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* Discrete/Hybrid Latent Variable Models: RBMs, Latent Graph Models

e Stochastic Gradient Estimation
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Graph Isomorphism Problem

Given two graphs, are they isomorphic?

An isomorphism It 1s unknow if this problem is
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The Weisteller-Lehman Isomorphism Test

Algorithm 1: 1-WL Algorithm [1]
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The Weisteller-Lehman Isomorphism Test

Algorithm 1: 1-WL Algorithm [1]

. 0) ; (0 0
Input: Initial node label (hg >, hé ), s hg\,))
t < 0;
repeat
for v; €V do

L R ¢ hash ({h§t) j e Ni});
t<—1t+1;
until stable node partition based on labels are reached or t = N;

Output: Final node label (hgT), h;T), ey hg\:[r))

If the partition of nodes by labels are different, then two graphs are non-isomorphic!

If the partition of nodes by labels are same, we can not decide!

[1]



The Weisteiler-Lehman Isomorphism Test

Graph 1 Graph 2
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The Weisteiler-Lehman Isomorphism Test

1
1
]
1
Graph 1 Graph 2
{1,1,1,1,1} {1,1,1,1,1}
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The Weisteiler-Lehman Isomorphism Test

Hash Table:
1,1} -> 2
{1,1,1} >3
{2,3}->4
{3,3}->5
{2,2,3}->6
{4,6}->7
{6,6}-> 8
{4,5,6} ->9

Graph 1 Graph 2
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The Weisteiler-Lehman Isomorphism Test
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Graph 1 Graph 2
{2,2,2},{3,3} {2,2,2},{3,3}
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The Weisteiler-Lehman Isomorphism Test

6
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4
4
Graph 1 Graph 2
{4,4},{5}.,16,6} {4,4},{5}.,16,6}
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The Weisteiler-Lehman Isomorphism Test

Graph 1 Graph 2
{7,75,{8}.,19.9} {7,75,{8}.,19.9}

Image Credit: https://davidbieber.com/post/2019-05-10-weisfeiler-lehman-isomorphism-test/
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A Recap on GNNs

a(") = AGGREGATE® ({1 - ue N(v) })

h{¥) = COMBINE™®) (hg’“‘”, a&’“)

Image Credit: [2]



A Recap on GNNs

a(") = AGGREGATE® ({1 - ue N(v) })

L) — COMBINE®) (hg’H), agjﬂ)

v

-2 WL test iterations -. ; Captures structures

Q000909 Multiset

Graph Rooted subtree GNN aggregation

Image Credit: [2]



GNNs Are as Powerful as 1-WL

Lemma 2. Let G and G4 be any two non-isomorphic graphs. If a graph neural network A : G — R
maps G1 and G4, to different embeddings, the Weisfeiler-Lehman graph isomorphism test also decides
GG1 and G5 are not isomorphic.

[2]



GNNs Are as Powerful as 1-WL

Lemma 2. Let G and G4 be any two non-isomorphic graphs. If a graph neural network A : G — R
maps G1 and G4, to different embeddings, the Weisfeiler-Lehman graph isomorphism test also decides
GG1 and G5 are not isomorphic.

Proof Sketch: Proof by contradiction.
Suppose the GNN has A(G1) # A(G2), but WL test outputs the same node partition based on labels
By induction, prove that there exists a valid mapping from node label (WL) to node feature (GNN)

Readout of GNN is permutation invariant => Same node partition generates same graph representation

Therefore, we have A(G1) = A(G3)

[2]



GNNs Are as Powerful as 1-WL

Theorem 3. Let A : G — R? be a GNN. With a sufficient number of GNN layers, A maps any
graphs G1 and G- that the Weisfeiler-Lehman test of isomorphism decides as non-isomorphic, to
different embeddings if the following conditions hold:

a) A aggregates and updates node features iteratively with

A = ¢ (A, £ ({rED u e N@)})),

where the functions f, which operates on multisets, and ¢ are injective.

b) A’s graph-level readout, which operates on the multiset of node features {hg,k) }, is injective.

[2]



GNNs Are as Powerful as 1-WL

Theorem 3. Let A : G — R? be a GNN. With a sufficient number of GNN layers, A maps any
graphs G1 and G- that the Weisfeiler-Lehman test of isomorphism decides as non-isomorphic, to
different embeddings if the following conditions hold:

a) A aggregates and updates node features iteratively with

A = ¢ (A, £ ({rED u e N@)})),

where the functions f, which operates on multisets, and ¢ are injective.

b) A’s graph-level readout, which operates on the multiset of node features {hg,k) }, is injective.

Proof Sketch:

By induction, prove that there exists an injective mapping from node label (WL) to node feature (GNN)

Since readout is injective, different multi-sets will be mapped to different graph embeddings

[2]



Graph Isomorphism Networks (GINs)

Lemma 5. Assume X is countable. There exists a function f : X — R" so that h(X) =} f(z)
is unique for each multiset X C X of bounded size. Moreover, any multiset function g can be

decomposed as g (X) = ¢ (>_ . x [(z)) for some function §.

[2]
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Graph Isomorphism Networks (GINs)

Lemma 5. Assume X is countable. There exists a function f : X — R" so that h(X) =} f(z)
is unique for each multiset X C X of bounded size. Moreover, any multiset function g can be
decomposed as g (X) = ¢ (>_ . x [(z)) for some function §.

Corollary 6. Assume X is countable. There exists a function f : X — R" so that for infinitely
many choices of ¢, including all irrational numbers, h(c,X) = (1 +¢€) - f(c) + > ,cx f(x) is
unique for each pair (¢, X ), where c € X and X C X is a multiset of bounded size. Moreover, any

function g over such pairs can be decomposed as g (¢, X) = ¢ (1 +¢€) - f(c) + X ,ex f(x)) for
some function .
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Other Results & Open Questions?

* GNNs are universal approximators for functions on graphs [5,6]
* GNNs are Turing universal [7]
* Expressiveness of GNNs using communication capacity [8]

* Expressiveness of GNNSs in terms of counting substructures [9]

e (Can we design GNNs that go beyond 1-WL? [3,17,18,19]

[2]



Other Results & Open Questions?

* GNNs are universal approximators for functions on graphs [5,6]
* GNNs are Turing universal [7]

* Expressiveness of GNNs using communication capacity [8]

* Expressiveness of GNNSs in terms of counting substructures [9]

e (Can we design GNNs that go beyond 1-WL? [3,17,18,19]

Algorithm k-WL (k > 2)

Input: G = (V, E, Xy)

1. % « hash(G[?]) forall ¥ € V¥

2. repeat

3 ¢t et weNi(D)} Yo e VF, i € [K]
4. ch hash(cg_l, cfi;,l, e cg,k) Vo e VK

5. until (c)geyr == (Cf,:l)fvevk

6. return {c:v e VF}

2]



Theoretical Aspects of GNNs

* Expressiveness / Capacity
What functions on graphs can be represented by GNNs?
Can GNNs distinguish isomorphic graphs?
Are GNNSs universal approximators?
* Generalization
How well do GNNs generalize to unseen graphs?

What are factors that affect the generalization of GNNs?



Statistical Learning Theory

i.i.d. data

best model

— Learning Algorithm —> %

(Uniform Convergence) Generalization Bound:

For any hypothesis in H. , any data distribution, any 6 € (0,1),

with probability 1 — ¢,

True error <= Train error + f(complexity of H , sample size, ...)



PAC-Bayes Theory

.i.d. data Posterior ) over H

— Learning Algorithm — %

True [Eglerror] <= Train K¢ [error] + f( P, @), sample size, ...)

Dx1(Q||P) +In 2Tm
2(m — 1) |

L’D,v(Q) < LS,fy(Q) + \/

[10]



PAC-Bayes Theory

Lemma 2.2. (Neyshabur et al., 2017)* Let f,(z) : X — RX be any model with parameters
w, and let P be any distribution on the parameters that is independent of the training data. For
any w, we construct a posterior Q(w + ug by adding any random perturbation u to w, s.t.,
P(max,cx | futu(®) — fu(Z)|oo < F) > 5. Then, for any v,0 > 0, with probability at least
1 — d over an i.i.d. size-m training set S according to D, for any w, we have:

8m
Loo(fu) < Len(fu) + \/ QDKL(Q(“;&UE”S) tlog 5

True error <= Train error + f( P, (), sample size, ...)

Learned Model Perturb Weights Posterior () over H

/\*
FE — e g K

[11]
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Problems & Assumptions

Graph Classification
@
Wheel Barbell Binary Tree Ladder

Al Data, i.e., triplets (A, X, y), are i.i.d. samples drawn from some unknown distribution D.
A2 The maximum hidden dimension across all layers is h.

A3 Node feature of any graph is contained in a ¢2-ball with radius B. Specifically, we have
Vi € N7, the i-th node feature X[i,:] € X5 1, = {x € R"0| Z?il z? < B*}.

A4 We only consider simple graphs (i.e., undirected, no loops', and no multi-edges) with max-
imum node degree as d — 1.



Models

Graph Convolutional Networks (GCNs) [12]

Hy: = 0 (EH k_lwk) (k-th Graph Convolution Layer)
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H, = - 1, H, W, (Readout Layer),



Models

Graph Convolutional Networks (GCNs) [12]

Hy: = 0 (I:H k_ka) (k-th Graph Convolution Layer)
1
H, = - 1, H_ W, (Readout Layer),

Message Passing Graph Neural Networks (MPGNNs) [13]

M, = g(C Hy_,) (k-th step Message Computation)
M = Ciy My (k-th step Message Aggregation)
Hi = ¢ (XWi + p (M) Wa) (k-th step Node State Update)
1
H, = ﬁlnH 1—1 W (Readout Layer),



[14]

Perturbation Bounds

Lemma 3.1. (GCN Perturbation Bound) For any B > 0,1l > 1, let f, € H: X X G — RX be a
I-layer GCN. Then for any w, and x € Xp p,, and any perturbation u = vec({U;}._,) such that

Vi € NI, ||Us|l2 < %HWZ 9, the change in the output of GCN is bounded as,

! l
[ furu(X, A) = fu(X, A)|, < eBd= (H ||Wz||2> 3 ||||‘(}[]/{;||||22
1=1 k=1
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Lemma 3.1. (GCN Perturbation Bound) For any B > 0,1l > 1, let f, € H: X X G — RX be a
I-layer GCN. Then for any w, and x € Xp p,, and any perturbation u = vec({U;}._,) such that

Vi € Nl+, NUill2 < %||WZ 9, the change in the output of GCN is bounded as,

l l
| futu(X, A) = fu(X, A)|, < eBd = (H ||Wz||2> Z ||||I(/[]/1;||||22
1=1 k=1

Lemma 3.3. (MPGNN Perturbation Bound) Forany B > 0,1 > 1,let f, e H: X xXG — RE be a
l-step MPGNN. Then for any w, and x € Xp p,, and any perturbation u = vec({U1, Uz, U;}) such

that n = max (||||V({,11||||22 : ||||v[{/22 ||||22 , ||||V[J‘;‘l||||22) < %, the change in the output of MPGNN is bounded as,

dc) =t —1

a6, 4) — (X, M)z < eBin| Wi o[ WillaCy L~

where C = C¢C,,C’g||W2 ||2



Generalization Bounds for GCNs

Theorem 3.2. (GCN Generalization Bound) For any B > 0,1 > 1, let f,, € H: X x G — RE
be a |l layer GCN. Then for any 6, > 0, with probability at least 1 — § over the choice of an i.i.d.
size-m training set S according to D, for any w, we have,

l
( B2d'~11?hlog(lh) 1:[ IW3l13 Z(IIW 1%/ 1Wil3) + log %5 m

LD,O(fw) < LS,'y(fw) +0 ’L ’y 'n_’Ll

[14]



Generalization Bounds for GCNs

Theorem 3.2. (GCN Generalization Bound) For any B > 0,1 > 1, let f,, € H: X x G — RE
be a |l layer GCN. Then for any 6, > 0, with probability at least 1 — § over the choice of an i.i.d.
size-m training set S according to D, for any w, we have,

l
( B2d'=112hlog(lh) 1:[ IW3l13 Z(IIW 1%/ 1Wil3) + log %5 m

Loo(fu) < Lsy(fu) + O S

Proof Sketch:

Perturbation bound + Measure Concentration Inequalities => A model with certain
learned weights could generalize

Similar bounds hold for a finite covering set of all possible weights and then use union
bound to derive the final result

[14]



Generalization Bounds for GCNs

MLPs/CNNs are special GCNs if we construct the following graph:
* Each image is a node
* No edges exist except self-loops

(Convolution 1s matrix multiplication as well)
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Generalization Bounds for Message Passing GNNs

Theorem 3.4. (MPGNN Generalization Bound) Forany B > 0,1 > 1, let f, € H : X x G — RK
be a l-step MPGNN. Then for any 9,y > 0, with probability at least 1 — § over the choice of an i.i.d.
size-m training set S according to D, for any w, we have,

Lpo(fw) £ Ls~y(fw)+O \/

B2 (max (C—(H—l), ()\g)(H—l)/l))z lzhlog(lh”w'% + log m(l(s-l-l) )
v2m ’

where ¢ = min (Wi |z, [Wellz, [Wall2). w3 = [[Wylb+ [ Well3+[Will}, € = CoC,Cyl W2
A= Wil Will2, and € = C4 99—,

25

[14]
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Generalization Bounds for Message Passing GNNs

Statistics Max Node Degree Max Hidden Dim Spectral Norm of
d—1 h Learned Weights
VC-Dimension 4
(Scarselli et al., 2018) - O (h*)
Rademacher
Complexity O (dl_lw/log(d%—?’)) O (hy/logh) O ()\Cﬁ\/log (||W2||2/\§2))
(Garg et al., 2020)
Ours 0 (d) O (Vhlogh) O (A+tert /WAl +WaliE + [Wil%)
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Generalization Bounds for Message Passing GNNs

Statisti Max Node Degree Max Hidden Dim Spectral Norm of
SHES d—1 h Learned Weights
VC-Dimension 4
(Scarselli et al., 2018) - O (h?) -
Rademacher
Complexity O (dl‘ly/log(dzl—i”)) O (hy/Iogh) O ()\Cf\/log (||W2||2,\§2))
(Garg et al., 2020)
Ours 0 (d-) O (VRlogh) 0 (Nt /WAl + Wik + Wil

40 Em PAC Bayes
mmm Rademacher

Log Bound Value
= = N N w w
Ul o ul o Ul o w1

o

PROTEINS

35

Log Bound Value
= = N N w
o 6] o ] o

U

o

IMDB-M IMDB-B COLLAB

real-world graphs

mmm PAC Bayes
B Rademacher

synthetic graphs

ER-4 SBM-1 SBM-2




Take Home Messages & Other Results

Spectral norm of weights and max node degree play key roles in the generalization of GNNs

Bounds for MLPs/CNNs (w/ ReLU) are special cases of bounds for GCNs, which reconciles
with the observation that MLPs/CNNs (w/ ReLU) can be viewed as special GCNs

PAC-Bayes bounds are empirically tighter than the recent Rademacher complexity based
bounds on several synthetic and real-world graph datasets

Rademacher complexity based generalization bounds [15]

VC-Dimension based generalization bounds [16]



Open Questions

* s the maximum node degree the only graph statistic that has an impact on the
generalization ability of GNNs?

*  Would the analysis still work for other interesting problem setups like out-of-
distribution generalizations?

*  What is the impact of the optimization algorithms like SGD on the generalization of
GNNs?
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