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Course Scope

* Supervised Learning with Observable Structures
* Unsupervised / Self-supervised Learning with Observable Structures
* Supervised Learning with Latent Structures
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Deep learning

Points/Sets Lists/Sequences Graphs

Image Credit: https://github.com/AnTao97/PointCloudDatasets
https://www.wolfram.com/language/12/molecular-structure-and-computation/molecule-graphs.html.en?product=mathematica



https://github.com/AnTao97/PointCloudDatasets
https://www.wolfram.com/language/12/molecular-structure-and-computation/molecule-graphs.html.en?product=mathematica

Motivating Applications for Sets

* Population Statistics
* Point Cloud Classification

Table Airplane Earphone

Image Credit: https://github.com/AnTao97/PointCloudDatasets



https://github.com/AnTao97/PointCloudDatasets

Invariance & Equivariance

* Invariance:

A mathematical object (or a class of mathematical objects) remains unchanged after operations or
transformations of a certain type are applied to the objects

f(X) = f(g(X))
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Invariance & Equivariance

 Invariance: Symmetry Group: all transformations under which the object is invariant

A mathematical object (or a class of mathematical objects) remains unchanged after operations or
transformations of a certain type are applied to the objects

f(X) = flg(X))
* Equivariance:

Applying a transformation and then computing the function produces the same result as computing the
function and then applying the transformation



Revisit Convolution

Matrix multiplication views of (discrete) convolution:
* Filter => Toeplitz matrix

* Data => Toeplitz matrix



Revisit Convolution

Matrix multiplication views of (discrete) convolution:

* Filter => Toeplitz matrix

* Data => Toeplitz matrix Consider a special Toeplitz matrix: circulant matrix (must be square!)

Convolution with padding
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Image Credit: https://towardsdatascience.com/deriving-convolution-from-first-principles-4ff124888028



https://towardsdatascience.com/deriving-convolution-from-first-principles-4ff124888028

Translation/Shift Operator
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Image Credit: https://towardsdatascience.com/deriving-convolution-from-first-principles-4ff124888028



https://towardsdatascience.com/deriving-convolution-from-first-principles-4ff124888028

Translation/Shift Operator

Shift operator is also a circulant matrix!

il
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Image Credit: https://towardsdatascience.com/deriving-convolution-from-first-principles-4ff124888028



https://towardsdatascience.com/deriving-convolution-from-first-principles-4ff124888028

Translation/Shift Equivariance

Matrix multiplication 1s non-commutative. But not for circulant matrices!

C(w) ST ST
shift operator shift operator

Image Credit: https://towardsdatascience.com/deriving-convolution-from-first-principles-4ff124888028

C(w)



https://towardsdatascience.com/deriving-convolution-from-first-principles-4ff124888028

Translation/Shift Equivariance

Matrix multiplication 1s non-commutative. But not for circulant matrices!

C(w) ST ST
shift operator shift operator

Convolution is translation equivariant, i.e., Conv(Shift(X)) = Shift(Conv(X))!

Image Credit: https://towardsdatascience.com/deriving-convolution-from-first-principles-4ff124888028

C(w)



https://towardsdatascience.com/deriving-convolution-from-first-principles-4ff124888028

Translation/Shift Invariance

Global pooling gives you shift-invariance!

224 x224x3 224x224x64
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@ convolution+ReLLU

@ max pooling
1" fully connected+ReLU

ﬁ softmax

Image Credit: https://towardsdatascience.com/covolutional-neural-network-cb0883dd6529
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Translation/Shift Equivariance Invariance

Yann LeCun’s LeNet Demo:
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Image Credit: http://vann.lecun.com/exdb/lenet/translation.html



http://yann.lecun.com/exdb/lenet/translation.html

Permutation Invariance

Point Clouds X € R™* 3
Probability of Classes Y € RIXK
Permutation / Shuffle P € RAT

Table

Image Credit: https://github.com/AnTao97/PointCloudDatasets



https://github.com/AnTao97/PointCloudDatasets

Permutation Invariance

Point Clouds X € R™* 3
Probability of Classes Y € RIXK
Permutation / Shuffle P € RAT
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Image Credit: https://github.com/AnTao97/PointCloudDatasets



https://github.com/AnTao97/PointCloudDatasets

Geometric Interpretation of Permutation Matrix

Birkhoff Polytope

B, ={P € R™"|ViVj P;; >0,¥i » Py;=1Vj » Pj=1}
j i
Doubly Stochastic Matrix



Geometric Interpretation of Permutation Matrix

Birkhoff Polytope
B, ={P € R™"|ViVj P;; >0,¥i » Py;=1Vj » Pj=1}

j
Doubly Stochastic Matrix

Birkhoff—von Neumann Theorem:

1. Birkhoff Polytope is the convex hull of permutation matrices

2. Permutation matrices = Vertices of Birkhoff Polytope S n



Geometric Interpretation of Permutation Matrix

Birkhoff Polytope
B, ={P € R™"|ViVj P;; >0,¥i » Py;=1Vj » Pj=1}

j
Doubly Stochastic Matrix

Birkhoff—von Neumann Theorem:

1. Birkhoff Polytope is the convex hull of permutation matrices

2. Permutation matrices = Vertices of Birkhoff Polytope S

Image Credit: https://arxiv.org/pdf/1710.09508.pdf



https://arxiv.org/pdf/1710.09508.pdf

Permutation Invariance

Point Clouds X € R™* 3
Probability of Classes Y € RIXK
Permutation / Shuffle P € RAT

Y = f(PX) VPEeS,

Image Credit: https://github.com/AnTao97/PointCloudDatasets



https://github.com/AnTao97/PointCloudDatasets

Permutation Equivariance

Image Credit: https://github.com/AnTao97/PointCloudDatasets

Point Clouds

Probability of Classes

Permutation / Shuffle

Point Representations

X e R™°

Y € RlXK
P e R""™
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https://github.com/AnTao97/PointCloudDatasets

Permutation Equivariance

Point Clouds X € R™* 3

Probability of Classes Y € RIXK

Permutation / Shuffle P € RAT

Point Representations H c R™X d
H = f(X)

Image Credit: https://github.com/AnTao97/PointCloudDatasets
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Permutation Equivariance

Point Clouds X € R™* 3

Probability of Classes Y € RIXK

Permutation / Shuffle P € RAT

Point Representations H c R™X d
H = f(X)

PH = Pf(X) = f(PX)

Image Credit: https://github.com/AnTao97/PointCloudDatasets
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Permutation Equivariance

Point Clouds X € R™* 3

Probability of Classes Y € RIXK

Permutation / Shuffle P € RAT

Point Representations H c R™X d
H = f(X)

PH = Pf(X) = f(PX)

Image Credit: https://github.com/AnTao97/PointCloudDatasets



https://github.com/AnTao97/PointCloudDatasets

More on Invariance & Equivariance

* What about other transformations, e.g., scaling, 2D/3D rotations, Gauge transformation?
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Image Credit: http://vann.lecun.com/exdb/lenet/scale.html



http://yann.lecun.com/exdb/lenet/scale.html

More on Invariance & Equivariance

* What about other transformations, e.g., scaling, 2D/3D rotations, Gauge transformation?

-
[y
]

RESEARCH

N rs
.IZ 4

52215;

Lt

o1, oI~
4
}

H
-
R
LN
q
L

* Generalize to Group Invariance & Equivariance
Recommend Taco Cohen’s PhD Thesis: https://pure.uva.nl/ws/files/60770359/Thesis.pdf

Image Credit: http://vann.lecun.com/exdb/lenet/scale.html



https://pure.uva.nl/ws/files/60770359/Thesis.pdf
http://yann.lecun.com/exdb/lenet/scale.html

Deep Learning for Sets

* Point-level Tasks
Input: a vector per point
Output: a label/vector per point

Predictions of individual points are independent, e.g., image classification



Deep Learning for Sets

* Point-level Tasks
Input: a vector per point
Output: a label/vector per point

Predictions of individual points are independent, e.g., image classification

e Set-level Tasks

Input: a set of vectors, each corresponds to a point
Output: a label/vector per set

Prediction of a set depends on all points, e.g., point cloud classification



Deep Learning for Sets

Key Challenges:
* Varying-sized input sets
* Permutation equivariant and invariant models

* Expressive models



Deep Learning for Sets

* Deep Sets [1]

Theorem 2 A function f(X) operating on a set X having elements from a countable universe, is a
valid set function, 1.€., invariant to the permutation of instances in X, iff it can be decomposed in the

form p (3" .cx ¢(x)), for suitable transformations ¢ and p.
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Deep Learning for Sets

* Deep Sets [1]

Theorem 2 A function f(X) operating on a set X having elements from a countable universe, is a
valid set function, 1.€., invariant to the permutation of instances in X, iff it can be decomposed in the

form p (3" .cx ¢(x)), for suitable transformations ¢ and p.

Sketch of Proof

Sufficiency: summation is permutation invariant!
Necessity:
1. Construct a mapping c: X —> N

2. Let ¢(CC) = 4_6(96)

3. Bijection X € 2X erx Qb(x)



Deep Learning for Sets

* Deep Sets [1]

Invariant Architecture
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Image Credit: [1]



Deep Learning for Sets

* Deep Sets [1] fo(x) = o(0x) © € RM*M

Lemma 3 The function fo : RM — RM defined above is permutation equivariant iff all the off-
diagonal elements of © are tied together and all the diagonal elements are equal as well. That is,

O =M+~ (11") MYyeER 1=11,...,1]" eRM I ¢ RM*M s the identity matrix
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* Deep Sets [1] fo(x) = o(0x) © € RM*M

Lemma 3 The function fo : RM — RM defined above is permutation equivariant iff all the off-
diagonal elements of © are tied together and all the diagonal elements are equal as well. That is,

O =M+~ (11") MYyeER 1=11,...,1]" eRM I ¢ RM*M s the identity matrix
Sketch of Proof
We know (7(7T @X) = TTo (@X) the equivariance reducesto 7TOX = Onx

Sufficiency: © is commutable with permutation matrix
Necessity: consider a special permutation (i.e., transposition / swap) Ty = T = T,

1. All diagonal elements are identical

2. All off-diagonal elements are identical



Deep Learning for Sets

* Deep Sets [1] fo(x) = o(0x) © € RM*M

Lemma 3 The function fo : RM — RM defined above is permutation equivariant iff all the off-
diagonal elements of © are tied together and all the diagonal elements are equal as well. That is,
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Sketch of Proof

We know O'(ﬂ'@X) = WJ(@X) the equivariance reduces to TOX = O7nx

Sufficiency: © is commutable with permutation matrix
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Deep Learning for Sets

* Deep Sets [1] fo(x) = o(0x) © € RM*M

Lemma 3 The function fg : RM — RM defined above is permutation equivariant iff all the off-
diagonal elements of © are tied together and all the diagonal elements are equal as well. That is,

O =M+~ (11") MYyeER 1=11,...,1]" eRM I ¢ RM*M s the identity matrix

Sketch of Proof
We know J(W@X) = WJ(@X) the equivariance reduces to TOX = O7nx

Sufficiency: © is commutable with permutation matrix

. . . i : ... —1
Necessity: consider a special permutation (i.e., transposition / swap) T ;I‘ =T = Ty

1. All diagonal elements are identical
1O =Om,; = T, Om =0 = (M 0m k)i =011 = Orr =06,
2. All off-diagonal elements are identical
Wj/,jﬂi,i/@ = @Wj/,jﬂ'z',i/ = 7Tj/’j7'('i,i/@(ﬂ'j/,jﬂ'i,i/)_l =06 =

T 4,5 Oy 475 50 = O = (Wjr 73 5Oy 475 50 )i5 = Op 5 = Op jv = Oy ;



Deep Learning for Sets

* Deep Sets [1]

Equivariant Architecture f(x) = a(xA — 11TxI‘)
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Image Credit: [1]



Deep Learning for Sets

* Deep Sets [1]
Recipe for making the model deep:

Stack multiple equivariant layers (+ invariant layer at the end), e.g., PointNet [2]
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Image Credit: [1]



Deep Learning for Sequences

* Language Models

books
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Image Credit: http://web.stanford.edu/class/cs224n/



http://web.stanford.edu/class/cs224n/

Deep Learning for Sequences

* Language Models

books
/ laptops
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 Machine Translation
\
INPUT
; Y THE
Je suis étudiant | —» TRANSEORMER — | | am a student
o
-

Image Credit: http://web.stanford.edu/class/cs224n/
https://jalammar.github.io/illustrated-transformer/



http://web.stanford.edu/class/cs224n/
https://jalammar.github.io/illustrated-transformer/

Deep Learning for Sequences

Key Challenges:

* Varying-sized input sequences



Deep Learning for Sequences

Key Challenges:

* Varying-sized input sequences
* Orders “may” be crucial for cognition

Aoccdrnig to a rscheearch at Cmabrigde Uinervtisy, it deosn't mttaer in waht oredr the Itteers in a
wrod are, the olny iprmoetnt tihng is taht the frist and Isat Itteer be at the rghit pclae. The rset can be
a toatl mses and you can sitll raed it wouthit porbelm. Tihs is bcuseae the huamn mnid deos not raed
ervey lteter by istlef, but the wrod as a wlohe.

Image Credit: https://www.mrc-cbu.cam.ac.uk/people/matt.davis/cmabridge



https://www.mrc-cbu.cam.ac.uk/people/matt.davis/cmabridge/

Deep Learning for Sequences

Key Challenges:

* Varying-sized input sequences
* Orders “may” be crucial for cognition

Aoccdrnig to a rscheearch at Cmabrigde Uinervtisy, it deosn't mttaer in waht oredr the Itteers in a
wrod are, the olny iprmoetnt tihng is taht the frist and Isat Itteer be at the rghit pclae. The rset can be
a toatl mses and you can sitll raed it wouthit porbelm. Tihs is bcuseae the huamn mnid deos not raed
ervey lteter by istlef, but the wrod as a wlohe.

* Complex statistical dependencies (e.g. long-range ones)

As aliens entered our planet

Image Credit: https://www.mrc-cbu.cam.ac.uk/people/matt.davis/cmabridge/
https://towardsdatascience.com/illustrated-guide-to-transformers-step-by-step-explanation-f74876522bc0
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Deep Learning for Sequences

Key Challenges:

* Varying-sized input sequences
* Orders “may” be crucial for cognition

Aoccdrnig to a rscheearch at Cmabrigde Uinervtisy, it deosn't mttaer in waht oredr the Itteers in a
wrod are, the olny iprmoetnt tihng is taht the frist and Isat Itteer be at the rghit pclae. The rset can be
a toatl mses and you can sitll raed it wouthit porbelm. Tihs is bcuseae the huamn mnid deos not raed
ervey lteter by istlef, but the wrod as a wlohe.

* Complex statistical dependencies (e.g. long-range ones)

LSTM [3]
GRU [4]
Seq2Seq [5]
Transformer [6]

As aliens entered our planet

Image Credit: https://www.mrc-cbu.cam.ac.uk/people/matt.davis/cmabridge/
https://towardsdatascience.com/illustrated-guide-to-transformers-step-by-step-explanation-f74876522bc0
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https://towardsdatascience.com/illustrated-guide-to-transformers-step-by-step-explanation-f74876522bc0
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Input Encoding

Image Credit: [6]
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Hugging Face Demos

Image Credit: https://transformer.huggingface.co/

https://transformer.huggingface.co/

Write With Transformer

Get a modern neural network to
auto-complete your thoughts.

This web app, built by the Hugging Face team, is the official demo of the
@ /transformers repository's text generation capabilities.

C) star 57,016


https://transformer.huggingface.co/
https://transformer.huggingface.co/

Extensions: Vision Transformer

Image Credit: [8] & https://github.com/lucidrains/vit-pytorch
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