between the two can be substantial [211 [25].

We generated new POVM datasets by simulating the following quantum states using OpenQasm
simulator [26] in an open-source framework for quantum computing, Qiskit [27] :

Greenberger-Horne-Zeilinger (GHZ) [28] For a system with IV, qubits, the GHZ state is defined as

1 ®N ®N
—([0)= 4 {1)" 8)
Z3(10)® Y 1) °)
It is considered to be a maximally entangled state and is of high interest in quantum information due
to its ability to demonstrate non-classical correlations and its relation to Bell’s theorem [29]. It is
widely used in several quantum communication and cryptography protocols.

|GHZ) =

W [17] The W states are another class of entangled states with a different multipartitite entanglement
structure. For a system of N, qubits, the W state is defined as

W) = ——(]100...0) + [010...0) + - - - +]00...01)) ©)

VN,

These also have wide applications in quantum information for tasks such as quantum teleportation
[30] and superdense coding [31]. These states exhibit very different correlations in the measurement
outcomes than GHZ states, thus making them ideal for testing QST methods.

Equal superposition These states do not have any entanglement and therefore, do not exhibit
correlations among measurement outcomes of different qubits. We wanted to understand the impact
of a lack of correlations in the input sequence on the reconstruction ability of AQT. Thus, we also
prepared the system in an equal superposition state,

Nq _
1 1 2 1

[+) = —=—=(10)*N* +]00...01) +]00...10) + --- + [1)®N1) = —— i) (10)
VN Yoo

For each of the quantum states described above, we prepared POVM measurement datasets with 2700
and 72900 samples for 3 and 6 qubit systems respectively. The number of samples is determined
by the POVM set and the number of unique measurements that can be performed on a system with
N, qubits. For the Pauli6 POVM, this is equal to 3NQ X ngpors and we set ngpors = 100. We
experimented with several different hyperparameter settings and found that the settings listed in table
[2]resulted in high quantum fidelities of the reconstructed density matrices across many states. We
also compared AQT with and without the post-processing procedure which constructs a new density
matrix by minimizing the number of negative eigenvalues of the original reconstructed matrix.

We present the results of the experiments in table [I| We first note that AQT outperforms linear
inversion for many states suggesting the probability table constructed using the transformer py(x) is
a closer approximation to p,(x) than a standard frequency-based estimate p(x), and that the model
is able to exploit correlations in the measurement outcomes among different qubits. We do note that
calculating the quantum fidelity between the ideal and the AQT reconstructed matrix often results
in a value greater than 1. This occurs since the reconstructed density matrix does not satisfy the
positive semi-definiteness and trace conditions. We do observe a slight improvement due to the
post-processing minimization procedure which is run after the initial reconstruction. Finally, we note
that for most of the different states studied, reconstructions by Gaussian MLE resulted in the highest
quantum fidelity while satisfying the positivity and trace conditions.

From the empirical studies, we observe that AQT outperforms standard linear inversion in some
cases, but when compared to MLE-based approaches, the advantages are unclear. When considering
the computational complexity, we note that Gaussian-MLE has a time-complexity of O(d*) in the
worst-case and O(d?) in the case of Pauli measurements, where d = 2"V¢. When comparing this to

AQT, the linear inversion step requires O(n?) operations, where n = N,]nV“. Thus, both AQT and
Gaussian-MLE scale exponentially with system size.

We also perform a qualitative analysis of the reconstructed density matrices using figure [4 where we
plot the absolute values of each element. We observe that for the 6-qubit GHZ state, an inaccurate
reconstruction directly results in a loss of quantum fidelity due to the missing peaks at matrix elements

corresponding to {|0)®° (1/%° , [1)®° (0/®°}.



State (qubits) Linear Linear Gaussian AQT AQT

inversion MLE  MLE [10] +min
GHZ (3) 0.934 0.992  0.999 0.994 0.995
W (3) 0.946 0.991  0.999 1.051 1.026
|+) 3) 0.959 0.996  0.999 0.985 0.999
GHZ (6) 0.919 0.992  0.999 0.499 0.499
W (6) 0.925 0.992  0.999 1.018 1.015
|+) (6) 0.959 0.996  0.999 1.006 1.002

Table 1: Quantum fidelities between the ideal and reconstructed density matrices. Gaussian MLE
reconstructions result in highest quantum fidelity in most cases. We note that values greater than 1
for AQT and AQT+min are a result of the reconstructed density matrices not satisfying the positive
semi-definiteness and trace conditions.
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Figure 4: Absolute values of elements of the ideal and reconstructed density matrices for the 3 qubit
W, and 6 qubit W and GHZ states. We observed a failure of AQT to reconstruct the GHZ state density
matrix in the 6 qubit case.

6 Conclusion and Future Work

In this project, we explored the recently proposed framework of attention-based quantum state
tomography. We performed key empirical analysis missing from the original work by calculating



the quantum fidelities of the reconstructed density matrices, and comparing AQT to standard linear
inversion and MLE-based approaches on different quantum states. We observed that although AQT
outperforms standard linear inversion is most cases, using MLE reconstruction still results in a more
accurate and physically valid density matrix. We also note that the density matrices reconstructed by
AQT often do not satisfy the positivity and trace conditions, and that this can be clearly observed
when using quantum fidelity instead of classical fidelity as an evaluation metric for the reconstruction.

Although we do present some discussion on the complexity of AQT and MLE approaches, empirical
evaluation on larger system with more qubits would lead to a better understanding of the accuracy
and scaling of these methods in terms of both sample and computational complexity. During
the experiments, we observed that a systematic hyperparameter optimization could lead to minor
improvements in the quantum fidelity of the reconstructed density matrices, and may help solidify
the key takeaways from the empirical analysis. Due to lack of access, we were unable to perform
evaluations using actual quantum hardware, but it represents an interesting opportunity for future work
due to the operation and measurement noise associated with actual quantum devices. Additionally, in
future, incorporation of the physical constraints of the density matrices i.e. positive semi-definiteness
and unit trace into the AQT framework could be the key to improve the reconstruction performance
significantly.

Code

The work was conducted using a forked version of the open-source package linked with the original
work |github.com/KimGroup/AQT. We made several additions and changes to the original codebase
to perform the empirical analysis presented above and the modified codebase is attached to this
report. The (\notebooks) directory contains all newly added IPython notebooks to prepare the dif-
ferent quantum states, perform the tomography experiments, collect measurement outcome data,
perform standard linear inversion and MLE (ibm_get_data.ipynb), compute the quantum fidelities and
visualize the results (results.ipynb). The (\circuits) directory contains newly added state preparation
circuit for the W state. The file (agt.py) was modified to allow setting of hyperparameters, timing
various components of the AQT pipeline and saving density matrices before and after post-processing.
Missing documentation and docstrings were added throughout many files in the repository including
(aqt.py, fidelity.py) and most importantly in (ann.py) to explain the computation graph of the trans-
former model. All experiments were conducted using newly generated simulation datasets, and all
results were developed using newly added analysis notebooks.
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7 Appendix

No. of qubits Ng 3 6
Learning Rate 1073 1073
Epochs 100 100
Batch Size 100 100
N, 2 4
demb 16 128
Nheads 4 4

Table 2: Hyperparameter settings observed to result in highest quantum fidelity of the reconstructed
density matrices.
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