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Abstract

In contrast to conventional black-box image generative models like generative
adversarial networks (GANs), structured models like Deep Recurrent Attention
Writer (DRAW) and NP-DRAW aim at mimicking how humans draw in a part-
by-part fashion, thus being more interpretable and facilitating more controllable
generation. Inspired by the recent success of denoising diffusion probabilistic
models(DDPMs) in black-box image generation, we explored DDPMs in improving
the sample quality of structured generative models. We propose the DiffuseDRAW
model, a structured image generative model with diffusion prior. To achieve this,
we adapt the diffusion model to the discrete structured latent space and trained it
with a pre-trained CNN encoder and decider. We evaluated the sample quality of
the DiffuseDRAW on CIFAR-10 and CelebA datasets.

1 Introduction

The human perception of images is structured. When drawing a picture, what a human usually do
is to draw a rough outline, then complete the painting part by part, and finally iteratively refine
the painting. However, most existing image generative models like variational autoencoder(VAEs)
and generative adversarial networks(GANs) generate an entire image at once, which we thought is
unnatural. Therefore, a group of generative models, called the structured latent variable model, has
been proposed to mimic how humans draw in a part-by-part fashion[1, 2, 3]. The discrete structured
latent variables that decide whether to draw, what to draw and where to draw at each timestep make
these models more interpretable and controllable. While the sample quality of structured models is
limited by the expression of the discrete structured latent variables.

Recent work on denoising diffusion probabilistic models(DDPMs) exhibited high-quality image
synthesis results and potential for the image generation task[4, 5]. Diffusion models defined a
parameterized Markov chain to add random noise to data gradually through forward process and to
construct desired data samples from the noise via reverse process. Meanwhile, due to the thousands
of iterations needed to sample one single image, the sample speed of the diffusion models is slow.
Song et al. 2022 shows it takes around 20 hours to sample 50k images of size 32 × 32 from a DDPM,
but less than a minute to do so from a GAN on an Nvidia 2080 Ti GPU[6].

Inspired by the recent success of diffusion model, we proposed the DiffuseDRAW model that
improves the structured latent variables model with the diffusion prior. The DiffuseDRAW uses the
VAE framework and adapts the diffusion model to the discrete structured latent space to model the
prior distribution. The diffusion model is applied to the latent space instead of being directly applied
to the data space, which significantly accelerates the sampling process.
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2 Related Work

Deep image generative models have been learned for decades and show the potential for learning
complex empirical distributions of images. They can be roughly divided into two groups, explicit
log-likelihood models like variational autoencoders(VAEs)[7, 8], normalizing flows(NFs)[9, 10, 11],
autoregressive model[8, 12, 13], and deep diffusion models[4, 5]; implicit log-likelihood models like
generative adversarial networks (GANs)[14, 15, 16]. Our work adapts the VAE framework while
uses the structured latent variable refined with a diffusion model.

Structured latent variable model Structured latent variable models mimic how humans draw in a
part-by-part way. The first paper proposed the structured latent variable model is Deep Recurrent
Attentive Writer (DRAW)[1]. This model leverages the recurrent neural network as the encoder and
decoder in VAE framework. The spatial attention mechanism is used in the encoder and decoder
to decide where to read, where to write, and what to write. Attend-Inder-Repeat(AIR) adds the
mechanism that allows the model to decide the appropriate inference and generation steps[2]. NP-
DRAW model proposes a non-parametric prior distribution over the appearance of image parts so
that the latent variable what-to-draw becomes a categorical random variable, which improves the
expressiveness[3]. Besides, NP-DRAW uses a pre-trained transformer to model the prior.

Diffusion probabilistic model Diffusion models are inspired by non-equilibrium thermodynam-
ics. They define a Markov chain and transitions of this chain are learned to reverse a diffusion
process, which is a Markov chain that gradually adds noise to the data in the opposite direction of
sampling until signal is destroyed. Diffusion models were first presented in the diffusion probabilistic
model(DPMs)[4]. Then denoising diffusion probabilistic model(DDPM) proposed a novel noise-
prediction reverse process parameterization and showed they are capable of generating high-quality
samples[5]. In addition, the denoising score-matching method was proved to be equivalent to the
diffusion probabilistic model when the time steps become infinite[17, 18].

Latent diffusion model To speed up the sampling process of diffusion models, several recent works
explore applying them in the latent space. The Latent Score-based Generative Model (LSGM)
proposed a novel approach to train a score-based generative model in the latent space[19]. Latent
diffusion models (LDMs) applied the diffusion models in the latent space of VAE and introduced
the cross-attention layers into the model architecture[20]. In addition, diffusion models are also
leveraged in the discrete latent space. ImageBART[21] and Vector Quantised Discrete Diffusion
Model (VQ-DDM)[22] both used the diffusion model to model the discrete prior in VQ-VAE.

3 Background

3.1 Structured latent variable model

NP-DRAW follows the general framework of VAEs. Instead of using continuous latent variables
like VAE, NP-DRAW uses discrete sequential latent variables z, called non-parametric structured
prior. Each zt corresponds to the drawing of a part of the image at timestep t. In particular, at the t-th
generation step, the group zt describes an image part in terms of its location ztloc, its appearance ztid,
and whether we draw it ztis on the latent canvas ct.

What to draw For zid, raw image patches with size K × K are first collected from the training
dataset. Then a patch bank is built by applying the K-medoids clustering on those patches. So ztid
indicates the index of a patch in the bank and is a categorical random variable.

Where to draw For simplicity, the image is discretized into a 2D grid so that a part can only center
on a grid. Therefore, ztloc is also a categorical random variable.

Where to draw At each time step, the NP-DRAW model is allowed to choose whether to draw it on
the canvas by sampling a per-step Bernoulli random variable ztis.

The NP-DRAW uses a Vision Transformer[23] to model the discrete structured prior. For the
generation process, it samples from the prior and gets a sequential latent variable z. Then it applies
a create-canvas function and gets a canvas that contains a rough outline of the image. Finally, the
canvas is fed to the decoder to get the final image. Given an image x, it infers the latent variables z by
an encoder during training. The model architecture is shown in Figure 1.
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Figure 1: NP-DRAW model architecture

3.2 Denoising Diffusion Probabilistic Models

Diffusion models are latent variable generative models characterized by a forward and a reverse
Markov process. Given a data point sampled from a real data distribution x0 ∼ q(x), the forward
diffusion process is defined as a fixed Markov chain, in which a small amount of Gaussian noise is
added to the sample in T steps, producing a sequence of noisy samples x1, . . . , xT . The noise level
added in each step is controlled by a variance schedule β1, . . . , βT . The data sample x0 gradually
loses its distinguishable features as step t becomes larger. Eventually, xT is equivalent to pure
Gaussian noise.

q(z1:T |x0) :=

T∏
t=1

q(xt|xt−1), q(xt|xt−1) := N (xt;
√

1− βtxt−1, βtI) (1)

If it can reverse the above process and sample from the posterior q(xt−1|xt), it will be able to recreate
the true sample from a Gaussian noise input. Unfortunately, q(xt−1|xt) is intractable. Therefore, the
diffusion model learns a model pθ to approximate these conditional probabilities. The reverse process
is defined as a first-order Markov chain with a learned Gaussian transition distribution as follows.

p(x0:T ) := p(xT )

T∏
t=1

pθ(xt−1|xt), pθ(xt−1|xt) := N (xt−1;µθ(xt, t),Σθ(xt, t)) (2)

Note that if time step T is large and βt is small enough, q(xt−1|xt) will approximate an isotropic
Gaussian. The entire diffusion model can be trained end-to-end using variational inference.

4 Model

Our model follows the architecture of the NP-DRAW model, as shown in Figure 2. For the generation
process, we sample a sequential latent variable z from the diffusion prior pθ(z) and then apply a
create-canvas function and get a canvas c that contains a rough outline of the image. Finally, we
feed the canvas c to CNN decoder pθ(x|z) generate image x conditioned on z. Given image x, the
inference of latent variables z is implemented via CNN encoder qΦ(z|x). For latent variable z, we
use the same element zid used in the NPDRAW model to capture the appearances of images. Hence,
the prior distribution is a categorical distribution.

4.1 Discrete Diffusion Prior

We adapted the denoising diffusion model to the discrete structured latent space. The discrete latent
variable zid is a categorical random variable with K categories, which is equal to the size of the patch
bank.

Forward process With forward transition matrices [Qt]ij = q(zt = i|zt−1 = j), the forward process
can be written as a product of categorical distributions specified in terms of the probabilities over the
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Figure 2: Overview over DiffuseDRAW model

patch bank indices:

q(z1:T |z0) =
T∏

t=1

q(zt|zt−1) =

T∏
t=1

Cat(zt|p = zt−1Qt) (3)

We follow transition matrices proposed in [24]:

[Qt]ij = (1− βt)I + βtIIT /K (4)

=

{
1− K−1

K βt i = j
1
Kβt i ̸= j

(5)

where I = (1)Kj=1 is the all one vector. Since this transition matrix is doubly stochastic with strictly
positive entries, the stationary distribution is uniform. Therefore, the transition probability of any
entries to any other state is uniform at the end of the diffusion process.

As continuous DDPM, we can compute the marginal distribution of xt at an arbitrary timestep t in a
close form.

q(zt|z0) = Cat(zt|p = z0Qt), Qt = Q1Q2 . . . Qt (6)

Note that the patch bank size K and timesteps T are not so large, Qt can be simply precomputed for
all t. Conditioned on x0, the forward process posteriors are also tractable.

q(zt−1|zt, z0) =
q(zt|zt−1, z0)q(zt1 |z0)

q(zt|z0)
= cat(zt−1|p =

ztQ
T
t ⊙ z0Qt−1

z0Qtz
T
t

) (7)

Reverse process We can sample the discrete latent variables z0 starting from a uniform distribution
p(zT ) ∼ U(0, 1) via a reverse process of the diffusion Markov chain.

pθ = p(zT )

T∏
t=1

p(zt−1|zt), pθ(zt−1|zt) = Cat(zt−1|pθ) (8)

Instead of predicting the logits of pθ(zt−1|zt) directly, we predict the logits of a distribution p̃θ(z̃0|zt)
using a neural network. Hence, the distribution pθ(zt−1|zt) can be computed by the following
parameterization.

pθ(zt−1|zt) ∝
∑
z̃0

q(zt1 |zt, z̃0)p̃θ(z̃0|zt) (9)

4



Table 1: Comparison of sample qualities (lower FID score is better).

Method CIFAR-10 Celeba (µm)
32× 32 64× 64

VAE 106.70 70.00
2sVAE 72.90 44.4
NVAE 55.97 14.74
snGAN 14.20 -
WGAN 54.82 40.29
WGAN GP 42.18 30.30

DDPM 3.17 -
ImageBART - -
VQ-DDM - 5.64

PixelCNN++ 68.00 72.46
AIR 673.93 399.41
DRAW 162.00 157.00
NP-DRAW 62.72 41.87
DiffuseDRAW(ours) 69.72 46.05

4.2 Training Objective

Since it is not easy to train the VAE framework and diffusion prior jointly, we applied the two-stage
training method. Firstly, we pre-trained the CNN encoder and decoder using the transformer prior in
the NPDRAW by maximizing the loss function proposed in [3].

Lnp = Eq(z0|x)[log(p(x|z0))]−DKL(q(z0|x)||pnp(z0))−DKL(ph(z0|x)||p(z0|x)) (10)

where pnp(z0) is the prior distribution in the NPDRAW model and ph(z0|x) is the general proba-
bilistic parsing of latent variables z given an image x via Heuristic Parsing Algorithm proposed in
[3].

Then we sampled the latent variable z0 through the pre-trained CNN encoder as ground truth to train
the diffusion model. we typically optimize the variational upper bound on the negative log-likelihood.

Lvb = Eq(z0|x)[DKL[q(zT |z0)||p(zT )] +
T∑

t=2

Eq(zt|z0)[DKL[q(zt−1|zt, z0)||pθ(zt−1|zt)]]

−Eq(z1|z0)[log pθ(z0|z1)]]
(11)

5 Experiments

To train the CNN encoder and decoder, we follow the same training and evaluation setup as used in
[3]. When training the diffusion prior, we set the patch bank size K as 200 and timesteps T = 1000
for all experiments. The variance schedule β1, β2, . . . , βT is set to constants increasing linearly from
β1 = 0.02 to βT = 1.0.

Since the latent variables are sequential, we use one-dimensional U-Net to predict logits of a
distribution p̃θ(z̃0|zt) = Cat(zt−1|pθ). The model has four feature map resolutions and two one-
dimensional convolutional residual blocks for each resolution level. The output of the 1D U-Net is
logits = nnθ(normalize(xint

t )) + xone−hot
t , where xint

t and xone−hot
t denote integer and one-hot

representations of xt respectively.

Dataset We evaluate our model on the image dataset CIFAR-10 and CelebA. The CIFAR-10 dataset
consists of 60000 32x32 color images in 10 classes of common objectives, like birds, cats, and
airplanes. While CelebA is a large human face image dataset.

Baselines We compare our model with three classes of generative models.

1. Structured generative model: DRAW[1], AIR[2], PixelCNN++[13], VQ-DRAW[25], and
NP-DRAW[3].
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(a) sampled images on CIFAR-10

(b) sampled canvas on CIFAR-10

(c) sampled images on CelebA

(d) sampled canvas on CelebA

Figure 3: Visualization of sampled canvases and images generated by DiffuseDRAW

2. Diffusion probabilistic model: DDPM[5], ImageBART[21], and VQ-DDM[22].

3. Generic generative model: VAE[7], 2sVAE[26], NVAE[8], WGAN[15], snGAN[27],
WGAN-GP[16].

Evaluation Metric For all experiments, we compute the FID score to evaluate the quality and
diversity of sampled images[28]. We draw 10K samples from each model and compute the FID score
w.r.t. 10K images in the test set.

5.1 Image Generation

We compared the DiffuseDRAW model with all baselines on the unconditional image generation task
in terms of FID score, as shown in Table 1. We also provide more visualization of our generated
canvases and images in Figure 3.

As we can see from Table 1, our model outperforms most previous structured image generative
models, except the NPDRAW. This indicates our model still needs to be improved. One factor that
limits the sample quality of VAE architecture models is the prior-hole problem, i.e., the mismatch
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between the VAE prior p(z) and the aggregated posterior q(z|x). With a powerful prior model like
the diffusion models, if we could train the prior to approximate the posterior well enough, it should
alleviate the prior-hole problem and improve the sample quality. Therefore, DiffuseDRAW could
outperform the previous NPDRAW with proper improvements.

Note that there is a huge gap between the performances of the structured image generative mod-
els and denoising diffusion probabilistic models. The diffusion model indeed shows impressive
high-quality image generation ability. However, the continuous latent variables in DDPMs lack
interpretability. Hence, DDPMs may fail on some controllable image generation tasks, such as image
editing/composition. While the structured latent variables are more intuitive and interpretable for
humans, facilitating more controllable generation.

6 Conclusion

In this paper, we propose the DiffuseDRAW model, a structured image generative model with
diffusion prior. We adapted the diffusion model to discrete structured latent space and propose a
two-stage training method to train the VAE framework and diffusion prior. In the unconditional image
generation experiments, our model is comparable with previous structured image generative models.
However, it still needs to be improved.

For future work, we will combine the diffusion process with the transformer, which is more suitable
for sequential data than U-Net. In addition, we will use all elements of the structured latent variables,
including whether to draw, what to draw, and where to draw. To archive this, we should find a novel
approach for diffusion prior to model the dependency of different elements. Moreover, we will
explore a novel hybrid (discrete-continuous) latent variable to further improve the sample quality.
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