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Course Scope

* Brief Intro to Deep Learning

* Geometric Deep Learning

Deep Learning Models for Sets and Sequences: Deep Sets & Transformers

Deep Learning Models for Graphs: Graph Convolution & Message Passing GNNs
Expressiveness & Generalizations of GNNs

* Unsupervised/Self-supervised Graph Representation Learning

* Probabilistic Deep Learning

* Deep Generative Models:
Auto-regressive models, GANs, VAEs, Diffusion/Score based models
* Discrete/Hybrid Latent Variable Models: RBMs, Latent Graph Models

e Stochastic Gradient Estimation



Course Scope

* Brief Intro to Deep Learning

* Geometric Deep Learning

Deep Learning Models for Sets and Sequences: Deep Sets & Transformers

Deep Learning Models for Graphs: Graph Convolution & Message Passing GNNs
Expressiveness & Generalizations of GNNs

* Unsupervised/Self-supervised Graph Representation Learning

* Probabilistic Deep Learning

* Deep Generative Models:
Auto-regressive models, GANs, VAEs, Diffusion/Score based models
* Discrete/Hybrid Latent Variable Models: RBMs, Latent Graph Models

e Stochastic Gradient Estimation



Unsupervised Graph Representation Learning

* Deep Generative Models of Graphs

Building probabilistic distributions of graphs (e.g., adjacency matrix A) and node representations X



Unsupervised Graph Representation Learning

* Deep Generative Models of Graphs

Building probabilistic distributions of graphs (e.g., adjacency matrix A) and node representations X

 In this lecture, we focus on methods that learn good node representations

Given graphs (e.g., adjacency matrix A), the goal is to learn node representations X

The learned X is useful for supervised fine-tuning, e.g., node classification
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Unsupervised / Self-Supervised Learning on Graphs

Since only data is given, we need a learning criterion:
* Likelihood (Autoregressive models) DeepWalk [1] Node2Vec[2]
* Reconstruction Loss (Auto-encoders)
« Contrastive Loss (Noise contrastive estimation, Self-supervised learning) DeepGraphlnfoMax [3]

* Min-max Loss (Generative adversarial networks) DeepGraphlnfoMax [3]
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Language Models

Model the probability of words given its context (e.g., a fixed-size window):

p(’qu+1\’wz‘, e /LU?:—K)

p(wi’{wi—ka oty Wi—1, Wi41, " 7wi—|—k})

* One can use RNNs or CNNs to construct the probability

 The model can be learned via maximum likelihood
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Skip-Gram Models

Model the probability of its context (e.g., a fixed-size window) given the word:

PHWi—k, Wi 1, Wity Wik fw;) = H p(wjlw;)
* Assumes conditional independence, 1.¢., the context 1s orderless
* The model only takes one word as input, thus being efficient

* Interpolation (context => word) vs. extrapolation (word => context)

Words -> Nodes

Can we generalize this model to graphs?
How about edges?
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Random Walks

A special Markov Chain

Starting at a node, one can randomly choose a neighboring node at a time to walk

1
Pij = T 77

N

Image Credit: https://mathematica.stackexchange.com/questions/156626/generate-random-walk-on-a-graph
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Deep Walks

Model the probability of context (random walks) given its word (vertex):
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(a) Random walk generation. (b) Representation mapping.

Image Credit: [1]



Deep Walks

Model the probability of context (random walks) given its word (vertex):

max logp({v'i—wa "y Ui—1, U441, " 7vi+’lU} | (I)(UZ))
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Deep Walks

Model the probability of context (random walks) given its word (vertex):

Algorithm 1 DEEPWALK(G, w, d, 7, t)

Input: graph G(V, E)
window size w
embedding size d
walks per vertex y
walk length ¢
Output: matrix of vertex representations ® € RIVI*¢
1: Initialization: Sample ® from Y!V!*4
2: Build a binary Tree T from V
3: for : =0 to v do
4: O = Shuffle(V)
5 for each v; € O do
6: W, = RandomW alk(G, v;,t)
7 SkipGram(®, W,,, w)
8 end for
9: end for

Image Credit: [1]



Deep Walks

Skip-Gram Algorithm

Algorithm 2 SkipGram(®, W,,,, w)

1: for each v; € W,, do

2 for each ux € Wy, [j —w : j + w| do
3: J(®) = —log Pr(ux | ®(v;))

4: d=0—ax2l

5: end for

6: end for

Image Credit: [1]



Deep Walks

Skip-Gram Algorithm

Algorithm 2 SkipGram(®, W,,,, w)

1: for each v; € W,, do
2:  for each up, € W,,[j —w:j +w] do
3: J(®) = —log Pr(ux | ®(v;))
4: d=0—ax2l
: end for
6: end for

Conditional Independence

puj w1, w1, @) = ] plurl@(v))
k#j,kENj

Image Credit: [1]



Deep Walks

Model the probability of context (random walks) given its word (vertex)

Construct probability using Softmax:

exp(w] ®(v;))

p(ur = i|®(v;)) = SV exp(wI ®(v;))

Image Credit: [1]



Deep Walks

Model the probability of context (random walks) given its word (vertex)

Construct probability using Softmax:

pluk = il (0)) = R 2(03)

SV exp(wZ®(v;))

One weight per vertex, i.e., a huge softmax on large graphs

Can we improve the efficiency?

Image Credit: [1]



Deep Walks

Hierarchical Softmax

Build a binary tree over vocabulary (the set of all vertices)

[log [V]]

plug | @) =[] »pbc|®(vy))
=1

Image Credit: [1]



Deep Walks

Multi-Label Classification (BlogCatalog)

Two-stage pipeline: 1) learn node embeddings unsupervisedly; 2) learn node classifier supervisedly

% Labeled Nodes 10% 20% 30% 40% 50% 60% 70% 80% 90%
DEEPWALK 36.00 | 38.20 | 39.60 | 40.30 | 41.00 | 41.30 | 41.50 | 41.50 | 42.00
SpectralClustering | 31.06 | 34.95 | 37.27 | 38.93 | 39.97 | 40.99 | 41.66 | 42.42 | 42.62
EdgeCluster 27.94 | 30.76 | 31.85 | 32.99 | 34.12 | 35.00 | 34.63 | 35.99 | 36.29
Micro-F1(%) | Modularity 27.35 | 30.74 | 31.77 | 32.97 | 34.09 | 36.13 | 36.08 | 37.23 | 38.18
wvRN 19.51 24.34 | 25.62 | 28.82 | 30.37 | 31.81 32.19 | 33.33 | 34.28
Majority 16.51 16.66 16.61 16.70 16.91 16.99 16.92 16.49 17.26
DEEPWALK 21.30 | 23.80 | 25.30 | 26.30 | 27.30 | 27.60 | 27.90 | 28.20 | 28.90
SpectralClustering | 19.14 | 23.57 | 25.97 | 27.46 | 28.31 | 29.46 | 30.13 | 31.38 | 31.78
EdgeCluster 16.16 | 19.16 | 20.48 | 22.00 | 23.00 | 23.64 | 23.82 | 24.61 | 24.92
Macro-F1(%) | Modularity 17.36 | 20.00 | 20.80 | 21.85 | 22.65 | 23.41 | 23.89 | 24.20 | 24.97
wvRN 6.25 10.13 11.64 14.24 15.86 17.18 17.98 18.86 19.57
Majority 2002 2.55 2.52 2.58 2.58 2.63 2.61 2.48 2.62

Image Credit: [1]
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Deep Graph InfoMax

Mutual Information between X and Y:

It quantifies the "amount of information" obtained about one random variable by observing the other
random variable

The higher the mutual information => knowing one would give you more information about the other



Deep Graph InfoMax

How to estimate Mutual Information?

MI(X,Y) = KL(p(X,Y)||p(X)p(Y))

_ p(X,Y)
_// (X,Y) 1ogp(X)p(Y)dXdY

p(Y|X)
// log )‘/ dXdY

a

Epx,v) [10%
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(C=0)=
(Y|C =1)
(Y|C =0)



Deep Graph InfoMax

How to estimate Mutual Information?
Suppose we generate Y from a mixture distribution:

d(C=1)=q(C=0) =

p(Y[X) =qY|C=1)
p(Y) =q(Y|C=0)

1
2

q(Y) = q(Y|C = 0)q(C =0) +¢(Y|C =1)q(C =1)



Deep Graph InfoMax

How to estimate Mutual Information?
Suppose we generate Y from a mixture distribution:

d(C=1)=q(C=0) =

p(Y[X) =qY|C=1)
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1
2
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How to estimate Mutual Information?

Suppose we generate Y from a mixture distribution:

p(Y[X) =qY|C=1)
p(Y) =q(Y|C=0)

q(Y) = q(Y|C = 0)q(C =0) +¢(Y|C =1)q(C =1)
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Deep Graph InfoMax

How to estimate Mutual Information?

Suppose we generate Y from a mixture distribution:

(€ =1)=q(C=0) =

p(Y[X) =qY|C=1)
p(Y) =q(Y|C=0)

q(Y) = q(Y|C = 0)q(C =0) +¢(Y|C =1)q(C =1)

Density Ratio Trick:
q(C=1]Y)q(Y)
p(Y|X) _q(Y|C=1)  “go=1 — _[¢(C=1]Y)
p(Y)  qY|O=0) ae=aul  ¢(C=0[Y)
q =

We only need samplers to train a classifier, no exact probability densities are required!

Binary Classifier!
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Minimize Binary Cross-entropy: ~ min ¥ ( g Clogq(C=1Y)+ (1 —C)log(1 —q(C = 1Y)))

q
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Deep Graph InfoMax

Given samples Y, C ~ q(Y,C) q(C=1)=q(C=0)=

We build a classifier q(C =1]Y) x fo(X,Y)

1
Minimize Binary Cross-entropy: mqin ¥ (Z Clogq(C=1Y)+ (1 —-C)log(l —q(C = 1Y)))

p(Y|X)

The optimal q is:

* Y
¢ (C=1]Y) = | p](j(;p() Optimal Bayesian Classifier!
T



Deep Graph InfoMax

p(Y|X)
The optimal q is ¢ (C=1]Y) = p(Y}z X
p(Y)

Binary Cross-entropy: Lpcr(q) = —Ecy [Clogq(C=1Y)+ (1 —C)log(1l —q(C =1|Y))]



Deep Graph InfoMax

p(Y|X)

The optimal q is q* (C — HY) p(Y}z X
p(Y)

Binary Cross-entropy: Lpcr(q) = —Ecy [Clogq(C=1Y)+ (1 —C)log(1l —q(C =1|Y))]

One can show [4] that Lpcr(q’) > —MI(X,Y)

One can also generalize this lower bound to multiple variables [4,5]



Deep Graph InfoMax

We want to learn node representations that capture global context information of the graph, 1.e.,
maximize local mutual information
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We want to learn node representations that capture global context information of the graph, 1.e.,
maximize local mutual information

| N L M S
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Deep Graph InfoMax

We want to learn node representations that capture global context information of the graph, 1.e.,
maximize local mutual information

N M
1 . .
L=t ;Zl:E(X,A) log D (1] 5)| + > Ex z llog (1 -D (h_,s))]

* Graph input
* Corrupted/Noisy graph input
* Node representation



Deep Graph InfoMax

We want to learn node representations that capture global context information of the graph, 1.e.,
maximize local mutual information

L= i - iE(x,A) log D (hi[5)| + iEoz,;o llog (1 -D (Ei ’ §>>]

i=1 j=1

* Graph input

* Corrupted/Noisy graph input
* Node representation

* Graph representation



Deep Graph InfoMax

We want to learn node representations that capture global context information of the graph, 1.e.,
maximize local mutual information

L= ﬁ i Ecx.a) [logD) 7. 5) | + i B llog (1 P @’ §>>]

i=1 j=1

* Graph input

* Corrupted/Noisy graph input

* Node representation

* Graph representation

* Discriminator / Binary classifier



Deep Graph InfoMax

e

Image Credit: [3]
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Deep Graph InfoMax

Image Credit: [3]

. Sample a negative example by using the corruption function: (X, A) ~ C(X, A).

. Obtain patch representations, l_i, for the input graph by passing it through the encoder:

H=&X,A) ={hy,hs,...,hx}.

. Obtain patch representations, R 4 for the negative example by passing it through the encoder:

H=£&X,A)={hi,ho,...,hn}.

. Summarize the input graph by passing its patch representations through the readout func-

tion: §=R(H).

. Update parameters of £, R and D by applying gradient descent to maximize Equation 1.



Deep Graph InfoMax

If a huge graph is presented, sampling subgraphs is necessary

Image Credit: [3]



Deep Graph InfoMax

Transductive
Available data Method Cora Citeseer Pubmed
X Raw features 479+ 04% 493+02% 69.1 +0.3%
AY LP (Zhu et al., 2003) 68.0% 45.3% 63.0%
A DeepWalk (Perozzi et al., 2014) 67.2% 43.2% 65.3%
X, A DeepWalk + features 70.7£0.6% 51.4+05% 74.3+0.9%
X, A Random-Init (ours) 693+14% 619+1.6% 69.6=+1.9%
X, A DGI (ours) 823+06% 71.8+0.7% 76.8+ 0.6%
X,AY GCN (Kipf & Welling, 2016a) 81.5% 70.3% 79.0%
X,AY Planetoid (Yang et al., 2016) 75.7% 64.7% 77.2%

Inductive

Available data Method Reddit PPI
X Raw features 0.585 0.422
A DeepWalk (Perozzi et al., 2014) 0.324 —
X, A DeepWalk + features 0.691 —
X, A GraphSAGE-GCN (Hamilton et al., 2017a)  0.908 0.465
X, A GraphSAGE-mean (Hamilton et al., 2017a)  0.897 0.486
X, A GraphSAGE-LSTM (Hamilton et al., 2017a) 0.907 0.482
X, A GraphSAGE-pool (Hamilton et al., 2017a) 0.892 0.502
X, A Random-Init (ours) 0.933 £ 0.001 0.626 £ 0.002
X, A DGI (ours) 0.940 + 0.001 0.638 + 0.002
X,AY FastGCN (Chen et al., 2018) 0.937 —
X,AY Avg. pooling (Zhang et al., 2018) 0.958 £ 0.001 0.969 + 0.002

Image Credit: [3]



SImMCLR

Image Credit: https://ai.googleblog.com/2020/04/advancing-self-supervised-and-semi.html
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SImMCLR

Algorithm 1 SimCLR’s main learning algorithm.

input: batch size NV, constant 7, structure of f, g, 7.
for sampled minibatch {z;}{_, do
forallk € {1,...,N} do

draw two augmentation functions t ~ 7T, t' ~T

# the first augmentation

ZTor—1 = t(xk)

hok—1 = f(Z2x-1) # representation

zok—1 = g(hax—1) # projection

# the second augmentation

Top = t’(a:k)

hor = f(Z2k) # representation

zok = g(hak) # projection
end for
foralli € {1,...,2N}andj € {1,...,2N} do

si; = 2z zi/(|zillllz]) # pairwise similarity
end for

exp(si,;j/T)
N Likzq) exp(si,k/T)

L= 1S [U(2k—1,2k) + £(2k, 2k—1)]
update networks f and g to minimize £

end for

return encoder network f(-), and throw away g(-)

define £(i,7) as £(i,j)=—log 52
k

Image Credit: [6]



(b) Crop and resize  (¢) Crop, resize (and flip) (d) Coler distort. (drop) (¢) Color distort, (jitter)

() Rotate {90°, 180°%, 270°} (£) Cutout (h) Gaussian noise (1) Gaussian blur (j) Sobel filtering

Image Credit: https://ai.googleblog.com/2020/04/advancing-self-supervised-and-semi.html
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SImMCLR
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Image Credit: https://ai.googleblog.com/2020/04/advancing-self-supervised-and-semi.html
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