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Abstract

In the following project, a Transformer-based neural network model for phased
array antenna calibration, which uses sub-patterns of the radiation power pattern
as input, is suggested. The proposed trained model estimates the antenna array
system’s excitation phase errors, which are crucial for the successful operation of
the antenna prior to its deployment. Only a single radiation pattern measurement is
required for the proposed method which indicates how efficient and time-saving the
method is compared to the common conventional methods. Moreover, an attempt
to reproduce the results of a close-related work are made, its generalization per-
formance in terms of the antenna characteristics is investigated, and a comparison
between the two models is presented.

1 Introduction

The rapid growth in wireless networks traffic rates and user demands, drawn increased attention
towards millimeter-wave (mmWave) communication in fifth-generation (5G) and beyond wireless
systems, as a life line for the bandwidth limitations. There are some challenges associated with
switching to mmWave communications, especially the severe path loss caused by its short wavelength.
In order to cope with it, high-gain directional beams are required which can be achieved through
the use of large scale antenna arrays with beamforming technology. Hence, beamforming is one
of the key enabling techniques for 5G and beyond for reliable high data-rate transmission [4],
[8]. In phased array antennas, the desired beam radiation pattern is produced by controlling the
excitation phase and amplitude of each antenna element [7], [2]. To focus the signal in a specific
direction, multiple close proximity antennas broadcast the same signal at slightly different phases.
In a linear antenna array, where d is the spacing between two neighboring antenna elements and
λ denotes the signal wavelength, in order to steer the beam along θ0, the corresponded phase shift
∆ϕ = 2π

λ d(sinθ − sinθ0) need to be applied, as the constructive and destructive interference of the
overlapping waves create the directional beam. The beam pattern is extremely sensitive to deviations
in the elements’ phase and amplitude [6]. Generally, a phase error can have a significant impact on
the beam direction, whereas an amplitude error affects the beam side lobe levels and peak gain but
not its direction. Fig. 1 shows the effect of random phase and amplitude error on to the radiation
pattern. As a result of manufacturing failures, temperature shifts, and hardware degradation, the
referred errors are common in nowadays systems and may have a critic effect on the radiation pattern
and the overall system performance. Therefore, it is essential to calibrate the excitation errors of all
the antenna elements so that the desired beamform is achieved.
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Figure 1: Effect of phase error and amplitude error on the antenna radiation pattern. (a) The desired
radiation pattern. (b) The desired radiation pattern with randomly added phase error to each element.
(c) The desired radiation pattern with randomly added amplitude error to each element.

2 Related Work

The calibration of antenna arrays has been researched for over two decades. The conventional
calibration methods can be divided into two main categories, namely, the amplitude-based approach
and the complex-signal based approach [10]. In the former, the calibration is based on the received
power measurements (i.e., amplitude only), whereas in the latter, the received complex-signal
measurements are used in the calibration process (i.e., both amplitude and phase). Two of the widely
used conventional methods for phased array calibration are the rotating element electric field vector
(REV) [6] and the multielement phase toggle (MEP) [1]. The REV is an amplitude-based method
where the amplitude variation of the array is measured, while the phase of one of its elements changes
from 0 to 2π, and then numerically processed for determining the corresponding element’s relative
amplitude and phase. The MEP is a complex-signal based method that calibrates the phases deviation
using the inverse fast Fourier transform (IFFT). It can calibrate the phase error more effectively but
less accurately compared to REV. The main drawbacks of these conventional calibration methods
are the fact that they require a large amount of measurements (at least twice the number of antenna
elements), and repetitive numerical calculations which make the entire calibration process long.

Recently, machine learning (ML) techniques, such as the use of neural networks (NNs), has been
attempted to perform antenna calibration. They are designed to overcome the previously mentioned
drawbacks and to enhance the calibration performance. For instance, in [3] the authors proposed a
fully connected NN model to estimate the excitation phase error in response to the amplitude (power)
of a radiation pattern input. They trained a NN model as an inverse function to the radiation field
pattern of a linear array.

Considering the fact that the following method estimates the phase error using a simple NN model, a
new method which calibrates the phase based on a more advanced architecture is suggested to try and
increase the calibration performance. Furthermore, the above work lack proof of concept regarding
the generalization performance of their model. All the results are simulated and tested on a specific
kind of antenna array, so an evaluation of the model’s sensitivity in term of changes in the antenna
characteristics is required.

3 Method

First of all, a brief overview of the synthesis process for the creation of the dataset is described.
Then, a thorough explanation of the NN model of [3] is introduced, because in this project, first I
based a model on this work and treat it as the "vanilla" method, where attempts to reproduce their
results, analyze their model generalization capabilities, and improve their model architecture are
made. Finally, the new transformer-based method is presented.
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3.1 The Synthesis of Antenna Array Radiation Pattern

A radiation field pattern produced from a linear antenna array can be described as follows [5]:

Eδ(θ) =

N∑
n=1

gn(θ)Anexp

{
j

[
2π

λ
(n− 1) d sin (θ)− δn

]}
(1)

where δ = [δ1, ..., δN ] is the initial phase vector error, θ is the azimuth observation angle, N is
the number of antenna elements, λ is the wavelength, d is the spacing between antenna elements,
gn(θ), An, and δn are the radiation gain pattern (directivity function), normalized amplitude, and the
initial phase error of the nth antenna element. Based on (1), a large number of radiation patterns
could be assembled to create the dataset. We can say that gn(θ) represents how each antenna element
radiation pattern respond to the observation angle θ in term of gain. It is common to assume that gn(θ)
is the same for all antenna elements, i.e., gn(θ) ≈ g(θ),∀n ∈ [N ]. Moreover, for isotropic array
elements which have a radiation gain pattern that is independent of θ, g(θ) = 1. In a more general
case where the elements are not isotropic, most elements’ radiation gain pattern favor broadside scan
(θ0 = 0◦) and depend on θ such that they taper over the scan angle. Therefore, a typically antenna
radiation gain pattern is of the form g(θ) ∝ cosk(θ).

3.2 "Vanilla" Method

In [3], 1,250,000 radiation patterns were created for a range of −90◦ ≤ θ ≤ 90◦ in 1◦ step with
constant amplitude and uniformly distributed excitation phase coefficients by setting −180◦ ≤ δn ≤
180◦ for n = 2, ..., N where δ1 = 0◦. An = 1 is assumed for all antenna elements, the linear antenna
array consists of N = 8 elements which operates in 28 GHz and are evenly spaced d = 6.0×10−3 [m].
The radiation patterns were transformed to their power form P (δ, θ) = |E(δ, θ)|2 and then were
normalized to range from 0 to 1. 96% of the dataset were considered for the training phase, and the
remaining 4%, consisting of 50, 000 patterns, were used for validation. Hence, a real valued input
matrix with the size of 1, 200, 000× 181, and a training label matrix of the randomly selected phase
error values of size 1, 200, 000× 7 were used to train the NN.

The NN contains eight layers with six hidden layers. The input layer consist of 181 nodes, every
hidden layer has 900 nodes, and the output layer contain 7 nodes. The activation function used in
the output layer is the "sigmoid" function, whereas the rest of the layers use the rectified linear unit
(ReLU) function. As a loss function, the mean square error (MSE) was used, the optimizer was
"Adam", and a batch size of 16, 384 was generated per step for a total of 1000 epochs in training.

First, the NN would be trained using the above dataset, with the following assumption g(θ) = 1,
to reproduce [3] results. Afterwords, the model would be evaluated on a test set which represent
a different antenna array, e.g., g(θ) = cos(θ), for analyzing the model sensitivity in terms of the
elements’ radiation gain pattern.

3.3 Transformer-based Method

A Transformer-based model was proposed due to the great successes that this model achieved in
many different tasks. Inspired by the use of patches as tokens on image datasets, I decided to divide
the radiation pattern input into several sub-patterns and fed them as tokens to a Transformer encoder.
In that way, I adapted my problem’s input to the Transformer scenario. Moreover, since the ’vanilla’
model uses a simple MLP architecture, one can assume that a complex Transformer-based architecture
should outperform it.

The proposed method dataset creation is based on the one presented in the ’vanilla’ method with
three differences, 1) 92% of the dataset were used for training, and the rest 8% were divided
equally between validation and test sets. 2) a batch size of 2048 was used. 3) each radiation
power input vector P (δ, θ) would be treated as one which consists of m ∈ N tokens (sub-patterns),
to create an input which is represented by a sequence of tokens: P (δ, θ) → {p1, ..., pm} where
P (δ, θ) ∈ R180, pi ∈ R⌊

180
m ⌋, ∀i ∈ [m − 1], and the last element of the original radiation pattern

was omitted for an easy division. Then, the new sequential dataset could be used as an input to a
Transformer encoder [9], where for each sequence of input tokens, all tokens’ outputs would be
aggregated (mean function) to a combined output vector which is similar in size to the input tokens.
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Figure 2: Schematic architecture diagram of the suggested method.

Finally, the phase error estimation vector would be achieved using a fully connected layer to the
desired output size. Fig. 2 depict the suggested method architecture. Let us denote l = ⌊180/m⌋,
then overall, a real valued input tensor of size 1, 200, 000×m× l, and a training label matrix of the
randomly selected phase error values of size 1, 200, 000× 7 will be used to train the model.

4 Experiments

4.1 ’Vanilla’ model’s results reproduction

The topic of ML bsaed methods for antenna calibration, is quiet new, hence, there are not many
published papers. And from the ones who are published, they usually do not offer their code.
Therefore, my efforts to try to reproduce the reported results of [3] are challenged. First of all, there
are some unknowns variable of their NN hyperparameters such as the learning rate, and it is unclear if
each hidden layer consists of 900 nodes or if all of them together. Moreover, they reported a learning
duration of 3.5h, while my learning duration, which occurred on a more powerful GPU, took more
then 13h. I must state, that I verified my implementation using the MNIST dataset, with similar eight
layers NN, and batch size. I concluded that my code works well and that it is impossible to train this
NN in 1000 epochs for a dataset of size 1,200,000 in 3.5h. Due to those factors, and to the main fact
that I wasn’t able to reproduce their results, I am not certain that their reported resulted are valid,
because they might be biased. The authors reported they loss records for the training and validation
are 1.76 × 10−4 and 8.041 × 10−3 respectively. Compared to their reported results, I was able to
reach at most, loss values of 3.5× 103 and 4.4× 10−2 respectively.

My efforts to try and reproduce their results begin with trying several learning rates from the range:
10−3 − 10−5. My first observations was that the model learn well over the training data but have a
severe overfitting for the validation data as illustrated in figure 3. To try and overcome this, I used two
techniques: weight decaying and dropout layers. For each one of them alone and combined, I tried
several values but none of them helped to improve the overfitting. I concluded that there must be an
inner factor which prevent the model to generalize the good training performance to data outside of
the training data. My first thought was that maybe the dataset creation process made it to be sampled
from different distributions, such that there isn’t a probabilistic connection between two unkike data
points. In order to contradict this assumptions, I preformed a training phase over both the training
set and validation set, and kept for the validation phase the same validation data points. Since both
the training phase and validation phase achieved the same learning curve and loss results as for the
original training phase, I concluded that this is not the case. Next, I thought that it might be caused
from the chosen loss function, and I began looking into it.

4.2 Loss Function

The authors in [3] used the MSE loss function for training evaluation. From my perspective, this
choice of loss function is not optimal and even a major source for model overfitting. The reason for
that is the ambiguity in the angle system, where 180◦ = −180◦. Since −180◦ ≤ δn ≤ 180◦, MSE
loss function worst case scenario, which would be penalized for the most, is when δn = 180◦ and
δ̂n = −180◦ where δ̂n is the estimated phase error of the nth antenna. But this is actually the best
case scenario, a perfect estimation.
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Figure 3: Loss values recorded for the ’vanilla’ model using a learning rate of 10−3.

Figure 4: Loss values recorded for the ’vanilla’ model using a learning rate of 10−4 and the custom
loss function.

Therefore, I believe that a better choice for a loss function is a custom one that treats this angles
ambiguity:

lmirrorMSE

(
δ, δ̂

)
=

1

7

N∑
n=2

min
(
|δn − δ̂n|, 360◦ − |δn − δ̂n|

)2

.

Using this custom loss function, and after experimenting several learning rates, I was able to obtain a
promising learning curves which have less overfitting, as depict in Figure 4.

Next, I tried to enhance the learning phase by adding Batch Normalization layers to the model’s
architecture. After experimenting the improved architecture for several learning rates, I observed
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Figure 5: Loss values recorded for the ’vanilla’ model w and w/o Batch Normalization layers, using a
learning rate of 5× 10−5 and the custom loss function.

that the training loss is improving yet the validation loss overfit quickly and does not reach the same
values. Hence, further experiments should be done in future to improve the overfitting. Figure 5
illustrates a comparison of the custom loss values between the ’vanilla’ model with and without the
Batch Normalization layers for a learning rate of 5× 10−5.

4.3 Transformer-based Model

The hyperparameters who needs to be investigated in this model are the learning rate, number of
input tokens m, the aggregation function, number of heads in the Multi-head attention, and number
of sub-encoder layers in the encoder. Due to lack of time, I was able to experiment the model
using the mean function as aggregation, m = 6 tokens (i.e., each token is of size 30), default heads
and sub-encoder number (i.e., 6 each), and several learning rates. The current training comparison
between the ’vanilla’ method and the Transformer-based method is presented in Figure 6. For now,
the ’vanilla’ methods have better learning results which will implicate better accuracy.

4.4 Models’ Performance Evaluation

The indicator used to evaluate the models’ performance and to compare them is the root mean squared
errors (RMSEs) of the estimated phases:

δRMSE =

√√√√1

7

8∑
n=2

min
(
|δn − δ̂n|, 360◦ − |δn − δ̂n|

)2

where δ̂n is the estimated phase error of the nth antenna.

Currently, I achieve an averaged RMSE over the test set of δ̄RMSE = 48.85◦ and δ̄RMSE =
55.38◦ for the ’vanilla’ model and Transformer-based model respectively. These results are not yet
comparable to the results reported in [3] (δ̄RMSE = 7◦) and to the accuracy of the conventional
methods which are similar.

4.5 Models’ Generalization Performance

We would like to evaluate the models on a test set which represent an antenna array with different
characteristics from the one the model have trained on, e.g., different directivity function g(θ),
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Figure 6: Loss values recorded for the ’vanilla’ model w/o Batch Normalization layers and the
Transformer-based model, using a learning rate of 1× 10−4 and the custom loss function.

elements spacing d, and transmission frequency f . In that way, we can analyze a model generalization
capabilities to different kinds of antenna arrays. A total of three experiments were conducted
where only one of the following antenna parameter was changed while the rest remain the same:
g(θ) = cos(θ) (instead of 1), d = 8.0 × 10−3 [m] (instead of 6.0 × 10−3 [m] ), f = 33 GHz
(instead of 28 GHz).

The experiments results achieved by ’vanilla’ model and Transformer-based model are presented in
Table 1.

Model δ̄RMSE Regular δ̄RMSE

Changed g(θ)
δ̄RMSE

Changed d
δ̄RMSE

Changed f

’Vanilla’ 48.85◦ 62.52◦ 100.72◦ 96.29◦

Tansformer 55.38◦ 60.61◦ 103.18◦ 99.98◦

Table 1: Average RMSE results for changes in the antenna parameters.

Clearly, both models have trouble preforming well on data generated from different kinds of antenna.
Yet, it seems that the Transformer-based model have the potential to have better generalization
accuracy. These results are not so surprising due to the input (radiation pattern) sensitivity to these
big changes. This sensitivity is illustrated in Figure 7. Figure 7b is closest in shape to Figure 7a in
most angles, and that explains why their results are more alike.

5 Conclusion and Future Work

In this project, motivated by the fact that deep learning calibration methods, for millimeter-wave
phased array antennas, have the potential to overcome many drawbacks of conventional calibration
methods; I began to explore, analyze and propose new deep learning calibration methods. First, I
tried to reproduce the results of a recently published paper, which uses an MLP architecture for the
problem. After a deep analysis of their work, and since no code was published, I believe that their
reported accuracy results and learning time are problematic. Nevertheless, my ’vanilla’ methods is
based on their work with replacing the MSE loss function to a custom one. Then, a new Transformer-
based model is proposed. Both models’ performance are evaluated and compared using the RMSE
indicator. Currently the ’vanilla’ method outperform the Transformer-based method, but many more
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(a) (b)

(c) (d)

Figure 7: Effect of change in antenna parameters on the antenna radiation pattern with phase error.
(a) Trained parameters. (b) Change of directivity function. (c) Change of spacing between antenna
elements. (d) Change of transmission frequency.

experiments need to be done for the Transformer-based method. Lastly, an analysis of the models’
generalization performance on data generated from different antenna characteristics is conducted.
Both models have difficulties maintaining good accuracy because the input patterns differ a lot from
the one which used for training. To conclude, the current achieved results are not yet comparable to
accuracy achieved by the conventional methods, hence, does not yet motivate the move to ML-based
methods. However, I am certain that with some more future research and efforts in improving the
learning phase, and tweaking the hyperparameters, this would be accomplished.

The future work directions are as follows.

• Overcoming the overfitting which occurs in the ’vanilla’ method when using batch normal-
ization layers.

• Enhancing the Transformer-based method learning by further experimenting and tweaking
its hyperparameters.

• Enhancing the Transformer-based method performance by implementing an MLP after the
Transformer encoder aggregated vector.

• Increasing the input data resolution for better learning.
• Using the radiation pattern phase information combined with the amplitude information for

better learning.
• Analyzing how the reduce of the random phase error range would affect the performance.
−180◦ ≤ δn ≤ 180◦ might be to large for what occurs in nowadays systems.

• Proposing models which could perform similar on different kinds of antennas, instead of
training a model for each antenna. I believe that a smart choice of an input should be used.
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