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Abstract 

Chest X-ray imaging is a common medical imaging technique used to diagnose a 

variety of diseases. Many machine learning approaches have been developed to 

perform classification of chest X-ray images using convolution neural networks. 

Recently, vision transformers have been shown to have superior performance in 

image classification tasks compared to convolutional neural network techniques, 

when trained on large amounts of data. However, medical images are expensive 

to label, so large labelled datasets are typically not available. Lee et al. [1] 

proposed an approach using shifted patch tokenization and locality self-attention 

to train vision transformers on small-sized datasets. These techniques work by 

improving the local inductive biases of vision transformer models. Here, we 

evaluate the effectiveness of the shifted path tokenization and locality self-

attention techniques for binary classification of chest X-ray images. We show that 

these techniques can be used to significantly improve the performance of vision 

transformers when applied to the domain of medical imaging, reducing the need 

for large datasets. 

1   Introduction  

Chest X-ray imaging is one of the most common medical imaging techniques in radiology, capable 

of diagnosing various diseases, including pneumonia, COVID-19, tuberculosis, lung cancer and 

more [2], [3]. Machine learning methods have gained popularity in the classification of chest X-ray 

images [4], with various groups demonstrating the effectiveness of deep learning techniques using 

convolutional neural networks (CNNs) [5].  

Recently, transformers, which are based on a self-attention mechanism and were traditionally used 

for natural language processing (NLP) tasks, have been applied to image classification tasks, 

showing improved performance when compared to state-of-the-art CNN architectures when trained 

on large amounts of data [6]. Transformers are computationally efficient and scalable, being used 

extensively to process sequential data. In order to apply transformers to image data, patches of pixels 

can be extracted from images to reduce the computational cost of the transformer self-attention 

layers (as it would be too expensive computationally to apply self-attention to all the pixels in an 

image) [6]. However, transformers lack the inductive biases present in CNNs, so large amounts of 

data are typically needed to achieve optimal performance with transformer architectures [6]. This 

poses a challenge for medical imaging tasks, where labelled datasets tend to be scarce due to the 

high cost of having experts manually annotate and classify these images [3], [7]. For example, in 

the case of COVID-19, during the initial stages of the pandemic, there was limited data available to 

train machine learning models [8]. Therefore, groups have developed methods to improve 
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transformer performance on small-sized datasets [1], and we propose to evaluate the applicability 

of some of these methods for classification of chest X-ray images. 

2   Related Work  

Vision Transformers   The original vision transformer (ViT) developed by Dosovitskiy et al. [6] 

was trained on large datasets, such as the JFT-300M dataset, which contains 18k classes and 303M 

images [6]. To the best of our knowledge, there is no dataset of medical images that comes anywhere 

near this size, so a similar training approach cannot be used for most medical image applications.  

Small Datasets   Lee et al. have proposed a method for applying ViTs to small-sized datasets using 

shifted patch tokenization (SPT) to embed more spatial information into tokens and locality self-

attention (LSA) to attend locally using a softmax function with learnable parameters [1]. They show 

that these techniques improve the local inductive biases of ViT models [1]. By applying these two 

techniques, an average improvement of 2.96% in Tiny-ImageNet and an improvement of 4.08% in 

Swin Transformers was observed [1].  

X-Ray Image Classification   Chest X-ray image classification has traditionally been done with 

CNNs, achieving high accuracies, typically over 90% [9], [10]. More recently, ViTs have been 

applied for chest X-ray image classification as well [2], [3]. Usman et al. explore the transfer 

learning capabilities of transformers applied to chest X-ray image classification [3]. Okolo et al. 

present an improved version of the ViT [2], achieving improved performance over the “Base” and 

“Large” ViT variants in the original ViT model [6] when applied for classification of chest X-ray 

data. They iteratively add a representation of the original input layer to the output of each 

transformer encoder layer by using a CNN block in parallel with the ViT network to help the 

network “remember” the full input image after each transformer block output [2]. Their improved 

ViT model had a comparable performance to well-established CNN models on the datasets they 

examined [2].  

Contribution   Combining the previous approaches in literature, we apply the SPT and LSA 

approaches to ViTs for binary classification of chest X-ray images. We also evaluate the effect of 

training dataset size on the performance of ViT models. Hence, the main contributions of the 

proposed project are to: (1) apply ViTs with SPT and LSA to the medical imaging domain using 

chest x-ray images and (2) evaluate how ViTs with SPT and LSA scale with dataset size. 

3   Method 

Vision Transformer   In the ViT architecture for image classification, 2D input image data is first 

split into patches to form a sequence of 1D vectors, which is then input into the transformer 

architecture, analogous to the sequence of tokens in NLP [6]. These patches are linearly embedded, 

1D position encodings are added, and the result is input into the standard transformer encoder [1]. 

An extra learnable classification token is prepended to the sequence for classification purposes. The 

classification is implemented through a multi-layer perceptron (MLP), replacing the decoder portion 

of the original transformer, which is not needed for classification purposes [3]. Mathematically, 

given an input image 𝐱 𝜖 ℝ𝐻 × 𝑊 × 𝐶 where 𝐻, 𝑊, 𝐶 represent the height, width, and channel 

dimensions of the input image respectively, we first divide the image into a sequence of non-

overlapping patches and flatten the patches into a sequence of vectors  

𝒫(𝐱) = [𝐱𝑝
1 ;  𝐱𝑝

2 ; … ; 𝐱𝑝
𝑁]  

where 𝐱𝑝
𝑖  𝜖 ℝ𝑃2𝐶 is the 𝑖th flattened vector, 𝑃 is the patch size, and 𝑁 =

𝐻𝑊

𝑃2  is the number of patches 

[1]. Patch embeddings are learned through a linear projection  𝑬 𝜖 ℝ𝑃2×𝐶×𝑑, where 𝑑 is the 

hyperparameter for the dimension of the encoder [1]. This process generates tokens 𝒯(𝐱) = 𝒫(𝐱)𝑬, 
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which are concatenated with a classification token 𝐱𝑐𝑙𝑠 𝜖 ℝ𝑑 and added to the positional embeddings 

𝑬𝑝𝑜𝑠  𝜖 ℝ(𝑁+1)×𝑑 to be used as input to the transformer encoder [1]. The tokens are then passed to 

the encoder portion of the transformer consisting of multi-head self-attention, layer normalization, 

and feed-forward layers [3]. The transformer self-attention (SA) mechanism is applied with the 

learnable Query, Key, and Value matrices generated (𝑸 = 𝐱𝑾𝑄, 𝑲 = 𝐱𝑾𝐾 , 𝑽 = 𝐱𝑾𝑉):  

SA(𝐱) = softmax (
𝑸𝑲𝑇

√𝑑𝑘

) 𝑽 

where 𝑑𝑘 is the dimension of the key. After passing through the encoder portion of the transformer, 

the output is fed to a MLP to perform the classification [3]. Our ViT model architecture follows this 

original ViT architecture, while also incorporating the method by Lee et al. for applying SPT and 

LSA to ViT models [1]. 

Shifted Patch Tokenization   Applying SPT involves modifying the tokenization process by 

shifting each input image by half the patch size (𝑃/2) in the 4 diagonal directions (i.e. left-up, left-

down, right-up, right-down) [1]. The shifted features are cropped to the input image size and then 

concatenated with the original input [1]. The concatenated features are then split into non-

overlapping patches and flattened, and layer normalization (LN) is applied [1]. The patch 

embeddings are constructed through tokenization with 

𝒯(𝐱) = LN(𝒫([𝐱 𝐬1 𝐬2 … 𝐬𝑁𝑠]))𝑬 

where 𝑬 𝜖 ℝ𝑃2×𝐶×(𝑁𝑠+1)×𝑑 is the learned linear projection for the tokens, 𝑑 is the hyperparameter 

for the dimension of the encoder, 𝒔𝑖  𝜖 ℝ𝐻×𝑊×𝐶 is the 𝑖th shifted image, and 𝑁𝑠 = 4 is the number 

of images shifted in the 4 diagonal directions [1]. Other shifting strategies are possible as well and 

are described in more detail in the original SPT paper [1]. Without SPT, the receptive field of a 

token would be the same as the patch size (𝑃) of the ViT (which is 16 for the original ViT) [1], [6]. 

Meanwhile, CNN architectures like ResNet50 have much greater receptive fields (the receptive field 

of ResNet50 is 483) [11]. Applying SPT helps to increase the receptive field of the ViT to capture 

more spatial information and rival the inductive capabilities of CNNs [1]. Figure 1 shows a 

visualization of the SPT approach when applied to a chest X-ray image. 

 

Figure 1: SPT applied to a chest X-ray image. The shifted images are concatenated with the original 

input and split into patches, with a patch size 𝑃 = 16. 

Locality Self-Attention   Locality self-attention is applied by modifying the SA mechanism of the 

transformer encoder layer, in the argument of the softmax function. It utilizes two key ideas: 

diagonal masking and a learnable temperature scaling [1]. Diagonal masking involves emphasizing 

the inter-token relations by removing (masking) the self-token relations along the diagonals of the 

𝑹 = 𝑸𝑲𝑇 matrix. 

�̃�𝑖,𝑗(𝐱) = {
 𝑅𝑖,𝑗(𝐱)        𝑖 ≠  𝑗

−∞             𝑖 = 𝑗
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The learnable temperature scaling replaces the √𝑑𝑘 term (in the denominator of the softmax 

argument) with a learnable temperature hyperparameter 𝜏. This approach tends to result in a lower 

temperature (i.e. 𝜏 < √𝑑𝑘), which sharpens the score distribution and results in improved 

performance [1]. Put together, LSA involves the following modifications to the transformer SA 

mechanism: 

SALSA(𝐱) = softmax (
�̃�

𝜏
) 𝑽 

Model Overview   Putting it all together, we arrive at our model architecture in Figure 2, which 

combines the SPT and LSA approaches by Lee et al. with [1] the ViT model by Dosovitskiy et al. 

[6].  

 

Figure 2: The general model architecture used in our experiments. SPT is applied prior to 

partitioning the input image into patches to be input into the ViT. For models without SPT, the SPT 

module is skipped, and the input image is directly partitioned into patches. LSA is applied within 

the transformer encoder layer’s SA mechanism, if applicable. 

4   Experiments 

Dataset   A chest X-ray image dataset of 5,856 frontal chest X-ray images from different patients 

was used for our experiments [12], [13]. The dataset consisted of 4,273 cases of pneumonia and 

1,583 normal (healthy) lungs. Due to the class imbalance, class weights were computed to account 

for the skewed data distribution. A representative sample of the dataset is shown in Figure 3. An 

inexperienced viewer (like the author of this report) would have difficulty distinguishing the 

difference between the two images, making this task a somewhat challenging binary image 

classification task. 
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(a)   (b)  

Figure 3: Sample images from the dataset: (a) healthy lung (b) pneumonia. 

Experiment Setup   The images in the dataset were resized to 128×128 pixels and the default 

training, validation, and testing data split of the dataset [13] was used. The test dataset is used to 

report all results. The model hyperparameters were selected through trial and error and tweaked 

based on the validation dataset. The following four ViT models were developed:  

(1) Original: an original ViT without any modifications  

(2) SPT only: a ViT model that utilizes the SPT technique only 

(3) LSA only: a ViT model that utilizes the LSA technique only 

(4) SPT and LSA: a ViT model that combines both SPT and LSA techniques 

For all four models, the transformer encoder architecture consisted of 8 encoder blocks and the 

multi-head attention layer consisted of 4 heads. A projection dimension 𝑑 = 64 was used. For SPT, 

a patch size 𝑃 = 16 was used, splitting the image into 𝑁 = 64 patches. For classification, a MLP 

with 2048 and 1024 hidden units was used. A sigmoid activation function was applied at the output. 

An Adam optimizer with binary cross-entropy loss was used for training. The models were trained 

for 100 epochs, with a batch size of 512, learning rate 0.001. Dropout layers were used to improve 

model generalizability. Each experiment was performed 5 times for repeatability. All the 

development and model training for this work was done on the Google Colab platform. 

Results   To evaluate the effect of dataset size on the learning capabilities of ViTs with and without 

SPT and/or LSA, various fractions of the full training dataset were used to train the four models 

(10%, 30%, and 100%). The area under the receiver operating characteristic curve (AUC) for the 

test dataset was used to evaluate the model performance and the results are shown in Table 1. The 

AUC values for the training dataset were in the 0.95-0.99 range when trained on the full dataset, 

suggesting that the ViT models are powerful enough to fit to the training dataset. However, the 

model did not generalize as well to the validation and test datasets (i.e., they were overfit to the 

training data). 

 

Model DF = 10% DF = 30% DF = 100% 

Original 0.47 ± 0.05 0.53 ± 0.04 0.58 ± 0.03 

SPT only 0.49 ± 0.13 0.54 ± 0.05 0.68 ± 0.12 

LSA only 0.49 ± 0.06 0.55 ± 0.09 0.68 ± 0.14 

SPT and LSA 0.55 ± 0.18 0.55 ± 0.06 0.73 ± 0.11 

Table 1: Test AUC values of the 4 ViT models when trained with various dataset sizes (DF = 

dataset fraction). The full training dataset (DF = 100%) consisted of 5,216 images. Each 

experiment was repeated 5 times – the mean and standard deviation is reported in the table. 
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Generally, the model performance improved as the dataset size increased for most model variants, 

as expected (i.e., larger datasets improve transformer performance). In all cases, the model that 

utilized both SPT and LSA techniques showed the best performance for a given dataset, 

outperforming the original ViT without either of these techniques applied. It is interesting to note 

that the models with the SPT and LSA techniques applied generally resulted in larger variations in 

performance between runs, compared to the original ViT baseline. 

Ablation Study   When SPT and LSA are applied individually, small improvements in the model 

performance are observed when compared to the baseline original ViT. The baseline original ViT 

did not generalize well to the test dataset (the AUC values were in the 0.47-0.58 range, which is 

fairly close to random chance). These results suggest that applying both SPT and LSA can improve 

the inductive biases of ViT models, helping them learn relevant features and improving model 

generalization when applied to small chest X-ray datasets. However, their effect is greater when 

both techniques are applied together (Table 1). 

Training Curves   A comparison of representative training curves for the original ViT model and 

the ViT model with SPT and LSA applied are shown in Figure 4. It is interesting to note that it takes 

quite a few epochs before the ViT model starts learning patterns in the training data and the training 

loss starts to decrease further (while the validation loss increases), suggesting that the model starts 

to overfit to the training data. This point happens around epoch 55 for the original ViT model and 

epoch 35 for the ViT model with SPT and LSA. This suggests that SPT and LSA improves the 

model’s ability to capture information about the dataset, requiring fewer epochs to achieve the same 

performance as a ViT model without these techniques applied. 

(a)   (b)  

Figure 4: Training curve of (a) the original ViT and (b) the ViT with SPT and LSA. 

Convolutional Neural Network Comparison   As an interesting exercise, we also developed a 

basic CNN model (with 2 convolution layers and 3 fully-connected layers to perform the 

classification) to compare our ViT models to (Table 2). The CNN model outperformed the baseline 

ViT model but fell short of the ViT model with both SPT and LSA techniques applied when trained 

on the full training dataset. The CNN did not perform well on the small 10% and 30% datasets. Even 

the CNN was not able to achieve high test AUC values on this dataset, suggesting that perhaps the 

chest X-ray dataset is not an easy classification task. However, the CNN architecture and 

hyperparameters were not tuned as extensively, so the performance of the CNN model may still 

have some room for improvement. 

 

DF = 10% DF = 30% DF = 100% 

0.48 ± 0.10 0.47 ± 0.09 0.67 ± 0.11 

Table 2: Test AUC values of the CNN model when trained with various dataset sizes (DF = 

dataset fraction). Each experiment was repeated 5 times – the mean and standard deviation is 

reported. 
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Discussion   While there are notable differences between the ViT models compared, there is still 

much room for improvement in the model performance. For a binary classification task, an AUC of 

0.50 would correspond to a random classifier. Hence, a few of the ViT models on the smallest 

dataset actually performed worse than random guessing. So, while SPT and LSA can help to 

improve the inductive capabilities of ViT models, ViTs still seem to require a relatively large dataset 

to achieve notable state-of-the-art performances. Furthermore, chest X-ray images may also be a 

challenge to classify: a single chest radiograph may not be sufficient to accurately diagnose whether 

a patient has pneumonia or not, and oftentimes, other diagnostic tests such as a clinical assessment 

or microbial test are used in conjunction to make an accurate diagnosis [14].   

5   Conclusion 

We have shown that the SPT and LSA techniques developed by Lee et al. [1] are applicable to small 

datasets in the domain of medical imaging, improving the local inductive biases of ViT models. 

Model performance is improved the most when both SPT and LSA are applied together. Without 

these techniques, ViT models struggle to learn patterns in small chest X-ray datasets, barely 

outperforming a random classifier. CNNs also struggle to learn relevant patterns with small chest 

X-ray datasets. Small datasets were used for this work primarily due to computational resource 

constraints. However, in the future, it may be helpful to explore larger datasets as well, to assess 

whether SPT and LSA can result in significant improvements for large datasets, where ViTs tend to 

perform best. A dataset where the classes are more easily distinguishable might be helpful as well. 

While AUC values were used as the primary evaluation metric in our work for simplicity of 

comparison across different models, other evaluation metrics should be explored as well for a more 

comprehensive comparison (e.g., accuracy, precision, recall, F1-score). Furthermore, instead of 

training ViT models from scratch, it may be beneficial to use a pre-trained ViT model and tweak it 

on the dataset instead. Lastly, many images in the medical domain are 3-dimensional, so while this 

work has been limited to 2-dimensional images for simplicity (and to reduce the computational 

cost), evaluating the generalizability of ViTs with SPT and LSA for 3D images would be an 

interesting area to explore in the future. 
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