EECE 571F: Deep Learning with Structures

Lecture 6: Unsupervised/Self-supervised Graph Representation Learning

Renjie Liao

University of British Columbia Winter, Term 1, 2022

Course Scope

- Brief Intro to Deep Learning
- Geometric Deep Learning
 - Deep Learning Models for Sets and Sequences: Deep Sets & Transformers
 - Deep Learning Models for Graphs: Graph Convolution & Message Passing GNNs
 - Expressiveness & Generalizations of GNNs
 - Unsupervised/Self-supervised Graph Representation Learning
- Probabilistic Deep Learning
 - Deep Generative Models: Auto-regressive models, GANs, VAEs, Diffusion/Score based models
 - Discrete/Hybrid Latent Variable Models: RBMs, Latent Graph Models
 - Stochastic Gradient Estimation

Course Scope

- Brief Intro to Deep Learning
- Geometric Deep Learning
 - Deep Learning Models for Sets and Sequences: Deep Sets & Transformers
 - Deep Learning Models for Graphs: Graph Convolution & Message Passing GNNs
 - Expressiveness & Generalizations of GNNs
 - Unsupervised/Self-supervised Graph Representation Learning
- Probabilistic Deep Learning
 - Deep Generative Models: Auto-regressive models, GANs, VAEs, Diffusion/Score based models
 - Discrete/Hybrid Latent Variable Models: RBMs, Latent Graph Models
 - Stochastic Gradient Estimation

Unsupervised Graph Representation Learning

• Deep Generative Models of Graphs

Building probabilistic distributions of graphs (e.g., adjacency matrix A) and node representations X

Unsupervised Graph Representation Learning

Deep Generative Models of Graphs

Building probabilistic distributions of graphs (e.g., adjacency matrix A) and node representations X

• In this lecture, we focus on methods that learn good node representations

Given graphs (e.g., adjacency matrix A), the goal is to learn node representations X

The learned X is useful for supervised fine-tuning, e.g., node classification

Unsupervised / Self-Supervised Learning

Since only data is given, we need a learning criterion:

Unsupervised / Self-Supervised Learning on Graphs

Since only data is given, we need a learning criterion:

- Likelihood (Autoregressive models)
- Reconstruction Loss (Auto-encoders)
- Contrastive Loss (Noise contrastive estimation, Self-supervised learning)
- Min-max Loss (Generative adversarial networks)

.

Unsupervised / Self-Supervised Learning on Graphs

Since only data is given, we need a learning criterion:

• Likelihood (Autoregressive models)

DeepWalk [1] Node2Vec[2]

- Reconstruction Loss (Auto-encoders)
- Contrastive Loss (Noise contrastive estimation, Self-supervised learning)
- Min-max Loss (Generative adversarial networks)

.

Unsupervised / Self-Supervised Learning on Graphs

Since only data is given, we need a learning criterion:

• Likelihood (Autoregressive models)

DeepWalk [1] Node2Vec[2]

- Reconstruction Loss (Auto-encoders)
- Contrastive Loss (Noise contrastive estimation, Self-supervised learning) DeepGraphInfoMax [3]
- Min-max Loss (Generative adversarial networks)

DeepGraphInfoMax [3]

.

Language Models

Model the probability of words given its context (e.g., a fixed-size window):

$$p(w_{i+1}|w_i,\cdots,w_{i-K})$$

Language Models

Model the probability of words given its context (e.g., a fixed-size window):

$$p(w_{i+1}|w_i,\cdots,w_{i-K})$$

$$p(w_i|\{w_{i-k},\cdots,w_{i-1},w_{i+1},\cdots,w_{i+k}\})$$

Language Models

Model the probability of words given its context (e.g., a fixed-size window):

$$p(w_{i+1}|w_i, \dots, w_{i-K})$$

$$p(w_i|\{w_{i-k}, \dots, w_{i-1}, w_{i+1}, \dots, w_{i+k}\})$$

- One can use RNNs or CNNs to construct the probability
- The model can be learned via maximum likelihood

Model the probability of its context (e.g., a fixed-size window) given the word:

$$p(\{w_{i-k}, \cdots, w_{i-1}, w_{i+1}, \cdots, w_{i+k}\} | w_i) = \prod_{j \neq i, j \in \mathcal{N}_i} p(w_j | w_i)$$

Model the probability of its context (e.g., a fixed-size window) given the word:

$$p(\{w_{i-k}, \cdots, w_{i-1}, w_{i+1}, \cdots, w_{i+k}\} | w_i) = \prod_{j \neq i, j \in \mathcal{N}_i} p(w_j | w_i)$$

- Assumes conditional independence, i.e., the context is orderless
- The model only takes one word as input, thus being efficient
- Interpolation (context => word) vs. extrapolation (word => context)

Model the probability of its context (e.g., a fixed-size window) given the word:

$$p(\{w_{i-k}, \cdots, w_{i-1}, w_{i+1}, \cdots, w_{i+k}\} | w_i) = \prod_{j \neq i, j \in \mathcal{N}_i} p(w_j | w_i)$$

- Assumes conditional independence, i.e., the context is orderless
- The model only takes one word as input, thus being efficient
- Interpolation (context => word) vs. extrapolation (word => context)

Can we generalize this model to graphs?

Model the probability of its context (e.g., a fixed-size window) given the word:

$$p(\{w_{i-k}, \cdots, w_{i-1}, w_{i+1}, \cdots, w_{i+k}\} | w_i) = \prod_{j \neq i, j \in \mathcal{N}_i} p(w_j | w_i)$$

- Assumes conditional independence, i.e., the context is orderless
- The model only takes one word as input, thus being efficient
- Interpolation (context => word) vs. extrapolation (word => context)

Words -> Nodes

Can we generalize this model to graphs?

Model the probability of its context (e.g., a fixed-size window) given the word:

$$p(\{w_{i-k}, \cdots, w_{i-1}, w_{i+1}, \cdots, w_{i+k}\} | w_i) = \prod_{j \neq i, j \in \mathcal{N}_i} p(w_j | w_i)$$

- Assumes conditional independence, i.e., the context is orderless
- The model only takes one word as input, thus being efficient
- Interpolation (context => word) vs. extrapolation (word => context)

Words -> Nodes

Can we generalize this model to graphs?

How about edges?

Random Walks

A special Markov Chain

Starting at a node, one can randomly choose a neighboring node at a time to walk

Random Walks

A special Markov Chain

Starting at a node, one can randomly choose a neighboring node at a time to walk

$$p_{ij} = \frac{1}{|\mathcal{N}_i|}$$

Random Walks

A special Markov Chain

Starting at a node, one can randomly choose a neighboring node at a time to walk

$$p_{ij} = \frac{1}{|\mathcal{N}_i|}$$

Model the probability of context (random walks) given its word (vertex):

(a) Random walk generation.

(b) Representation mapping.

Image Credit: [1]

Model the probability of context (random walks) given its word (vertex):

$$\max \log p(\{v_{i-w}, \dots, v_{i-1}, v_{i+1}, \dots, v_{i+w}\} \mid \Phi(v_i))$$

(a) Random walk generation.

(b) Representation mapping.

Image Credit: [1]

Model the probability of context (random walks) given its word (vertex):

```
Algorithm 1 DEEPWALK(G, w, d, \gamma, t)
Input: graph G(V, E)
    window size w
     embedding size d
     walks per vertex \gamma
     walk length t
Output: matrix of vertex representations \Phi \in \mathbb{R}^{|V| \times d}
 1: Initialization: Sample \Phi from \mathcal{U}^{|V| \times d}
 2: Build a binary Tree T from V
 3: for i = 0 to \gamma do
 4: \mathcal{O} = \text{Shuffle}(V)
       \textbf{for each} \,\, v_i \in \mathcal{O} \,\, \textbf{do}
       \mathcal{W}_{v_i} = RandomWalk(G, v_i, t)
          SkipGram(\Phi, \mathcal{W}_{v_i}, w)
       end for
 9: end for
```

Skip-Gram Algorithm

```
Algorithm 2 SkipGram(\Phi, \mathcal{W}_{v_i}, w)

1: for each v_j \in \mathcal{W}_{v_i} do

2: for each u_k \in \mathcal{W}_{v_i}[j-w:j+w] do

3: J(\Phi) = -\log \Pr(u_k \mid \Phi(v_j))

4: \Phi = \Phi - \alpha * \frac{\partial J}{\partial \Phi}

5: end for

6: end for
```

Skip-Gram Algorithm

Algorithm 2 SkipGram (Φ, W_{v_i}, w) 1: for each $v_j \in W_{v_i}$ do 2: for each $u_k \in W_{v_i}[j-w:j+w]$ do

- 3: $J(\Phi) = -\log \Pr(u_k \mid \Phi(v_j))$
- 4: $\Phi = \Phi \alpha * \frac{\partial J}{\partial \Phi}$
- 5: **end for**
- 6: end for

Conditional Independence

$$p(\{u_{j-w}, \cdots, u_{j-1}, u_{j+1}, \cdots, u_{j+w}\} | \Phi(v_j)) = \prod_{k \neq j, k \in \mathcal{N}_j} p(u_k | \Phi(v_j))$$

Model the probability of context (random walks) given its word (vertex)

Construct probability using Softmax:

$$p(u_k = i | \Phi(v_j)) = \frac{\exp(w_i^T \Phi(v_j))}{\sum_{m=1}^{|V|} \exp(w_m^T \Phi(v_j))}$$

Model the probability of context (random walks) given its word (vertex)

Construct probability using Softmax:

$$p(u_k = i | \Phi(v_j)) = \frac{\exp(w_i^T \Phi(v_j))}{\sum_{m=1}^{|V|} \exp(w_m^T \Phi(v_j))}$$

One weight per vertex, i.e., a huge softmax on large graphs

Can we improve the efficiency?

Hierarchical Softmax

Build a binary tree over vocabulary (the set of all vertices)

$$p(u_k \mid \Phi(v_j)) = \prod_{l=1}^{\lceil \log |V| \rceil} p(b_l \mid \Phi(v_j))$$

Multi-Label Classification (BlogCatalog)

Two-stage pipeline: 1) learn node embeddings unsupervisedly; 2) learn node classifier supervisedly

	% Labeled Nodes	10%	20%	30%	40%	50%	60%	70%	80%	90%
	DEEPWALK	36.00	38.20	39.60	40.30	41.00	41.30	41.50	41.50	42.00
Micro-F1(%)	SpectralClustering	31.06	34.95	37.27	38.93	39.97	40.99	41.66	42.42	42.62
	EdgeCluster	27.94	30.76	31.85	32.99	34.12	35.00	34.63	35.99	36.29
	Modularity	27.35	30.74	31.77	32.97	34.09	36.13	36.08	37.23	38.18
	wvRN	19.51	24.34	25.62	28.82	30.37	31.81	32.19	33.33	34.28
	Majority	16.51	16.66	16.61	16.70	16.91	16.99	16.92	16.49	17.26
	DEEPWALK	21.30	23.80	25.30	26.30	27.30	27.60	27.90	28.20	28.90
Macro-F1(%)	SpectralClustering	19.14	23.57	25.97	27.46	28.31	29.46	30.13	31.38	31.78
	EdgeCluster	16.16	19.16	20.48	22.00	23.00	23.64	23.82	24.61	24.92
	Modularity	17.36	20.00	20.80	21.85	22.65	23.41	23.89	24.20	24.97
	wvRN	6.25	10.13	11.64	14.24	15.86	17.18	17.98	18.86	19.57
	Majority	2.52	2.55	2.52	2.58	2.58	2.63	2.61	2.48	2.62

Mutual Information between X and Y:

$$MI(X,Y) = KL(p(X,Y)||p(X)p(Y))$$

$$= \int \int p(X,Y) \log \frac{p(X,Y)}{p(X)p(Y)} dXdY$$

Mutual Information between X and Y:

$$MI(X,Y) = KL(p(X,Y)||p(X)p(Y))$$

$$= \int \int p(X,Y) \log \frac{p(X,Y)}{p(X)p(Y)} dXdY$$

It quantifies the "amount of information" obtained about one random variable by observing the other random variable

The higher the mutual information => knowing one would give you more information about the other

How to estimate Mutual Information?

$$MI(X,Y) = KL(p(X,Y)||p(X)p(Y))$$

$$= \int \int p(X,Y) \log \frac{p(X,Y)}{p(X)p(Y)} dXdY$$

$$= \int \int p(X,Y) \log \frac{p(Y|X)}{p(Y)} dXdY$$

$$= \mathbb{E}_{p(X,Y)} \left[\log \frac{p(Y|X)}{p(Y)} \right]$$

How to estimate Mutual Information?

Suppose we generate Y from a mixture distribution:

$$q(C = 1) = q(C = 0) = \frac{1}{2}$$
 $p(Y|X) = q(Y|C = 1)$
 $p(Y) = q(Y|C = 0)$

How to estimate Mutual Information?

Suppose we generate Y from a mixture distribution:

$$q(C = 1) = q(C = 0) = \frac{1}{2}$$

$$p(Y|X) = q(Y|C = 1)$$

$$p(Y) = q(Y|C = 0)$$

$$q(Y) = q(Y|C = 0)q(C = 0) + q(Y|C = 1)q(C = 1)$$

How to estimate Mutual Information?

Suppose we generate Y from a mixture distribution:

$$q(C = 1) = q(C = 0) = \frac{1}{2}$$

$$p(Y|X) = q(Y|C = 1)$$

$$p(Y) = q(Y|C = 0)$$

$$q(Y) = q(Y|C = 0)q(C = 0) + q(Y|C = 1)q(C = 1)$$

Density Ratio Trick:

$$\frac{p(Y|X)}{p(Y)} = \frac{q(Y|C=1)}{q(Y|C=0)} = \frac{\frac{q(C=1|Y)q(Y)}{q(C=1)}}{\frac{q(C=0|Y)q(Y)}{q(C=0)}} = \frac{q(C=1|Y)}{q(C=0|Y)}$$

How to estimate Mutual Information?

Suppose we generate Y from a mixture distribution:

$$q(C = 1) = q(C = 0) = \frac{1}{2}$$

$$p(Y|X) = q(Y|C = 1)$$

$$p(Y) = q(Y|C = 0)$$

$$q(Y) = q(Y|C = 0) + q(Y|C = 1)q(C = 1)$$

Density Ratio Trick:

$$\frac{p(Y|X)}{p(Y)} = \frac{q(Y|C=1)}{q(Y|C=0)} = \frac{\frac{q(C=1|Y)q(Y)}{q(C=1)}}{\frac{q(C=0|Y)q(Y)}{q(C=0)}} = \underbrace{\frac{q(C=1|Y)}{q(C=1|Y)}}_{q(C=0|Y)}$$

Binary Classifier!

How to estimate Mutual Information?

Suppose we generate Y from a mixture distribution:

$$q(C = 1) = q(C = 0) = \frac{1}{2}$$

$$p(Y|X) = q(Y|C = 1)$$

$$p(Y) = q(Y|C = 0)$$

$$q(Y) = q(Y|C = 0)q(C = 0) + q(Y|C = 1)q(C = 1)$$

Density Ratio Trick:

$$\frac{p(Y|X)}{p(Y)} = \frac{q(Y|C=1)}{q(Y|C=0)} = \frac{\frac{q(C=1|Y)q(Y)}{q(C=1)}}{\frac{q(C=0|Y)q(Y)}{q(C=0)}} = \frac{q(C=1|Y)}{q(C=0|Y)}$$

Binary Classifier!

We only need samplers to train a classifier, no exact probability densities are required!

Given samples
$$Y,C \sim q(Y,C)$$

$$q(C=1) = q(C=0) = \frac{1}{2}$$

$$p(Y|X) = q(Y|C=1)$$

$$p(Y) = q(Y|C=0)$$

We build a classifier
$$q(C=1|Y) \propto f_{\theta}(X,Y)$$

Given samples
$$Y,C \sim q(Y,C)$$

$$q(C=1) = q(C=0) = \frac{1}{2}$$

$$p(Y|X) = q(Y|C=1)$$

$$p(Y) = q(Y|C=0)$$

We build a classifier
$$q(C=1|Y) \propto f_{\theta}(X,Y)$$

$$\text{Minimize Binary Cross-entropy:} \quad \min_{q} \quad -\frac{1}{N} \left(\sum_{Y,C} C \log q(C=1|Y) + (1-C) \log (1-q(C=1|Y)) \right)$$

Given samples
$$Y,C \sim q(Y,C)$$

$$q(C=1) = q(C=0) = \frac{1}{2}$$

$$p(Y|X) = q(Y|C=1)$$

$$p(Y) = q(Y|C=0)$$

We build a classifier $q(C=1|Y) \propto f_{\theta}(X,Y)$

The optimal q is:
$$q^*(C=1|Y) = \frac{\frac{p(Y|X)}{p(Y)}}{1 + \frac{p(Y|X)}{p(Y)}}$$

Optimal Bayesian Classifier!

$$q^*(C = 1|Y) = \frac{\frac{p(Y|X)}{p(Y)}}{1 + \frac{p(Y|X)}{p(Y)}}$$

$$\mathcal{L}_{BCE}(q) = -\mathbb{E}_{C,Y} \left[C \log q(C = 1|Y) + (1 - C) \log(1 - q(C = 1|Y)) \right]$$

The optimal q is
$$q^*(C=1|Y) = \frac{\frac{p(Y|X)}{p(Y)}}{1 + \frac{p(Y|X)}{p(Y)}}$$

Binary Cross-entropy:
$$\mathcal{L}_{BCE}(q) = -\mathbb{E}_{C,Y}\left[C\log q(C=1|Y) + (1-C)\log(1-q(C=1|Y))\right]$$

One can show [4] that
$$\mathcal{L}_{\mathrm{BCE}}(q^*) \geq -\mathrm{MI}(X,Y)$$

One can also generalize this lower bound to multiple variables [4,5]

We want to learn node representations that capture global context information of the graph, i.e., maximize *local mutual information*

$$\mathcal{L} = \frac{1}{N+M} \left(\sum_{i=1}^{N} \mathbb{E}_{(\mathbf{X}, \mathbf{A})} \left[\log \mathcal{D} \left(\vec{h}_i, \vec{s} \right) \right] + \sum_{j=1}^{M} \mathbb{E}_{(\widetilde{\mathbf{X}}, \widetilde{\mathbf{A}})} \left[\log \left(1 - \mathcal{D} \left(\widetilde{\tilde{h}}_j, \vec{s} \right) \right) \right] \right)$$

Graph input

$$\mathcal{L} = \frac{1}{N+M} \left(\sum_{i=1}^{N} \mathbb{E}_{(\mathbf{X}, \mathbf{A})} \left[\log \mathcal{D} \left(\vec{h}_{i}, \vec{s} \right) \right] + \sum_{j=1}^{M} \mathbb{E}_{(\widetilde{\mathbf{X}}, \widetilde{\mathbf{A}})} \left[\log \left(1 - \mathcal{D} \left(\widetilde{\vec{h}}_{j}, \vec{s} \right) \right) \right] \right)$$

- Graph input
- Corrupted/Noisy graph input

$$\mathcal{L} = \frac{1}{N+M} \left(\sum_{i=1}^{N} \mathbb{E}_{(\mathbf{X}, \mathbf{A})} \left[\log \mathcal{D} \left(\vec{h}_{i} \right) \vec{s} \right) \right] + \sum_{j=1}^{M} \mathbb{E}_{(\widetilde{\mathbf{X}}, \widetilde{\mathbf{A}})} \left[\log \left(1 - \mathcal{D} \left(\vec{\tilde{h}}_{j}, \vec{s} \right) \right) \right] \right)$$

- Graph input
- Corrupted/Noisy graph input
- Node representation

$$\mathcal{L} = \frac{1}{N+M} \left(\sum_{i=1}^{N} \mathbb{E}_{(\mathbf{X}, \mathbf{A})} \left[\log \mathcal{D} \left(\vec{h}_{i} \mathbf{\vec{s}} \right) \right] + \sum_{j=1}^{M} \mathbb{E}_{(\widetilde{\mathbf{X}}, \widetilde{\mathbf{A}})} \left[\log \left(1 - \mathcal{D} \left(\widetilde{\vec{h}}_{j}, \vec{s} \right) \right) \right] \right)$$

- Graph input
- Corrupted/Noisy graph input
- Node representation
- Graph representation

$$\mathcal{L} = \frac{1}{N+M} \left(\sum_{i=1}^{N} \mathbb{E}_{(\mathbf{X}, \mathbf{A})} \left[\log \mathcal{D} \left(\vec{h}_{i}, \vec{s} \right) \right] + \sum_{j=1}^{M} \mathbb{E}_{(\widetilde{\mathbf{X}}, \widetilde{\mathbf{A}})} \left[\log \left(1 - \mathcal{D} \left(\widetilde{\vec{h}}_{j}, \vec{s} \right) \right) \right] \right)$$

- Graph input
- Corrupted/Noisy graph input
- Node representation
- Graph representation
- Discriminator / Binary classifier

- 1. Sample a negative example by using the corruption function: $(\widetilde{\mathbf{X}}, \widetilde{\mathbf{A}}) \sim \mathcal{C}(\mathbf{X}, \mathbf{A})$.
- 2. Obtain patch representations, \vec{h}_i for the input graph by passing it through the encoder: $\mathbf{H} = \mathcal{E}(\mathbf{X}, \mathbf{A}) = \{\vec{h}_1, \vec{h}_2, \dots, \vec{h}_N\}.$
- 3. Obtain patch representations, $\vec{\tilde{h}}_j$ for the negative example by passing it through the encoder: $\widetilde{\mathbf{H}} = \mathcal{E}(\widetilde{\mathbf{X}}, \widetilde{\mathbf{A}}) = \{\vec{\tilde{h}}_1, \vec{\tilde{h}}_2, \dots, \vec{\tilde{h}}_M\}.$
- 4. Summarize the input graph by passing its patch representations through the readout function: $\vec{s} = \mathcal{R}(\mathbf{H})$.
- 5. Update parameters of \mathcal{E} , \mathcal{R} and \mathcal{D} by applying gradient descent to maximize Equation 1.

If a huge graph is presented, sampling subgraphs is necessary

Transductive

Available data	Method	Cora	Citeseer	Pubmed
X A, Y A X, A	Raw features LP (Zhu et al., 2003) DeepWalk (Perozzi et al., 2014) DeepWalk + features	$47.9 \pm 0.4\%$ 68.0% 67.2% $70.7 \pm 0.6\%$	$49.3 \pm 0.2\%$ 45.3% 43.2% $51.4 \pm 0.5\%$	69.1 ± 0.3% 63.0% 65.3% 74.3 ± 0.9%
X, A X, A	Random-Init (ours) DGI (ours)	$69.3 \pm 1.4\%$ 82.3 $\pm 0.6\%$	$61.9 \pm 1.6\%$ 71.8 $\pm 0.7\%$	$69.6 \pm 1.9\%$ $76.8 \pm 0.6\%$
$egin{array}{c} \mathbf{X}, \mathbf{A}, \mathbf{Y} \\ \mathbf{X}, \mathbf{A}, \mathbf{Y} \end{array}$	GCN (Kipf & Welling, 2016a) Planetoid (Yang et al., 2016)	81.5% 75.7%	70.3% 64.7%	79.0% 77.2%

Inductive

Available data	Method	Reddit	PPI
\mathbf{X}	Raw features	0.585	0.422
\mathbf{A}	DeepWalk (Perozzi et al., 2014)	0.324	
\mathbf{X}, \mathbf{A}	DeepWalk + features	0.691	_
$\overline{\mathbf{X}, \mathbf{A}}$	GraphSAGE-GCN (Hamilton et al., 2017a)	0.908	0.465
\mathbf{X}, \mathbf{A}	GraphSAGE-mean (Hamilton et al., 2017a)	0.897	0.486
\mathbf{X}, \mathbf{A}	GraphSAGE-LSTM (Hamilton et al., 2017a)	0.907	0.482
\mathbf{X}, \mathbf{A}	GraphSAGE-pool (Hamilton et al., 2017a)	0.892	0.502
\mathbf{X}, \mathbf{A}	Random-Init (ours)	0.933 ± 0.001	0.626 ± 0.002
\mathbf{X}, \mathbf{A}	DGI (ours)	0.940 ± 0.001	0.638 ± 0.002
$\overline{\mathbf{X}, \mathbf{A}, \mathbf{Y}}$	FastGCN (Chen et al., 2018)	0.937	_
$\mathbf{X},\mathbf{A},\mathbf{Y}$	Avg. pooling (Zhang et al., 2018)	0.958 ± 0.001	0.969 ± 0.002

Algorithm 1 SimCLR's main learning algorithm.

```
input: batch size N, constant \tau, structure of f, g, \mathcal{T}.
for sampled minibatch \{x_k\}_{k=1}^N do
    for all k \in \{1, ..., N\} do
        draw two augmentation functions t \sim T, t' \sim T
        # the first augmentation
        \tilde{\boldsymbol{x}}_{2k-1} = t(\boldsymbol{x}_k)
       \boldsymbol{h}_{2k-1} = f(\tilde{\boldsymbol{x}}_{2k-1})
                                                                # representation
        z_{2k-1} = g(h_{2k-1})
                                                                      # projection
       # the second augmentation
        \tilde{\boldsymbol{x}}_{2k} = t'(\boldsymbol{x}_k)
       \boldsymbol{h}_{2k} = f(\tilde{\boldsymbol{x}}_{2k})
                                                                 # representation
       \boldsymbol{z}_{2k} = g(\boldsymbol{h}_{2k})
                                                                       # projection
    end for
    for all i \in \{1, ..., 2N\} and j \in \{1, ..., 2N\} do
        s_{i,j} = \boldsymbol{z}_i^{\top} \boldsymbol{z}_j / (\|\boldsymbol{z}_i\| \|\boldsymbol{z}_j\|) # pairwise similarity
    end for
   define \ell(i,j) as \ell(i,j) = -\log \frac{\exp(s_{i,j}/\tau)}{\sum_{k=1}^{2N} \mathbb{1}_{\lceil k \neq i \rceil} \exp(s_{i,k}/\tau)}
    \mathcal{L} = \frac{1}{2N} \sum_{k=1}^{N} \left[ \ell(2k-1, 2k) + \ell(2k, 2k-1) \right]
    update networks f and q to minimize \mathcal{L}
end for
return encoder network f(\cdot), and throw away g(\cdot)
```


References

- [1] Perozzi, B., Al-Rfou, R. and Skiena, S., 2014, August. Deepwalk: Online learning of social representations. In Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 701-710).
- [2] Grover, A. and Leskovec, J., 2016, August. node2vec: Scalable feature learning for networks. In Proceedings of the 22nd ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 855-864).
- [3] Veličković, P., Fedus, W., Hamilton, W.L., Liò, P., Bengio, Y. and Hjelm, R.D., 2018. Deep graph infomax. arXiv preprint arXiv:1809.10341.
- [4] Van den Oord, A., Li, Y. and Vinyals, O., 2018. Representation learning with contrastive predictive coding. arXiv e-prints, pp.arXiv-1807.
- [5] Hjelm, R.D., Fedorov, A., Lavoie-Marchildon, S., Grewal, K., Bachman, P., Trischler, A. and Bengio, Y., 2018. Learning deep representations by mutual information estimation and maximization. arXiv preprint arXiv:1808.06670.
- [6] Chen T, Kornblith S, Norouzi M, Hinton G. A simple framework for contrastive learning of visual representations. InInternational conference on machine learning 2020 Nov 21 (pp. 1597-1607). PMLR.

Questions?