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Course Scope

* Brief Intro to Deep Learning

* Geometric Deep Learning

Deep Learning Models for Sets and Sequences: Deep Sets & Transformers

Deep Learning Models for Graphs: Graph Convolution & Message Passing GNNs
Expressiveness & Generalizations of GNNs

* Unsupervised/Self-supervised Graph Representation Learning

* Probabilistic Deep Learning

* Deep Generative Models:
Auto-regressive models, GANs, VAEs, Diffusion/Score based models
* Discrete/Hybrid Latent Variable Models: RBMs, Latent Graph Models

e Stochastic Gradient Estimation
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Neural Relational Inference

Suppose we observe dynamics of particles, we are interested in inferring the latent interaction graph
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Neural Relational Inference

Suppose we observe dynamics of particles, we are interested in inferring the latent interaction graph

It arises in dynamic systems from physics, biology, sports, transportation, etc.
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Neural Relational Inference
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Neural Relational Inference

Let us formalize the problem: |
We have N particles (nodes) V = {vy,...,un} ..°'.
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For any pair of node (vi,v;) , we introduce Observed dynamics

a discrete latent variable z;; to model interaction
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Neural Relational Inference
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Let us formalize the problem:
We have N particles (nodes) V = {vy,...,un} ..°'.
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For any pair of node (vi,v;) , we introduce Observed dynamics

a discrete latent variable z;; to model interaction

Our goal is to infer the set of all latent variables , which forms the latent graph!
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Neural Relational Inference

We use VAEs as the probabilistic framework

« Encoder q4(z|x)
* Decoder po(x|2)
e Prior p(z)

* Learning the model by maximizing the ELBO

£ = By, (apoylog 1o (x]2)] — KLigg(2])]1ps (2)]



Neural Relational Inference

Image Credit: [1]

We use VAEs as the probabilistic framework

(Legend: [B: Node emb. [[l: Edge emb. —:MLP fl..,: Concrete distribution --+: Sampling )
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Neural Relational Inference

Encoder: A GNN applied to a fully connected graph e (z|x) = H e (Zij|x)
]

(Legend: [B: Node emb. [[l: Edge emb. —:MLP fl..,: Concrete distribution --+: Sampling )
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Neural Relational Inference

Encoder: A GNN applied to a fully connected graph

= H q¢(Zij|x)

(Legend: [B: Node emb. [[l: Edge emb. —:MLP fl..,: Concrete distribution --+: Sampling )
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h(; ;) = f2([hi, b))

Decoder

Readout 44 (%ij|x) = SOftmaX(h?i,j))



Neural Relational Inference

Decoder: A GNN applied to the sampled graph po(x|z) = [1—, po(x'T1|xt, ..., x", z)

(Legend: [B: Node emb. [[l: Edge emb. —:MLP fl..,: Concrete distribution --+: Sampling )
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Neural Relational Inference

Decoder: A GNN applied to the sampled graph po(x|z) = [1—, po(x'T1|xt, ..., x", z)

(Legend: [B: Node emb. [[l: Edge emb. —:MLP fl..,: Concrete distribution --+: Sampling )
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Neural Relational Inference

Decoder: A GNN applied to the sampled graph po(x|z) = [1—, po(x'T1|xt, ..., x", z)

(Legend: [B: Node emb. [[l: Edge emb. —:MLP fl..,: Concrete distribution --+: Sampling )
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Neural Relational Inference

Decoder: A GNN applied to the sampled graph po(x|z) = [1—, po(x'T1|xt, ..., x", z)

(Legend: [B: Node emb. [[l: Edge emb. —:MLP fl..,: Concrete distribution --+: Sampling )
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Neural Relational Inference

Image Credit: [1]

Prior: Independent uniform distributions over edge types po(z) = H po(Zi;)
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Neural Relational Inference

Image Credit: [1]

Learning VAE

(Legend: [B: Node emb. [[l: Edge emb. —:MLP fl..,: Concrete distribution --+: Sampling )
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Neural Relational Inference

Learning VAE

(Legend: [B: Node emb. [[l: Edge emb. —:MLP fl..,: Concrete distribution --+: Sampling )
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* Score function estimator (REINFORCE)

* Gumbel-Softmax / Concrete (Relaxation + Reparameterization)
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Neural Relational Inference

Learning VAE

(Legend: [B: Node emb. [[l: Edge emb. —:MLP fl..,: Concrete distribution --+: Sampling )
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Neural Relational Inference

Predicting the walking motion
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Neural Relational Inference

Learned latent graphs

Right hand focus Left hand focus

Image Credit: [1]
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Suppose we are given a single graph and want to perform (transductive) node classification
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* Transductive vs. Inductive

Transductive: reasoning from observed, specific (training) cases to specific (test) cases

Inductive: reasoning from observed training cases to general rules, which are then applied to the test cases
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Suppose we are given a single graph and want to perform (transductive) node classification
* Transductive vs. Inductive

Transductive: reasoning from observed, specific (training) cases to specific (test) cases

Inductive: reasoning from observed training cases to general rules, which are then applied to the test cases
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Learning Discrete Structures for GNNs

Suppose we are given a single graph and want to perform (transductive) node classification
Suppose the graph is incomplete or even completely missing
Can we learn a latent graph and then apply GNNs?

One can formulate a bi-level optimization problem [2]:

mjn Z U fuwr (X, A)0, Yo) Outer level/loop
'UE‘/Val
s.t. wy —Ergmin Z U(fuw(X, A)y,yy) + Q(w) ] Inner level/loop
v UEVI‘rain

W A 1is a function (parameterized by the optimization algorithm) of A !
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Learning Discrete Structures for GNNs

One can formulate a bi-level optimization problem [2]:

min Z U(fuwa (X, A)v, yo)

A
vE Vyal
s.t. w4 = argmin Z U fuw( X, A)y,yy) + Q(w)

v VE Virain
This problem is a hard mixed-integer programming problem!

We can relax it (introducing edge-independent Bernoulli distribution):

min EANBer(Q) Z g(fwA (X7 A)va yv)

0
’UE‘/Val

We can unroll SGD for a few steps!

s.t.  wp = argmin [E4per(s) Z U fuw(X, A)y, Yp) + Q(w)

w
veE VI‘rain




Learning Discrete Structures for GNNs

Denoting the outer objective as F(w,A) = Z U(fuw(X, Ay, ys)
vEVya1
Denoting the inner objective as L(w, A) Z U(fuw(X, Ay, yy) + Q2(w)

VE VIrain
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Learning Discrete Structures for GNNs

Denoting the outer objective as F(w,A) = Z U(fuw(X, Ay, ys)
UE‘/Val

Denoting the inner objective as L(w, A) Z U(fuw(X, Ay, yy) + Q2(w)
UE-VTI‘aln

The bi-level optimization is simplified as
min - K4 per(o) [F'(wa, A)]
s.t. wp = argmin K4 per(o) [L(w, A)]
w

For Inner optimization, we unroll SGD as Wwe t+1 — Wt — Vt VL<w9,t> At)
The (hyper) gradient is
8F(wQ,T, A) 8w9,T I 8F(w9,T, A) 0A
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Learning Discrete Structures for GNNs

The (hyper) gradient is
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The (hyper) gradient is
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A is discrete samples drawn from edge-independent Bernoulli distribution

Since it 1s non-differentiable, we use straight-through estimator [2]



Learning Discrete Structures for GNNs

The (hyper) gradient is

VGEANBer(G) [F(wQ,Ta A)] — EANBer(Q)

8F(w9,T, A) 8w9,T i

OF (w1, A 0A

A 1s discrete samples drawn from edge-independent Bernoulli distribution

Since it 1s non-differentiable, we use straight-through estimator [2]
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Learning Discrete Structures for GNNs

Transductive Classification:

Wine Cancer Digits Citeseer Cora 20news FMA
LogReg 92.1(1.3) 933(0.5) 855(1.5 622(0.0) 60.8(0.0) 42.7(1.7) 37.3(0.7)
Linear SVM 939 (1.6) 90.6(45) 87.1(1.8) 58.3(0.0) 589(0.0) 403(1.4) 35.7(1.5)
RBF SVM 94129 91.73.1) 869@3.2) 602(0.0) 59.70.0) 41.0(1.1) 38.3(1.0)
RF 93.7(1.6) 921 (1.7) 83.1(2.6) 60.7(0.7) 58.7(0.4) 40.0(1.1) 37.9(0.6)
FFNN 89.7(1.9) 929(1.2) 363(10.3) 56.7(1.7) 56.1(1.6) 38.6(1.4) 33.2(1.3)
LP 89.8(3.7) 76.6(0.5) 91.9@3.1) 232(6.7) 37.8(0.2) 353(0.9 14.1(2.1)
ManiReg 90.5(0.1) &81.8(0.1) 839(0.1) 67.7(1.6) 62.3(09) 46.6(1.5) 34.2(1.1)
SemiEmb 919(.1) 89.7(0.1) 9090.1) 68.1(0.1) 63.1(0.1) 46.90.1) 34.1(1.9)
Sparse-GCN 63.5(6.6) 72529 13415 33.1(09 306@R2.1) 247@1.2) 23414
Dense-GCN 90.6 (2.8) 90.52.77 356(21.8) 584(1.1) 59.1(0.6) 40.1(1.5) 34.5(0.9)
RBF-GCN 906 (2.3) 92.6(2.2) 70.8(5.5) 581(1.2) 57.1(19) 393(14) 33.7(14)
kENN-GCN 93.2(3.1) 938(14) 91.3(00.5) 683(1.3) 66504 41.3(0.6) 37.8(0.9)
ENN-LDS (dense) 97.5(1.2) 949@0.5) 9210.79 709@1.3) 7091.1) 45.6(2.2) 38.6(0.6)
ENN-LDS 97.3(04) 94419 9250.79 71.5@1.1) 715(0.8) 46.4(1.6) 39.7(14)
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Use Edge-Independent Categorical and Gumbel-Softmax to learn latent graphs



Conclusions

Summary:
* Neural Relational Inference
Amortized inference, thus being applicable to inductive and transductive setting
Use Edge-Independent Categorical and Gumbel-Softmax to learn latent graphs
* Learning Latent Graphs via Bi-level Optimization
Learn a single latent graph, thus being inapplicable to inductive setting

Use Edge-Independent Bernoulli and Straight-Through to learn latent graphs



Open Questions

« (Can we use more expressive generative models over graphs? E.g., deep auto-regressive models?

* For bi-level optimization, it may be beneficial to run inner SGD until convergence. Can we still
efficiently learn the latent graph in this case?

Yes, Implicit Differentiation [3, 4]!
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