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Abstract

Ovarian carcinoma has the highest mortality of all female reproductive cancers with
treatment being histotype-specific. Five common histotypes have been identified
by pathologists via multi-magnification microscopic examination. However, there
is only moderate interobserver agreement between general pathologists. At present,
deep learning models have improved upon pathologist performance, yet they
have not taken advantage of more nuanced tissue structure as well as the multi-
magnification nature of the histopathologic images. Therefore, in this project, we
introduce a graph data structure for representing inter- and intra-magnification
information flow in the data, and use it to devise a GCN based architecture for
further improving the performance of Deep Learning-based models. This model
represents a more systematic approach as the introduced graph structure enables
the capture of more comprehensive and interpretable histopathologic information
relating to the underlying mechanisms of the disease. Performance was assessed on
a set of 948 whole slide images corresponding to 485 patients. Our best performing
model achieved a balanced accuracy of 85.7% at the patient-level along with a
Cohen’s Kappa of 0.86 and outperformed competing state-of-the-art deep learning
architectures by a margin of at least 1.3%. The performance of our model suggests
potential for use as a diagnostic adjunct for pathologists to aid in improving
diagnostic accuracy in the clinical setting.1

1 Introduction

Projected to cause an estimated 12,810 deaths in the U.S in 2022, ovarian carcinoma is the deadliest
cancer of the female reproductive system [17] and the fifth deadliest cancer for women overall.
Ovarian epithelial cancer (carcinoma) occurs when epithelial cells from the ovaries or fallopian
tubes mutate or change in a manner which allows them to grow uncontrollably within one of the
ovaries, acquiring the potential to spread around the body [11]. It has five common histotypes,
each with distinct molecular, genetic, cellular, and clinical attributes. In the U.S, high-grade serous
carcinoma (HGSC) accounts for 70% of cases, clear cell ovarian carcinoma (CCOC) accounts for
12%, endometrioid (ENOC) for 11%, low-grade serous (LGSC) for 4%, and mucinous carcinoma
(MUC) for 3%.

To diagnose cancer, pathologists generally use a variety of lenses in their inspection of a tissue sample
under the microscope, switching between different magnifications as needed. They usually begin with
low magnifications to identify regions of interest for making preliminary decisions before increasing
magnifications to confirm or rule out those diagnoses[14].

1Both students contributed equally to the project: Ali designed research; Ali and Graham performed research;
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Preprint. Under review.



Two of the main challenges associated with histotype classification performed by pathologists are
diagnostic reproducibility and interobserver disagreement [5]. When diagnosing hematoxylin &
eosin (H&E)-stained tissue sections, pathologists without current, gynecologic-specific training
produce an interobserver agreement of only 0.54-0.67 Cohen’s kappa [3] [12]. Additionally, the
field of pathology is simultaneously facing challenges of increased workload as well as a shortage of
pathologists creating demand for the rapid switch to digital pathology oriented workflows aiming to
improve efficacy as well as efficiency [13].

Deep learning (DL) has demonstrated great potential for wide ranging clinical applications within the
field of digital pathology in the last decade. One such application has been using DL as a tool for
aiding pathologist diagnostic accuracy as well as efficiency in the context of cancer diagnoses. In this
context, deep learning algorithms are frequently trained on whole slide images (WSIs) which are
obtained by scanning a glass slide containing a tissue section via a whole slide scanner. H. Farahani
et al. [4] improved upon the Cohen’s kappa of general pathologists using deep convolutional neural
networks from 0.54-0.67 in the case of pathologists up to 0.8134 using their DL-based models. In this
project, we aim to further this progress by leveraging graph convolutional neural networks (GCNs)
[10] with a multi-magnification component as they have been shown to capture more comprehensive
and interpretable histopathologic information relating to the underlying mechanisms of a disease
[1]. Ultimately, the closer an DL model follows the pathologist’s routines, the more realistic and
interpretable its results may become.

This research report is organized as follows: a short survey related works will be presented in section
2. Our method is explained on section 3. In section 4, the details of our experiments and results are
reported. Finally, we conclude the research project and go over future directions in sections 5 and 6,
respectively.

2 Related Work

2.1 Histopathologic tasks using GCN

Several recent works have attempted to leverage GCNs in a variety of histopathological classification
contexts [1]. Some notable works include Guan et al. [6] which introduced a node-aligned GCN
(NAGCN), incorporating local and global structural information to enrich the representation of WSIs.
While this work achieved comparable performance with state-of-the-art methods, they did not include
multi-magnification elements in their graph representation and were testing on relatively simple
classification tasks.

2.2 Hierarchical Learning

Multiple efforts have been made to combine multi-magnification information in the context of
histopathology. This has been explored within the context of vision transformers where Chen et al. [2]
introduced their Hierarchical Image Pyramid Transformer (HIPT) architecture which uses two levels
of magnification. While they outperformed state-of-the-art methods for cancer subtyping and survival
prediction, they express major limitations related to the computational intractability of pre-training
HIPT on commercial workstations. Zhou et al. [18] introduced the novel cell-graph convolutional
neural network (CGC-Net) which produces graph representations of WSIs with edges denoting
cellular interactions. They further present Adaptive GraphSage, a graph convolutional technique
which combines multi-level features. While this work produces state-of-the-art performance, their
classification task is one of normal vs low-grade vs high-grade gland differentiation whereas ours is
a five histotype classification task with more nuanced structural differences.

2.3 KimiaNet

With recent progress in deep learning, deep features, i.e. high-level embeddings from a deep network,
have advanced past handcrafted features and are considered the most robust sources for image
representation. Unfortunately, pre-trained networks such as DenseNet draw their features from
millions of non-medical and non-histopathological images. In this context, KimiaNet [15] was
developed by employing the architecture of DenseNet [7] with four dense blocks trained on more
than 240,000 histopathology images (patches). This work provides a densely connected network with
weak labels which can serve as a feature extractor for more specific histopathological tasks.
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2.4 Attention Based Models

2.4.1 DeepMIL

The first architecture we implemented as a competing state-of-the-art model was DeepMIL [8], a
model that combines permutation invariant multiple instance learning (MIL) with an attention-based
neural network. MIL is a type of supervised learning where labelled data (in our case, a WSI with a
slide level label) is broken up into a “bag of instances” which is considered to be weakly labelled
meaning that the patches are from one WSI but each patch is not individually labeled. DeepMIL
uses attention-weighted patch instance feature vectors to compute bag-level features which are
subseqeuntly classified using a fully connected layer. In our implementation, DeepMIL was trained
using cross entropy loss as well as a learning rate of 0.001 for Adam ptimizer with a weight decay of
0.01.

2.4.2 VarMIL

Secondly, we compared our model to VarMIL [16], a model based on DeepMIL, focused on addressing
it’s limitations related to histopathology. This limitation is that the bag-level latent features of
DeepMIL consider neither patch interactions nor high level features of the WSI. To address this
shortcoming, VarMIL adds an additional attention weighted variance module to the architecture
which represents the tissue heterogeneity of different patches within a WSI. We used the same settings
as described above in DeepMIL for VarMIL.

3 Method

As mentioned earlier, most multi-magnification methods (to best of our knowledge, all of them) can
be categorized under hierarchical learning [2] or ensemble learning [14], where the former tries to
convey information from lower magnifications to higher magnifications, and the latter processes
different magnifications independently and aggregates their information at the end of the process
to represent the data. The issue with hierarchical learning is that it is not flexible with information
flowing from higher magnifications to lower ones, whereas pathologists regularly increase and
decrease magnification on the image when they are diagnosing challenging cases. As for ensemble
learning, it can be implied that such methods are assuming that samples from different magnifications
are i.i.d (which is generally not true) because they feed into and train them with independent deep
learning models, and then ensemble the output features of the models as the final representation for
the data and as the input to a classifier. This way of unstructured learning might not capture inter-
and intra- magnification feature interactions.

Therefore, as we know that valuable information is contained in different magnifications, and the
information flow does not follow a fixed hierarchy for each patient and slide, we aim to first introduce
a graph data structure for representing WSIs as graphs, then we use the graphs for training GCNs to
represent their information in a structured paradigm to classify the five subtypes of ovarian carcinoma.

3.1 Heram

The multi-magnification nature of WSIs needs to be taught to a model, so that it can be utilized for
learning and inference by the model. Here, we start by segmenting the tissue region using HistoQC
[9], then extract n patches in each magnification of 5x, 10x, and 20x such that all patches are
1000× 1000 pixels since the computational limitations of neural networks do not allow dimensional
variation in their inputs. On the other hand, as the magnification doubles, the corresponding number
of windows increases four fold. To address this challenge, higher magnification patches are at the
center of the lower magnification patches yet with higher resolution and the same size. For example,
the corresponding 10x patch to 5x is the centered window of 5x, and the corresponding 20x patch to
10x is the centered window of 10x as illustrated in Fig. 1. This approach has been taken to mimic
the exact hierarchical zooming procedure that a pathologist does by adjusting microscope lenses to
reach the optimal focus (magnification).

Using this multi magnification patch extraction approach, we extract n patches for each magnification
to represent a WSI with 3n patches. The coordinates of patches are chosen randomly in 20x and
subsequently fixed for other magnification to follow the aforementioned patch extraction approach.
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Figure 1: Going from low to high resolution with a fixed size, the area will be reduced, but more
details are seen. From left to right, a given window of 1000 × 1000 pixels at 5x magnification in
blue, then a 10x window of the same size in green, and finally a 20x window of the same size in red
are shown.
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Figure 2: Overview of our workflow beginning with WSIs and outputting patient subtype predictions.
a) shows the WSI being tiled into patches of varying magnification which are then embedded and
assembled into a three layer multi-magnification graph. In b), patient graph representations are
used independently to feed into a three-layer GCN and subsequently a two-layer MLP. Finally, the
predictions for each graph are amalgamated via majority voting in c), producing the overall patient
subtype prediction (For the sake of illustration, n = 4 is used to show the structure of Heram).

We then fine-tune KimiaNet for each magnification separately and design a graph Hn with 3n

nodes, and (3n+1)n
2 edges, consisting of three levels: each a complete graph Kn. The graph Hn is a

connected graph, meaning that there is a path for every node to transfer messages, so even in the worst
case, the farthest node from a given node can be accessed through a path of length 3. Each node in
the graph is an embedding of the last pooling layer of corresponding KimiaNet at that magnification
as it is depicted in Fig.2-a). Accordingly, a WSI can be represented by a multi-magnification graph.

Each magnification level in Heram is a complete graph to represent the inter-magnification relationship
between patches. In addition, corresponding patches in different magnifications are connected
together to represent intra-magnification relationship between 5x, 10x, and 20x magnifications
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patches, making a pyramidal structure (we decided to name Heram, which is how it is translated into
Persian).

Due to clinical consideration, a patient could potentially have more than one slide, so it is essential
to consider different slides of the patient when making the final subtype prediction. To do so, we
represent each slide with a separated graph as depicted in Fig.2-b). Considering the structure of
Heram, a three-layer GCN can pass messages to every node in the graph. Thus, Heram has a three-
layer GCN with embedding size of 128 while the input embedding is of size 1024 as in KimiaNet’s
last pooling layer. To calculate the final graph representation, average readout is adopted as part of
the model. The final graph embedding is passed into a two-layer MLP with ReLU as the intermediate
activation function. Heram’s prediction for each slide of a given patient is calculated, and is fed into
a majority voting module to determine the patient-level prediction as shown in Fig.2-c).

4 Experiments

4.1 Data preparation and processing

We use a dataset of Ovarian Carcinoma consisting of 948 WSIs with five histotypes including HGSC
(410), CCOC (167), ENOC (237), LGSC (69), and MUC (65). As there are no pathologist patch-level
annotations for the dataset, and only patient level labels are available, this project is categorized as
Weakly Supervised Learning because there is a label for WSIs for a given patient, but we do not have
any label or annotation for patches.

The main component of processing the WSIs is to apply HistoQC to the dataset [9]. The reasons for
this are twofold. Firstly, HistoQC masks the background region of the WSIs with the goal of only
leaving the foreground which is comprised of the tissue region. This ensures that when we extract
patches randomly from the slides, we are only obtaining tissue images for model input rather than
white space and other background elements. Secondly, HistoQC removes artefacts and batch effects
such as pen lines, which are commonly introduced during routine slide preparation, from the WSI.

Unit Histotype

HGSC CCOC ENOC LGSC MUC Total

Patients 200 95 114 34 42 485
Slides 410 167 237 69 65 948
Patches 123,000 50,100 71,100 20,700 19,500 284,400

Table 1: Overview of our dataset.

After cleaning the data with HistoQC, we extract patches randomly from the slides. For each slide,
100 patches are randomly extracted at each of 5x, 10x, and 20x magnification for a total of 300
patches per slide. Full details of the number of patients, slides, and subsequent patches for each
histotype can be seen in Table 1.

4.2 Training the deep learning model

As outlined in Fig.2, after the patches are extracted, we use them to fine-tune KimiaNet to extract
features for building the graph. Then we use the same training set as Kimianet for the graphs to
train our model. The three layer GCN has an embedding size of 128 for all layers, a learning rate
of 0.0001 for Adam optimizer, a weight decay of 0.01, and weighted cross entropy as loss function,
also contains two dropout layers with p = 0.15 and p = 0.05. During training, we chose the best
performing model in terms of Balanced Accuracy for the validation set over 100 epochs. For all
training and testing, the GPU hardware used was either a GeForce GTX 3090 Ti (Nvidia) or a Tesla
V100-SXM2-32GB (Nvidia) based on availability. Deep Graph Library (DGL), PyTorch, Numpy,
SciPy, PyGeometric, and Scikit-Learn libraries have been used to perform the experiments.

4.3 Results & Visualization

To identify the model architecture with the best performance, we used three-fold cross-validation
across ten random seeds and subsequently averaged performance across splits for each of the seeds.
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Our results indicate that the highest performing model was Heram (Table 2), which achieved a mean
patient-level Balanced Accuracy of 85.7 ± 0.39 %. In our case, Balanced Accuracy is the most
crucial metric for assessing model performance due to the inherently unbalanced nature of the data.
That is to say, a model could attain an Accuracy of 70% by simply predicting all cases as HGSC,
though the resulting balanced accuracy would be 20%. In fact, this reasoning is likely the explanation
for the sole instance of our model being outperformed which is in Accuracy Standard Deviation seen
in Table 3.

The model ‘GCN: 20x + Majority Voting’ attained a superior Accuracy STD of 0.48%, but we should
note that it’s Balanced Accuracy STD is 5.02%, implying that it overly predicted more prevalent
histotypes rather than learning to correctly classify less common histotypes, which is a crucial error
in the clinical setting. Consequently, The multi-magnification structure of Heram not only improves
performance for various metrics, but also helps to stabilize the model toward the objective function
of Balanced Accuracy in comparison with the single magnification versions.

Model Balanced Acc. (%) Acc. (%) F1 Score

DeepMIL: Multi Magnification + Majority Voting 83.9 85.9 0.845
DeepMIL: 5x + Majority Voting 84.4 86.0 0.846
DeepMIL: 10x + Majority Voting 83.7 85.2 0.845
DeepMIL: 20x + Majority Voting 83.3 86.0 0.839
VarMIL: Multi Magnification + Majority Voting 83.0 85.9 0.841
VarMIL: 5x + Majority Voting 84.0 85.2 0.839
VarMIL: 10x + Majority Voting 82.6 84.7 0.832
VarMIL: 20x + Majority Voting 81.9 85.6 0.828
Heram: Majority Voting 85.7 86.3 0.858

Table 2: Patient-level results comparing Heram, with competing state-of-the-art models, DeepMIL
and VarMIL. All models presented in this table are selected based on optimal Balanced Accuracy in
the validation set over 100 epochs. The values reported are average on three splits and ten different
random seeds.

Even though we evaluated DeepMIL and VarMIL with multi-magnification data, the result in Table
2 shows that they can not capture multi-magnification information contained in WSIs as the 5x
instance outperformed the Multi Magnification version. Contrasting this, as an ablation study, Heram
demonstrates that a well-structured graph design can help the model to digest multi-magnification
information. To clarify, for single magnification analysis, we feed the fully connected graph of all
embeddings of that magnification to the same GCN model as used for Heram. For example, ‘GCN:
5x + Majority Voting’ in Table 3 means that it is the same GCN model as Heram except the input
data is only 5x magnification embeddings.

Model Balanced Acc. (%) Acc. (%) F1 Score

GCN: 5x + Majority Voting 85.0 84.5 0.840
GCN: 10x + Majority Voting 83.3 84.0 0.836
GCN: 20x + Majority Voting 81.5 85.2 0.824
Heram: Majority Voting 85.7 86.3 0.858
Model Balanced Acc. STD (%) Acc. STD (%) F1 Score STD (%)

GCN: 5x + Majority Voting 0.63 0.93 1.50
GCN: 10x + Majority Voting 0.49 1.68 0.96
GCN: 20x + Majority Voting 5.02 0.48 3.47
Heram: Majority Voting 0.39 1.57 0.65

Table 3: Ablation study:comparing Heram, with the same GCN at three different magnifications: 5x,
10x, and 20x classifying at the patient-level. All models presented in this table are selected based on
optimal Balanced Accuracy in the validation set over 100 epochs. The values reported are average on
three splits and ten different random seeds.
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Model Patient-level Cohen’s Kappa

Pathologists 0.54-0.67
H.Farahani et. al 0.8134
Heram (Avg. on 10 Random Seeds) 0.8395
Heram (Best Performing Model Among 10 Random Seeds) 0.8599

Table 4: Comparing Cohen’s Kappa for our model and previous works (For Heram, the values
reported in the table are the mean value from three splits.

From table 4, we see that Heram has improved upon Farahani et al. [4] in terms of the patient-level
Cohen’s Kappa. This indicates that the introduced multi-magnification graph data structure alleviates
interobserver disagreement.

Figure 3 shows the confusion matrix associated with our best performing model selected from ten
random seeds. From this matrix, we are able to visualize the model’s performance, as well as it’s
shortcomings in relation to classification. It is worth noting that the most common failure mode
for this model is classifying EC as HGSC and vice-versa. Notably, this is a clinically explainable
failure mode as these histotypes of ovarian carcinoma often exhibit morphological mimicry, that is,
presenting features on H&E slides which mimic each others histotype with respect to architecture and
cytological features. It is also worth noting that Heram performs well on rare histotypes such as MUC
and LGSC, which shows the model is not skewed towards the most abundant classes (histotypes).

Figure 3: Confusion matrix showing how our best performing model classified histotypes at the
patient-level for three splits.

5 Conclusion

Our main objective in this research project was to develop a Deep learning-based model for im-
proving ovarian carcinoma histotype diagnosis by using the most intuitive property of WSIs: multi-
magnification. We created a graph-based architecture based on the workflow of clinical pathologists
and evaluated their performance on a dataset composed of 948 WSIs. Our chosen metrics for compar-
ing models are Balanced Accuracy, Accuracy, and F1-score. Our proposed model achieved a mean
patient-level balanced accuracy of 85.7% outperforming DeepMIL and VarMIL. Heram, which yields
high performance on histopathology slides, advances the progress towards the implementation of
structure-based deep learning tools as a diagnostic adjunct for pathologists in diagnosing ovarian
carcinoma histotypes. Moreover, not only can it capture multi-magnification details contained in
WSIs, but it is also more stable in comparison to single magnification methods.

At present, the ‘gold standard’ for clinical ovarian carcinoma histotype diagnoses is the expert
pathologist diagnosis which uses H&E stained tissues samples inspected at a variety of magnification
levels for identifying select structural and morphological markers. This remains a challenging task,
both for reasons of time and resource consumption as well as difficulty for even highly specalized,
gynaecological trained pathologists to confidently differentiate certain histotypes. While the model
we present cannot, and should not replace clinical pathologists, we posit that the performance is at a
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level that it could be implemented into practice due to it’s ability to rapidly formulate a diagnosis
with a high degree of diagnostic concordance.

We conclude that Heram, which incorporates graph-structured learning as well as multi-magnification
information, provides performance at a level which suggests it can act as a valuable clinical adjunct
for informing histotype diagnosis of ovarian carcinoma.

6 Future Works

Heram has shown state-of-the-art performance and needs to be further investigated to identify its other
potential strengths and limitations that were not discussed in this manuscript. Therefore, we plan
to assess the generalizability of the model by testing it on two completely different cancer datasets,
a Bladder cancer dataset and a Colorectal cancer dataset. The number of patches (embeddings) for
each magnification, n, is also a hyperparameter of the model, and we are going to design further
experiments to elucidate its role in the model’s functionality. The main reason we extracted patches
randomly across different regions of the given WSI is that we did not intend to impose prior knowledge
to the model. That is to say, different cancers have distinct morphological characteristics, and we
hope the model can understand this since we extracted patches randomly, yet we need to test the
hypothesis that the model can learn morphological patterns of cancers and distinguish between them.
To this end, we are planing to add a comprehensive analysis on the two aforementioned datasets.
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