EECE 571F: Deep Learning with Structures

Lecture 12: Learning Latent Graph Structures

Renjie Liao

University of British Columbia Winter, Term 1, 2022

Course Scope

- Brief Intro to Deep Learning
- Geometric Deep Learning
 - Deep Learning Models for Sets and Sequences: Deep Sets & Transformers
 - Deep Learning Models for Graphs: Graph Convolution & Message Passing GNNs
 - Expressiveness & Generalizations of GNNs
 - Unsupervised/Self-supervised Graph Representation Learning
- Probabilistic Deep Learning
 - Deep Generative Models: Auto-regressive models, GANs, VAEs, Diffusion/Score based models
 - Discrete/Hybrid Latent Variable Models: RBMs, Latent Graph Models
 - Stochastic Gradient Estimation

Course Scope

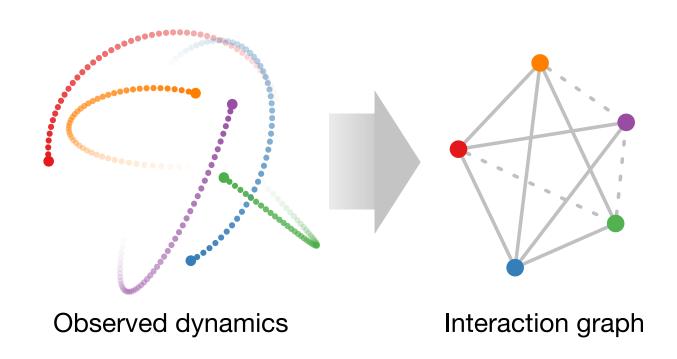
- Brief Intro to Deep Learning
- Geometric Deep Learning
 - Deep Learning Models for Sets and Sequences: Deep Sets & Transformers
 - Deep Learning Models for Graphs: Graph Convolution & Message Passing GNNs
 - Expressiveness & Generalizations of GNNs
 - Unsupervised/Self-supervised Graph Representation Learning
- Probabilistic Deep Learning
 - Deep Generative Models: Auto-regressive models, GANs, VAEs, Diffusion/Score based models
 - Discrete/Hybrid Latent Variable Models: RBMs, Latent Graph Models
 - Stochastic Gradient Estimation

Contents

Learning Latent Graphs for Deep Probabilistic Models

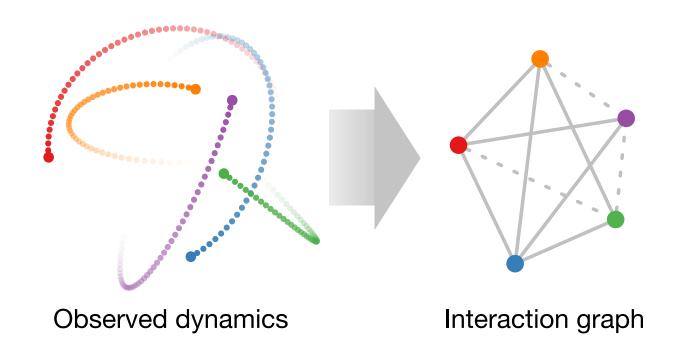
- Neural Relational Inference
- Learning Latent Graphs via Bi-level Optimization

Suppose we observe dynamics of particles, we are interested in inferring the latent interaction graph



Suppose we observe dynamics of particles, we are interested in inferring the latent interaction graph.

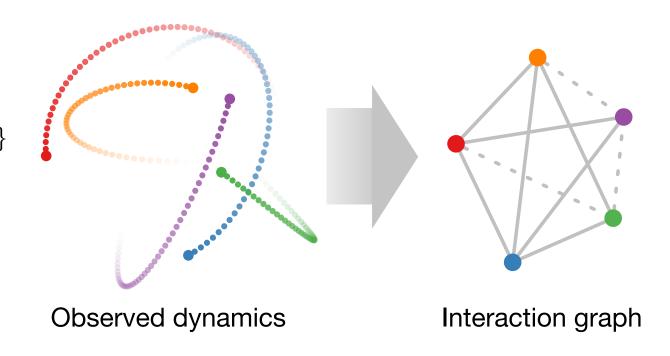
It arises in dynamic systems from physics, biology, sports, transportation, etc.



Let us formalize the problem:

We have N particles (nodes) $\mathcal{V} = \{v_1, ..., v_N\}$

At time t, the feature is $\mathbf{x}^t = \{\mathbf{x}_1^t, ..., \mathbf{x}_N^t\}$



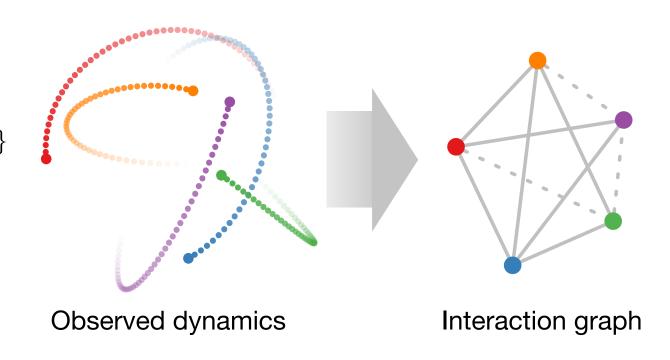
Let us formalize the problem:

We have N particles (nodes) $\mathcal{V} = \{v_1, ..., v_N\}$

At time t, the feature is $\mathbf{x}^t = \{\mathbf{x}_1^t, ..., \mathbf{x}_N^t\}$

For all nodes, we have N trajectories

$$\mathbf{x} = (\mathbf{x}^1, ..., \mathbf{x}^T)$$



Let us formalize the problem:

We have N particles (nodes) $\mathcal{V} = \{v_1, ..., v_N\}$

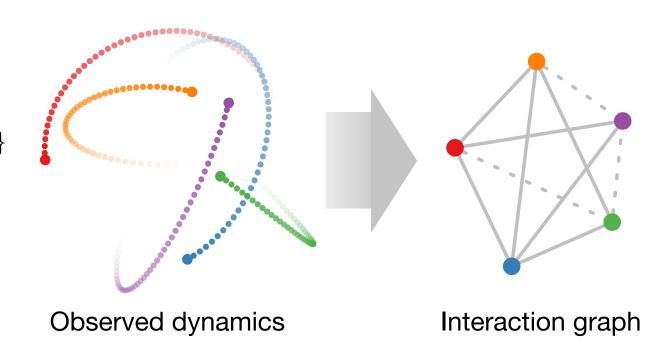
At time t, the feature is $\mathbf{x}^t = \{\mathbf{x}_1^t, ..., \mathbf{x}_N^t\}$

For all nodes, we have N trajectories

$$\mathbf{x} = (\mathbf{x}^1, ..., \mathbf{x}^T)$$

For any pair of node (v_i, v_j) , we introduce

a discrete latent variable \mathbf{z}_{ij} to model interaction



Let us formalize the problem:

We have N particles (nodes) $\mathcal{V} = \{v_1, ..., v_N\}$

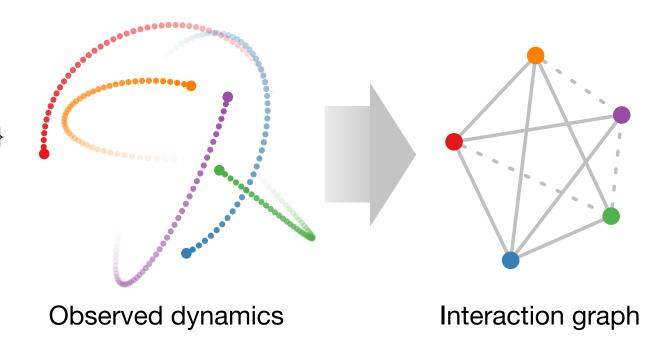
At time t, the feature is $\mathbf{x}^t = \{\mathbf{x}_1^t, ..., \mathbf{x}_N^t\}$

For all nodes, we have N trajectories

$$\mathbf{x} = (\mathbf{x}^1, ..., \mathbf{x}^T)$$

For any pair of node (v_i, v_j) , we introduce

a discrete latent variable \mathbf{z}_{ij} to model interaction



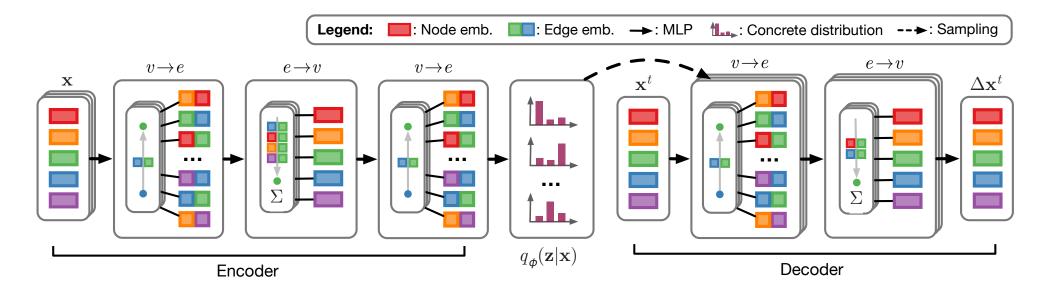
Our goal is to infer the set of all latent variables, which forms the latent graph!

• Encoder
$$q_{\phi}(\mathbf{z}|\mathbf{x})$$

- Decoder $p_{\theta}(\mathbf{x}|\mathbf{z})$
- Prior $p(\mathbf{z})$

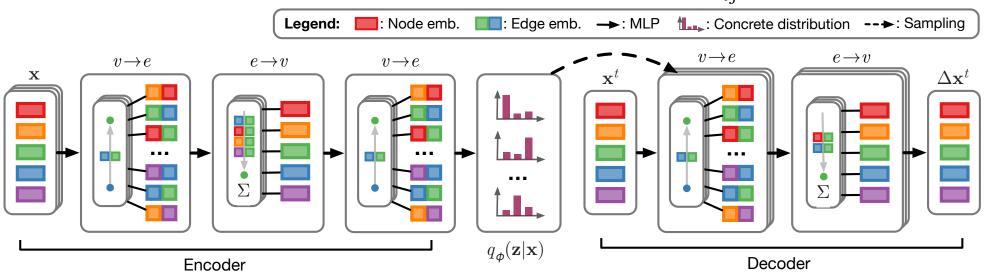
- Encoder $q_{\phi}(\mathbf{z}|\mathbf{x})$
- Decoder $p_{\theta}(\mathbf{x}|\mathbf{z})$
- Prior $p(\mathbf{z})$
- Learning the model by maximizing the ELBO

$$\mathcal{L} = \mathbb{E}_{q_{\phi}(\mathbf{z}|\mathbf{x})}[\log p_{\theta}(\mathbf{x}|\mathbf{z})] - \text{KL}[q_{\phi}(\mathbf{z}|\mathbf{x})||p_{\theta}(\mathbf{z})]$$



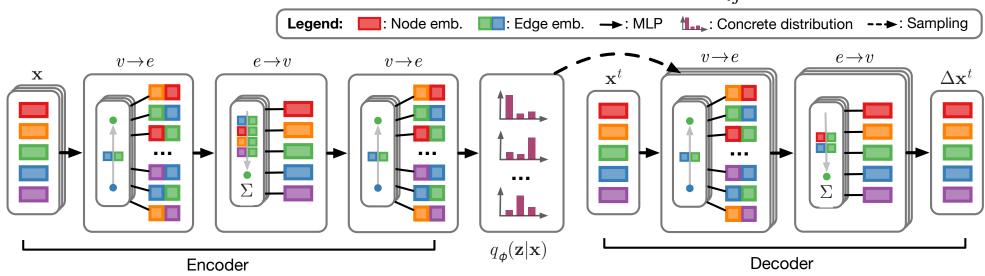
Encoder: A GNN applied to a fully connected graph

$$q_{\phi}(\mathbf{z}|\mathbf{x}) = \prod_{ij} q_{\phi}(\mathbf{z}_{ij}|\mathbf{x})$$



Encoder: A GNN applied to a fully connected graph

$$q_{\phi}(\mathbf{z}|\mathbf{x}) = \prod_{ij} q_{\phi}(\mathbf{z}_{ij}|\mathbf{x})$$



$$\mathbf{h}_j^1 = f_{\text{emb}}(\mathbf{x}_j)$$

Node to Edge $v{
ightarrow}e:$ $\mathbf{h}^1_{(i,j)}=f^1_e([\mathbf{h}^1_i,\mathbf{h}^1_j])$

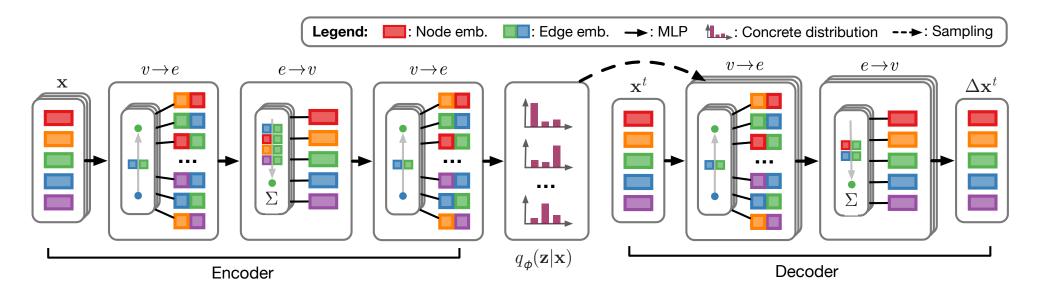
Edge to Node $e \rightarrow v$: $\mathbf{h}_{j}^{2} = f_{v}^{1}(\sum_{i \neq j} \mathbf{h}_{(i,j)}^{1})$

Node to Edge $v{
ightarrow}e: \mathbf{h}_{(i,j)}^2 = f_e^2([\mathbf{h}_i^2,\mathbf{h}_j^2])$

Readout $q_{\phi}(\mathbf{z}_{ij}|\mathbf{x}) = \operatorname{softmax}(\mathbf{h}_{(i,j)}^2)$

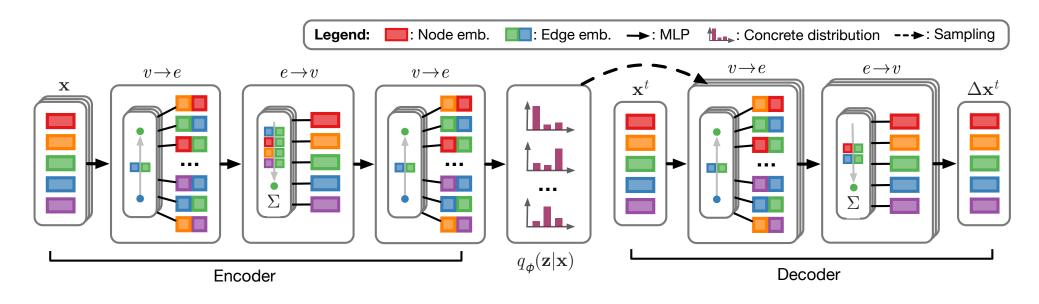
Decoder: A GNN applied to the sampled graph

$$p_{\theta}(\mathbf{x}|\mathbf{z}) = \prod_{t=1}^{T} p_{\theta}(\mathbf{x}^{t+1}|\mathbf{x}^{t}, ..., \mathbf{x}^{1}, \mathbf{z})$$



Decoder: A GNN applied to the sampled graph

$$p_{\theta}(\mathbf{x}|\mathbf{z}) = \prod_{t=1}^{T} p_{\theta}(\mathbf{x}^{t+1}|\mathbf{x}^{t}, ..., \mathbf{x}^{1}, \mathbf{z})$$



Option I: Markovian

$$p_{\theta}(\mathbf{x}^{t+1}|\mathbf{x}^t,...,\mathbf{x}^1,\mathbf{z}) = p_{\theta}(\mathbf{x}^{t+1}|\mathbf{x}^t,\mathbf{z})$$

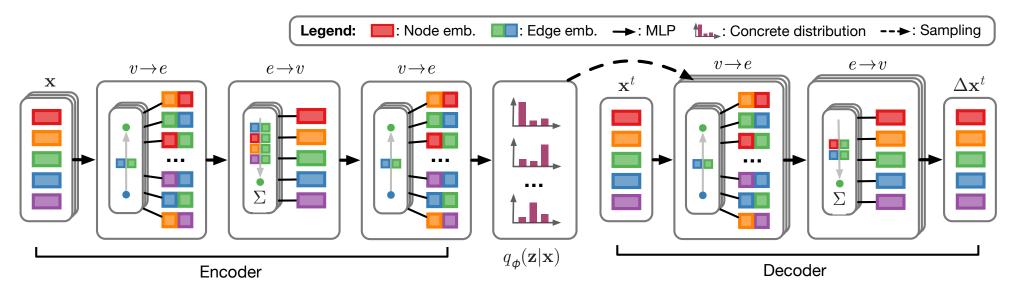
Node to Edge
$$v \rightarrow e: \quad \tilde{\mathbf{h}}_{(i,j)}^t = \sum_k z_{ij,k} \tilde{f}_e^k([\mathbf{x}_i^t, \mathbf{x}_j^t])$$

Edge to Node
$$e \rightarrow v$$
: $\boldsymbol{\mu}_j^{t+1} = \mathbf{x}_j^t + \tilde{f}_v(\sum_{i \neq j} \tilde{\mathbf{h}}_{(i,j)}^t)$

$$p(\mathbf{x}_j^{t+1} | \mathbf{x}^t, \mathbf{z}) = \mathcal{N}(\boldsymbol{\mu}_j^{t+1}, \sigma^2 \mathbf{I})$$

Decoder: A GNN applied to the sampled graph

$$p_{\theta}(\mathbf{x}|\mathbf{z}) = \prod_{t=1}^{T} p_{\theta}(\mathbf{x}^{t+1}|\mathbf{x}^{t}, ..., \mathbf{x}^{1}, \mathbf{z})$$



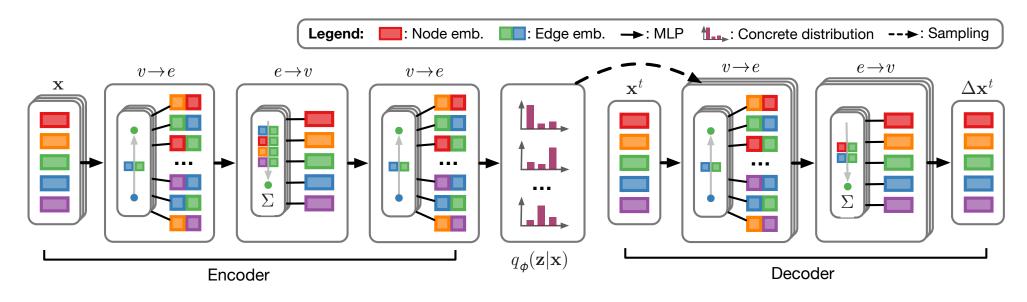
Option II: Auto-Regressive

Node to Edge
$$v \rightarrow e: \tilde{\mathbf{h}}_{(i,j)}^t = \sum_k z_{ij,k} \tilde{f}_e^k([\tilde{\mathbf{h}}_i^t, \tilde{\mathbf{h}}_j^t])$$

Edge to Node $e \rightarrow v: \mathrm{MSG}_j^t = \sum_{i \neq j} \tilde{\mathbf{h}}_{(i,j)}^t$
 $\tilde{\mathbf{h}}_j^{t+1} = \mathrm{GRU}([\mathrm{MSG}_j^t, \mathbf{x}_j^t], \tilde{\mathbf{h}}_j^t)$
 $\boldsymbol{\mu}_j^{t+1} = \mathbf{x}_j^t + f_{\mathrm{out}}(\tilde{\mathbf{h}}_j^{t+1})$
 $p(\mathbf{x}^{t+1}|\mathbf{x}^t, ..., \mathbf{x}^1, \mathbf{z}) = \mathcal{N}(\boldsymbol{\mu}^{t+1}, \sigma^2 \mathbf{I})$

Decoder: A GNN applied to the sampled graph

$$p_{\theta}(\mathbf{x}|\mathbf{z}) = \prod_{t=1}^{T} p_{\theta}(\mathbf{x}^{t+1}|\mathbf{x}^{t},...,\mathbf{x}^{1},\mathbf{z})$$



Option II: Auto-Regressive

To avoid degenerated decoder:

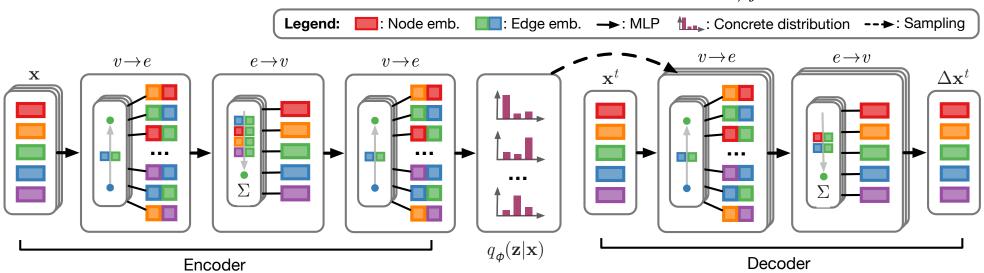
- One message network per edge type
- Predict multiple futures

Node to Edge
$$v \rightarrow e: \tilde{\mathbf{h}}_{(i,j)}^t = \sum_k z_{ij,k} \tilde{f}_e^k([\tilde{\mathbf{h}}_i^t, \tilde{\mathbf{h}}_j^t])$$

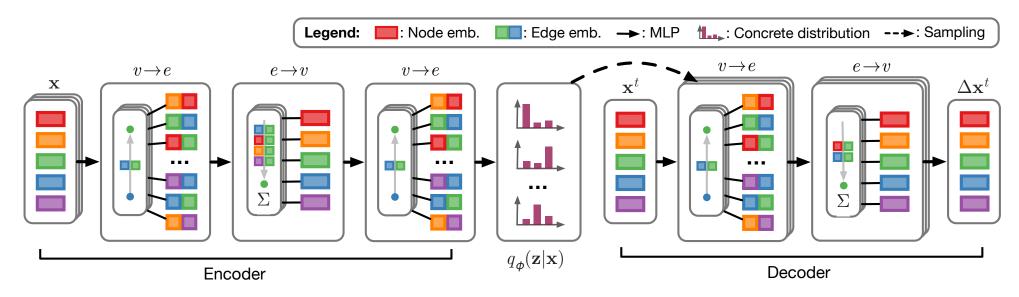
Edge to Node $e \rightarrow v: \mathrm{MSG}_j^t = \sum_{i \neq j} \tilde{\mathbf{h}}_{(i,j)}^t$
 $\tilde{\mathbf{h}}_j^{t+1} = \mathrm{GRU}([\mathrm{MSG}_j^t, \mathbf{x}_j^t], \tilde{\mathbf{h}}_j^t)$
 $\boldsymbol{\mu}_j^{t+1} = \mathbf{x}_j^t + f_{\mathrm{out}}(\tilde{\mathbf{h}}_j^{t+1})$
 $p(\mathbf{x}^{t+1}|\mathbf{x}^t, ..., \mathbf{x}^1, \mathbf{z}) = \mathcal{N}(\boldsymbol{\mu}^{t+1}, \sigma^2 \mathbf{I})$

Prior: Independent uniform distributions over edge types

$$p_{\theta}(\mathbf{z}) = \prod_{i \neq j} p_{\theta}(\mathbf{z}_{ij})$$

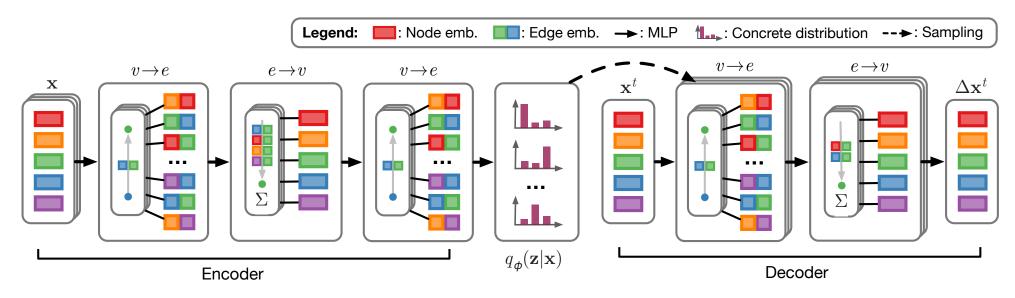


Learning VAE



Sampling discrete latent variables

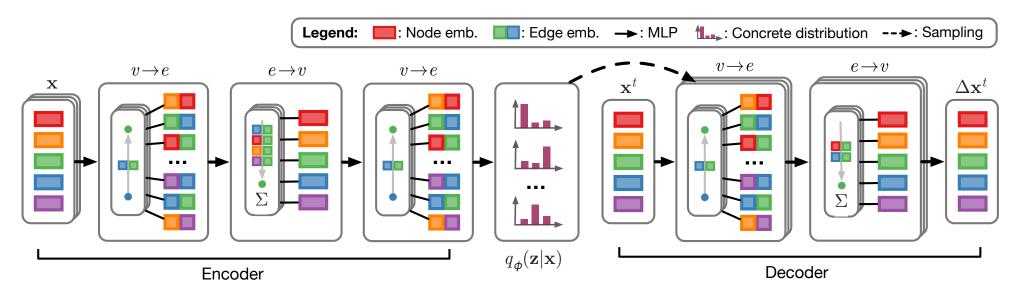
Learning VAE



Sampling discrete latent variables

- Score function estimator (REINFORCE)
- Gumbel-Softmax / Concrete (Relaxation + Reparameterization)

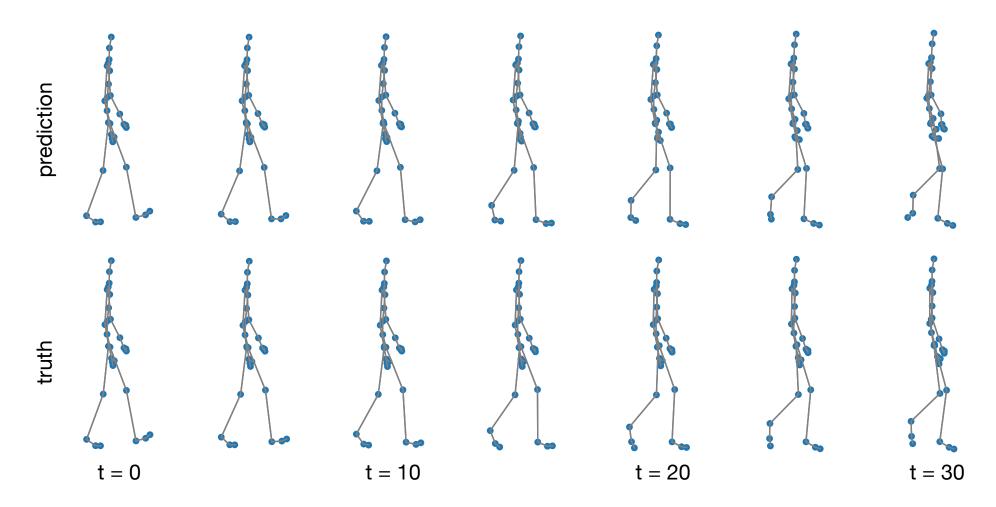
Learning VAE



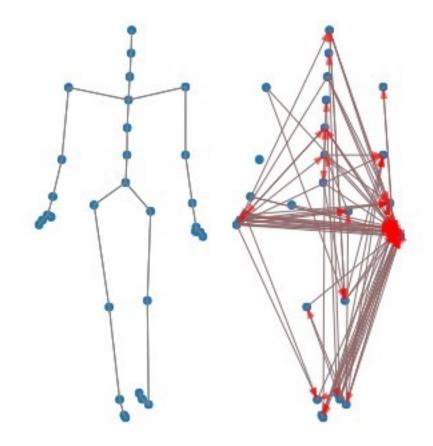
Sampling discrete latent variables

- Score function estimator (REINFORCE)
- Gumbel-Softmax / Concrete (Relaxation + Reparameterization)

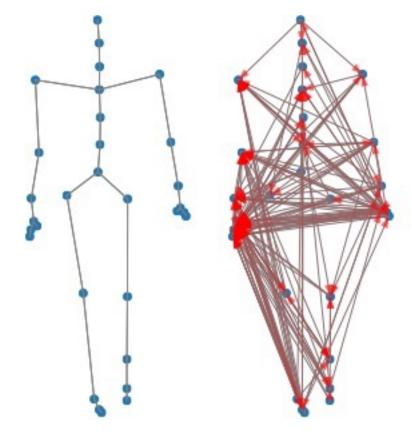
Predicting the walking motion



Learned latent graphs



Right hand focus



Left hand focus

Suppose we are given a single graph and want to perform (transductive) node classification

Suppose we are given a single graph and want to perform (transductive) node classification

• Transductive vs. Inductive

Transductive: reasoning from observed, specific (training) cases to specific (test) cases

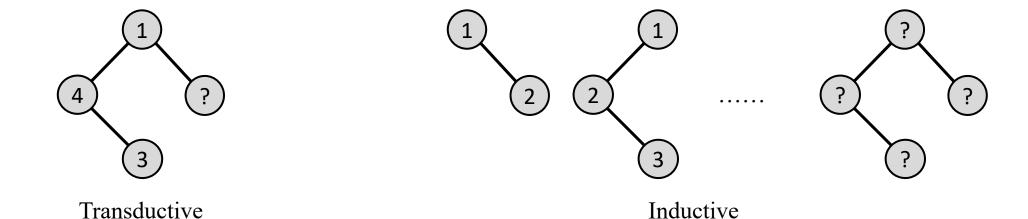
Inductive: reasoning from observed training cases to general rules, which are then applied to the test cases

Suppose we are given a single graph and want to perform (transductive) node classification

Transductive vs. Inductive

Transductive: reasoning from observed, specific (training) cases to specific (test) cases

Inductive: reasoning from observed training cases to general rules, which are then applied to the test cases



Suppose we are given a single graph and want to perform (transductive) node classification

Suppose the graph is incomplete or even completely missing

Suppose we are given a single graph and want to perform (transductive) node classification

Suppose the graph is incomplete or even completely missing

Can we learn a latent graph and then apply GNNs?

Suppose we are given a single graph and want to perform (transductive) node classification

Suppose the graph is incomplete or even completely missing

Can we learn a latent graph and then apply GNNs?

One can formulate a bi-level optimization problem [2]:

$$\min_{A} \sum_{v \in V_{\text{Val}}} \ell(f_{w_A}(X, A)_v, y_v)$$
s.t.
$$w_A = \underset{w}{\operatorname{arg\,min}} \sum_{v \in V_{\text{Train}}} \ell(f_w(X, A)_v, y_v) + \Omega(w)$$

Suppose we are given a single graph and want to perform (transductive) node classification

Suppose the graph is incomplete or even completely missing

Can we learn a latent graph and then apply GNNs?

One can formulate a bi-level optimization problem [2]:

$$\min_{A} \quad \sum_{v \in V_{\mathtt{Val}}} \ell(f_{w_A}(X, A)_v, y_v) \qquad \qquad \text{Outer level/loop}$$
 s.t.
$$w_A = \operatorname*{arg\,min}_{w} \quad \sum_{v \in V_{\mathtt{Train}}} \ell(f_w(X, A)_v, y_v) + \Omega(w)$$

Suppose we are given a single graph and want to perform (transductive) node classification

Suppose the graph is incomplete or even completely missing

Can we learn a latent graph and then apply GNNs?

One can formulate a bi-level optimization problem [2]:

$$\min_{A} \quad \sum_{v \in V_{\mathtt{Val}}} \ell(f_{w_A}(X,A)_v,y_v) \qquad \text{Outer level/loop}$$
 s.t.
$$w_A = \arg\min_{w} \quad \sum_{v \in V_{\mathtt{Train}}} \ell(f_w(X,A)_v,y_v) + \Omega(w)$$

Inner level/loop

Suppose we are given a single graph and want to perform (transductive) node classification

Suppose the graph is incomplete or even completely missing

Can we learn a latent graph and then apply GNNs?

One can formulate a bi-level optimization problem [2]:

$$\min_{A} \quad \sum_{v \in V_{\mathtt{Val}}} \ell(f_{w_A}(X,A)_v,y_v) \qquad \text{Outer level/loop}$$
 s.t.
$$w_A = \underset{w}{\arg\min} \quad \sum_{v \in V_{\mathtt{Train}}} \ell(f_w(X,A)_v,y_v) + \Omega(w)$$
 Inner level/loop

 w_A is a function (parameterized by the optimization algorithm) of A!

One can formulate a bi-level optimization problem [2]:

$$\begin{aligned} & \min_{A} & & \sum_{v \in V_{\text{Val}}} \ell(f_{w_A}(X, A)_v, y_v) \\ & \text{s.t.} & & w_A = \underset{w}{\operatorname{arg\,min}} & & \sum_{v \in V_{\text{Train}}} \ell(f_w(X, A)_v, y_v) + \Omega(w) \end{aligned}$$

This problem is a hard mixed-integer programming problem!

One can formulate a bi-level optimization problem [2]:

$$\begin{aligned} & \min_{A} & & \sum_{v \in V_{\text{Val}}} \ell(f_{w_A}(X, A)_v, y_v) \\ & \text{s.t.} & & w_A = \underset{w}{\operatorname{arg\,min}} & & \sum_{v \in V_{\text{Train}}} \ell(f_w(X, A)_v, y_v) + \Omega(w) \end{aligned}$$

This problem is a hard mixed-integer programming problem!

We can relax it (introducing edge-independent Bernoulli distribution):

$$\min_{ heta} \ \mathbb{E}_{A \sim \mathrm{Ber}(heta)} \left[\sum_{v \in V_{\mathtt{Val}}} \ell(f_{w_A}(X, A)_v, y_v) \right]$$

s.t.
$$w_{\theta} = \underset{w}{\operatorname{arg\,min}} \mathbb{E}_{A \sim \operatorname{Ber}(\theta)} \left[\sum_{v \in V_{\text{Train}}} \ell(f_w(X, A)_v, y_v) + \Omega(w) \right]$$

One can formulate a bi-level optimization problem [2]:

$$\min_{A} \sum_{v \in V_{\text{Val}}} \ell(f_{w_A}(X, A)_v, y_v)$$
s.t.
$$w_A = \underset{w}{\operatorname{arg\,min}} \sum_{v \in V_{\text{Train}}} \ell(f_w(X, A)_v, y_v) + \Omega(w)$$

This problem is a hard mixed-integer programming problem!

We can relax it (introducing edge-independent Bernoulli distribution):

$$\min_{ heta} \ \mathbb{E}_{A \sim \mathrm{Ber}(heta)} \left[\sum_{v \in V_{\mathtt{Val}}} \ell(f_{w_A}(X, A)_v, y_v)
ight]$$

We can unroll SGD for a few steps!

s.t.
$$w_{\theta} = \underset{w}{\operatorname{arg\,min}} \left[\mathbb{E}_{A \sim \operatorname{Ber}(\theta)} \left[\sum_{v \in V_{\operatorname{Train}}} \ell(f_w(X, A)_v, y_v) + \Omega(w) \right] \right]$$

Denoting the outer objective as

$$F(w,A) = \sum_{v \in V_{\text{Val}}} \ell(f_w(X,A)_v, y_v)$$

Denoting the inner objective as

$$L(w, A) = \sum_{v \in V_{\text{Train}}} \ell(f_w(X, A)_v, y_v) + \Omega(w)$$

Denoting the outer objective as

$$F(w,A) = \sum_{v \in V_{\mathtt{Val}}} \ell(f_w(X,A)_v, y_v)$$

Denoting the inner objective as

$$L(w, A) = \sum_{v \in V_{\text{Train}}} \ell(f_w(X, A)_v, y_v) + \Omega(w)$$

The bi-level optimization is simplified as

$$\min_{\theta} \quad \mathbb{E}_{A \sim \text{Ber}(\theta)} \left[F(w_{\theta}, A) \right]$$
s.t.
$$w_{\theta} = \underset{w}{\text{arg min}} \quad \mathbb{E}_{A \sim \text{Ber}(\theta)} \left[L(w, A) \right]$$

Denoting the outer objective as

$$F(w,A) = \sum_{v \in V_{\mathtt{Val}}} \ell(f_w(X,A)_v, y_v)$$

Denoting the inner objective as

$$L(w, A) = \sum_{v \in V_{\text{Train}}} \ell(f_w(X, A)_v, y_v) + \Omega(w)$$

The bi-level optimization is simplified as

$$\min_{\theta} \quad \mathbb{E}_{A \sim \text{Ber}(\theta)} \left[F(w_{\theta}, A) \right]$$
s.t.
$$w_{\theta} = \underset{w}{\text{arg min}} \quad \mathbb{E}_{A \sim \text{Ber}(\theta)} \left[L(w, A) \right]$$

For Inner optimization, we unroll SGD as

$$w_{\theta,t+1} = w_{\theta,t} - \gamma_t \nabla L(w_{\theta,t}, A_t)$$

Denoting the outer objective as

$$F(w, A) = \sum_{v \in V_{\mathtt{Val}}} \ell(f_w(X, A)_v, y_v)$$

Denoting the inner objective as

$$L(w, A) = \sum_{v \in V_{\text{Train}}} \ell(f_w(X, A)_v, y_v) + \Omega(w)$$

The bi-level optimization is simplified as

$$\min_{\theta} \quad \mathbb{E}_{A \sim \text{Ber}(\theta)} \left[F(w_{\theta}, A) \right]$$
s.t.
$$w_{\theta} = \underset{w}{\operatorname{arg \, min}} \quad \mathbb{E}_{A \sim \text{Ber}(\theta)} \left[L(w, A) \right]$$

For Inner optimization, we unroll SGD as

$$w_{\theta,t+1} = w_{\theta,t} - \gamma_t \nabla L(w_{\theta,t}, A_t)$$

The (hyper) gradient is

$$\nabla_{\theta} \mathbb{E}_{A \sim \text{Ber}(\theta)} \left[F(w_{\theta,T}, A) \right] = \mathbb{E}_{A \sim \text{Ber}(\theta)} \left[\frac{\partial F(w_{\theta,T}, A)}{\partial w_{\theta,T}} \frac{\partial w_{\theta,T}}{\partial \theta} + \frac{\partial F(w_{\theta,T}, A)}{\partial A} \frac{\partial A}{\partial \theta} \right]$$

The (hyper) gradient is

$$\nabla_{\theta} \mathbb{E}_{A \sim \text{Ber}(\theta)} \left[F(w_{\theta,T}, A) \right] = \mathbb{E}_{A \sim \text{Ber}(\theta)} \left[\frac{\partial F(w_{\theta,T}, A)}{\partial w_{\theta,T}} \frac{\partial w_{\theta,T}}{\partial \theta} + \frac{\partial F(w_{\theta,T}, A)}{\partial A} \frac{\partial A}{\partial \theta} \right]$$

The (hyper) gradient is

$$\nabla_{\theta} \mathbb{E}_{A \sim \text{Ber}(\theta)} \left[F(w_{\theta,T}, A) \right] = \mathbb{E}_{A \sim \text{Ber}(\theta)} \left[\frac{\partial F(w_{\theta,T}, A)}{\partial w_{\theta,T}} \frac{\partial w_{\theta,T}}{\partial \theta} + \frac{\partial F(w_{\theta,T}, A)}{\partial A} \frac{\partial A}{\partial \theta} \right]$$

A is discrete samples drawn from edge-independent Bernoulli distribution

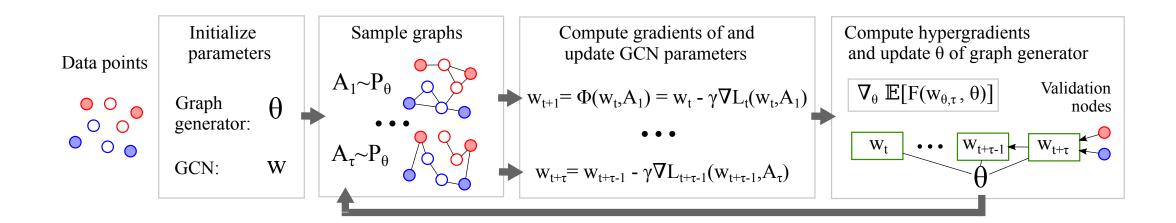
Since it is non-differentiable, we use straight-through estimator [2]

The (hyper) gradient is

$$\nabla_{\theta} \mathbb{E}_{A \sim \text{Ber}(\theta)} \left[F(w_{\theta,T}, A) \right] = \mathbb{E}_{A \sim \text{Ber}(\theta)} \left[\frac{\partial F(w_{\theta,T}, A)}{\partial w_{\theta,T}} \frac{\partial w_{\theta,T}}{\partial \theta} + \frac{\partial F(w_{\theta,T}, A)}{\partial A} \frac{\partial A}{\partial \theta} \right]$$

A is discrete samples drawn from edge-independent Bernoulli distribution

Since it is non-differentiable, we use straight-through estimator [2]



Transductive Classification:

	Wine	Cancer	Digits	Citeseer	Cora	20news	FMA
LogReg	92.1 (1.3)	93.3 (0.5)	85.5 (1.5)	62.2 (0.0)	60.8 (0.0)	42.7 (1.7)	37.3 (0.7)
Linear SVM	93.9 (1.6)	90.6 (4.5)	87.1 (1.8)	58.3 (0.0)	58.9 (0.0)	40.3 (1.4)	35.7 (1.5)
RBF SVM	94.1 (2.9)	91.7 (3.1)	86.9 (3.2)	60.2 (0.0)	59.7 (0.0)	41.0 (1.1)	38.3 (1.0)
RF	93.7 (1.6)	92.1 (1.7)	83.1 (2.6)	60.7 (0.7)	58.7 (0.4)	40.0 (1.1)	37.9 (0.6)
FFNN	89.7 (1.9)	92.9 (1.2)	36.3 (10.3)	56.7 (1.7)	56.1 (1.6)	38.6 (1.4)	33.2 (1.3)
LP	89.8 (3.7)	76.6 (0.5)	91.9 (3.1)	23.2 (6.7)	37.8 (0.2)	35.3 (0.9)	14.1 (2.1)
ManiReg	90.5 (0.1)	81.8 (0.1)	83.9 (0.1)	67.7 (1.6)	62.3 (0.9)	46.6 (1.5)	34.2 (1.1)
SemiEmb	91.9 (0.1)	89.7 (0.1)	90.9 (0.1)	68.1 (0.1)	63.1 (0.1)	46.9 (0.1)	34.1 (1.9)
Sparse-GCN	63.5 (6.6)	72.5 (2.9)	13.4 (1.5)	33.1 (0.9)	30.6 (2.1)	24.7 (1.2)	23.4 (1.4)
Dense-GCN	90.6 (2.8)	90.5 (2.7)	35.6 (21.8)	58.4 (1.1)	59.1 (0.6)	40.1 (1.5)	34.5 (0.9)
RBF-GCN	90.6 (2.3)	92.6 (2.2)	70.8 (5.5)	58.1 (1.2)	57.1 (1.9)	39.3 (1.4)	33.7 (1.4)
kNN-GCN	93.2 (3.1)	93.8 (1.4)	91.3 (0.5)	68.3 (1.3)	66.5 (0.4)	41.3 (0.6)	37.8 (0.9)
kNN-LDS (dense) kNN-LDS	97.5 (1.2) 97.3 (0.4)	94.9 (0.5) 94.4 (1.9)	92.1 (0.7) 92.5 (0.7)	70.9 (1.3) 71.5 (1.1)	70.9 (1.1) 71.5 (0.8)	45.6 (2.2) 46.4 (1.6)	38.6 (0.6) 39.7 (1.4)

Conclusions

Summary:

• Neural Relational Inference

Amortized inference, thus being applicable to inductive and transductive setting

Use Edge-Independent Categorical and Gumbel-Softmax to learn latent graphs

Conclusions

Summary:

• Neural Relational Inference

Amortized inference, thus being applicable to inductive and transductive setting
Use Edge-Independent Categorical and Gumbel-Softmax to learn latent graphs

• Learning Latent Graphs via Bi-level Optimization

Learn a single latent graph, thus being inapplicable to inductive setting

Use Edge-Independent Bernoulli and Straight-Through to learn latent graphs

Open Questions

- Can we use more expressive generative models over graphs? E.g., deep auto-regressive models?
- For bi-level optimization, it may be beneficial to run inner SGD until convergence. Can we still efficiently learn the latent graph in this case?

Yes, Implicit Differentiation [3, 4]!

References

- [1] Kipf, T., Fetaya, E., Wang, K.C., Welling, M. and Zemel, R., 2018, July. Neural relational inference for interacting systems. In International Conference on Machine Learning (pp. 2688-2697). PMLR.
- [2] Franceschi, L., Niepert, M., Pontil, M. and He, X., 2019, May. Learning discrete structures for graph neural networks. In International conference on machine learning (pp. 1972-1982). PMLR.
- [3] Liao, R., Xiong, Y., Fetaya, E., Zhang, L., Yoon, K., Pitkow, X., Urtasun, R. and Zemel, R., 2018, July. Reviving and improving recurrent back-propagation. In International Conference on Machine Learning (pp. 3082-3091). PMLR.
- [4] Bai, S., Kolter, J.Z. and Koltun, V., 2019. Deep equilibrium models. Advances in Neural Information Processing Systems, 32.

Questions?