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Course Scope

* Brief Intro to Deep Learning

* Geometric Deep Learning

Deep Learning Models for Sets and Sequences: Deep Sets & Transformers

Deep Learning Models for Graphs: Graph Convolution & Message Passing GNNs
Expressiveness & Generalizations of GNNs

* Unsupervised/Self-supervised Graph Representation Learning

* Probabilistic Deep Learning

* Deep Generative Models:
Auto-regressive models, GANs, VAEs, Diffusion/Score based models
* Discrete/Hybrid Latent Variable Models: RBMs, Latent Graph Models

e Stochastic Gradient Estimation
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Deep Generative Models of Graphs

Given data X € R , Maximum Likelihood is:

max  log pg(X)

Variational Auto-Encoders (VAEs)

We introduce latent variable Z € R™

po(X) = /Z pe(X, Z)dZ Intractable Integration!

= [ w(x|2)p0(2)az
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Variational Approximation

Integrating from both sides:

log pe(X) =

qs(Z|X) log (Z(Z[X)> dZ + /qqs(Z\X) log (%@) dZ
|
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Variational Approximation

Integrating from both sides:
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Variational Approximation

pQ(X72)>
lo X)=1o
1 (pe(X,Z) Q¢(Z!X)>
= log
q6(Z]X) po(Z|X)
Integrating from both sides:
logp0(X) = [ 44(Z1X) g pa(X)d2 Whyls ita lower bound?
Why is it a variational approximation?
po(X, Z) Q¢(Z!X)>
= Z|X)lo dz
[ ootz (G50
pe(X,Z)) / (%(Z\X))
= Z|X)lo dz + Z|X)lo dz
[ atzones (S5, w0l 3z

B po(X, Z)
B og (22 2) | 4+ KL (4021 (21

| |

Evidence Lower Bound (ELBO)  Kullback-Leibler Divergence
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Since true posterior Po(Z|X) is often unknown, KL term is intractable

ELBO:
E,,(z|x) [log (2:)2;";;)] =Eq,(z1x) [10g (Pe(;j(??)(@)]

= Eq,(z1x) log (pa(X|2))] + Eq, (z|x) llog (qf(eéyz))()”

= —Eg,(21x) [~ 10g (pe(X]2))] — KL (¢5(Z]X)|[pe(2))

Ve N | 1 J \ Y J

¢---t Rl 0 Reconstruction Error/Loss Regularizer

/ Encoder:  ¢4(Z|X)
@ Decoder: Po (X ‘ Z )
N

N\ y, Prior: Do (Z )




Deep Generative Models of Graphs

Graph Variational Auto-Encoders [4,5]
Node feature: X € R»x4
Node latent variables: 7 € RXm

Adjacency matrix: A e R""
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Graph Variational Auto-Encoders [4,5]

Encoder: 94(Z| X, A) = H q4(Zi| X, A)

46 (Zi| X, A) = N(Zilpi, o7 1)
H = GNN4 (X, A)
11i,1og o7 = Readouty(H)

Prior: p(Z) = HP(ZL‘) — HN(Z'L'K)» I)
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Graph Variational Auto-Encoders [4,5]

Decoder: po(X, A|Z) = po(A|Z)pe(X|A, Z)
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Graph Variational Auto-Encoders [4,5]

Decoder: po(X, A|Z) = po(A|Z)pe(X|A, Z)

Adjacency Matrix Decoder: po(A|Z) H H po(A ] 1Z)

H = MLP(Z)
po(Aij = 1|Z;,Z;) = o(H, H;)
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Graph Variational Auto-Encoders [4,5]

Decoder:

Adjacency Matrix Decoder:

Node Feature Decoder:

po(X, A|Z) = pa(A|Z)pe(X|A, Z)
po(A|Z) = HHpg Aij|2)
H:MLP(Z)

po(Aij = 11Z;, Z;) = o(H,' H)

Hpe

po(XilA, Z) = N(X;lfui, 57 1)
H = GNNy(Z, A)
fi;,log 2 = Readouty(H)

po(X|A, Z) A, 2)
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Graph Variational Auto-Encoders [4,5]
Learning:
logpe(X,A) > ELBO
= —Eq,(z/4,x) [—log (pa(X, A|Z))] — KL (q4(Z| X, A)||pe(Z))
Are we done?

No! We hope ELBO is permutation invariant!

max log <Z po(PX, PAPT)>

0
Pell
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Graph Variational Auto-Encoders [4,5]
How to approximately achieve permutation-invariant ELBO?

* Sample a few random permutations
(e.g., importance sampling, special permutations from domain knowledge)
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Graph Variational Auto-Encoders [4,5]
How to approximately achieve permutation-invariant ELBO?

* Sample a few random permutations
(e.g., importance sampling, special permutations from domain knowledge)

log (Z po(PX, PAPT)> > log (Z po(PX, PAPT)>

Pell pesS

— lOg (Z exp (logpg(PX, PAPT))>

pecS

> log (Z exp (ELBO))

pPesS



Deep Generative Models of Graphs

Graph Variational Auto-Encoders [4,5]
More generalizations:
» Hierarchical encoder and decoder [6]

* Normalizing Flow based prior [7]
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Generative Adversarial Networks (GANs) [3]
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Random
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Image Credit: https://sthalles.github.io/intro-to-gans/
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Deep Generative Models of Graphs

Generative Adversarial Networks (GANs) [3]

Training set V Discriminator

1

Random i/ > — {Fa ke

noise LB

| NS
Generator —/ /Fake image

Learning: m@in mgx EXdiata(X) [10g Dy (X)] + IEj'vap(Z) [1Og(1 — qu(G@ (Z))]

Image Credit: https://sthalles.github.io/intro-to-gans/
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Generative Adversarial Networks (GANs) [3]

1. Fix generator, the optimal discriminator is D (X) =
© P o(X) Pdata(X) + pa, (X)

Why?

UGy, Dy) = Exmpgua(x)108 Dp(X)] + Ezopz)[log(l — Dy(Go(2))]
= E X~ paaia () 108 D (X)] + Ex pg, (x)10g(1 — Dy (X))]
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Generative Adversarial Networks (GANs) [3]

1. Fix generator, the optimal discriminator is D (X) =
© P o(X) Pdata(X) + pa, (X)

Why?

UGo, Dy) = Expyaa(x)l0g D (X)] + Ezopz)llog(l — Dy(Go(2))] |
Law Of The Unconscious
= ExX piaea () [108 Dy (X)] + Ex pe, (x)[log(1 — D (X))] Statistician (LOTUS)

— [ PaatalX) 108 Dy(X) + i, (X) og(1 — Do(X))dX

Set the gradient of loss w.r.t. D to be zero
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Generative Adversarial Networks (GANs) [3]

C(Gg) =max {(Gp,Dy)

D

— EXdiata(X)

— EXdiata(X)

log D;;(X)] + Exmpe, (X) log(1 — D;;(X)):

pdata<X>

log (
| Pdata

(X) +pG9(X)>] T Exope, (x)

PGy (X)

log (
i pdata(

X) ‘|’pG9(X>

)
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Generative Adversarial Networks (GANs) [3]

C(Gg) =max {(Gp,Dy)

D

— EXdiata(X)

— EXdiata(X)

log D3(X)]| + Expe, (x) log(l — D(X))]
[ pdata(X> )]

lo + Ex

8 (pdata(X)  pey (X) Xpeo (X)

2. The global minimum of C'(Gy) is achieved iff. Pdata(X) = pag, (X)

Why?

PGy (X)

log (
i pdata(

X) ‘|’pG9(X>

)
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Generative Adversarial Networks (GANs) [3]

C(Gg) =max {(Gp,Dy)

D

— EXdiata(X)

— EXdiata(X)

log (

log D;;(X)] + Exmpe, (X) log(1 — D;;(X)):

pdata(X> )] 4 EX ¥
Paata(X) + pa, (X) ~PGe (X)

2. The global minimum of C'(Gy) is achieved iff. Pdata(X) = pag, (X)

Why? C(Ge) — EXdiata(X) [log (

(Pdata(X) +pg,(X))/2
PGy (X)

log (

Pdata(X) )]

PGy (X)

pdata(X> + PGy (X>

1
t Exrpe, 0 llog (<pdata<x> +re, <X>>/2>] +2los(y)
— ISD(paaea(X) 06, (X)) — log(4)

)
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Generative Adversarial Networks (GANs) [3]

2. The global minimum of C(Gp) is achieved iff. Pdata (X) = pa, (X)

C(Go) = Exrpyaa(X) [10% ((pdata(ﬁatf if;z (X))/ 2)]

B, 98 (G e ) 2

= JSD(paata(X)|[pa, (X)) — log(4)

Why?

Jensen—Shannon divergence is non-negative and is zero iff. P=Q

ISD(PYQ) = SKL(P| 1

Q

)

) + S KL
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Generative Adversarial Networks (GANs) [3]

Samples from generator during training on SVHNs (left) and MNIST (right)

Image Credit: https://sthalles.github.io/intro-to-gans/
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MoIGAN [8]
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Image Credit: [8]
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MoIGAN [8]

Generator

A~ g;
z ~p(z)

Image Credit: [8]
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Deep Generative Models of Graphs

MOolGAN [8]
Learning objective

GAN: min max Ex ~paaia(x) 108 Dg(X)] + Ezp(2)[log(1 — Dg(Go(Z))]
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MolGAN [8]
Learning objective
GAN: minmax  Exp,,..cx)l0g Ds(X)] + Ezpz)[log(l = Dy (Go(2))]

Wasserstein distance (using Kantorovich-Rubinstein duality)

D(pllq) = S Ex~plf(X)] = Exglf(X)]

Wasserstein-GAN [9]:

minmax  Expy,.. (0 [De(X)] = Expg, () [Do (X))
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