EECE 571F: Deep Learning with Structures

Lecture 12: Learning Latent Graph Structures

Renjie Liao

University of British Columbia
Winter, Term 1, 2022

Course Scope

* Brief Intro to Deep Learning

* Geometric Deep Learning

Deep Learning Models for Sets and Sequences: Deep Sets & Transformers

Deep Learning Models for Graphs: Graph Convolution & Message Passing GNNs
Expressiveness & Generalizations of GNNs

* Unsupervised/Self-supervised Graph Representation Learning

* Probabilistic Deep Learning

* Deep Generative Models:
Auto-regressive models, GANs, VAEs, Diffusion/Score based models
* Discrete/Hybrid Latent Variable Models: RBMs, Latent Graph Models

e Stochastic Gradient Estimation

Course Scope

* Brief Intro to Deep Learning

* Geometric Deep Learning

Deep Learning Models for Sets and Sequences: Deep Sets & Transformers

Deep Learning Models for Graphs: Graph Convolution & Message Passing GNNs
Expressiveness & Generalizations of GNNs

* Unsupervised/Self-supervised Graph Representation Learning

* Probabilistic Deep Learning

* Deep Generative Models:
Auto-regressive models, GANs, VAEs, Diffusion/Score based models
* Discrete/Hybrid Latent Variable Models: RBMs, Latent Graph Models

e Stochastic Gradient Estimation

Contents

Learning Latent Graphs for Deep Probabilistic Models
* Neural Relational Inference

* Learning Latent Graphs via Bi-level Optimization

Neural Relational Inference

Suppose we observe dynamics of particles, we are interested in inferring the latent interaction graph

oooooo

°
0°°
o
o
()
@
..
(J
..
(J o
F4)
[® ®
[[°
: s
[°
: - 0
é I
o (]
(] o
g ‘. o
° e, ©
o %
g 0 %
K .. %0,
SN o
°) .. Q %,
) %
o o® b)
Y

Interaction graph

Observed dynamics

Image Credit: [1]

Neural Relational Inference

Suppose we observe dynamics of particles, we are interested in inferring the latent interaction graph

It arises in dynamic systems from physics, biology, sports, transportation, etc.

§ ?
i H ®
i & o
0.. ‘.o ooo
00000 000% X .
o "l"“
v O
Interaction graph

Observed dynamics

Image Credit: [1]

Neural Relational Inference

000
00°°
0®
(-]
(-}
(-

Let us formalize the problem:
We have N particles (nodes) V = {vy,...,un} ..°'.
! .
: : t t t : S
At time t, the feature is x' = {x7, ., Xn} i - ®
: i.q%
c>c)OO 000%'* .
oo ... "1%
o’ ®

Observed dynamics Interaction graph

Image Credit: [1]

Neural Relational Inference

000
00°°
0®
(-]
(-}
(-

Let us formalize the problem:
We have N particles (nodes) V = {vy,...,un} ..°'°
$ >
At time t, the feature i t_ (xt th i e
ime t, the feature is x' = {x7, ., Xn} i - o

. . :r ‘~.. ;?
For all nodes, we have N trajectories S S,

A o

X = ()(17 ")(jj) éﬁj "QJ' ® "
Interaction graph

Observed dynamics

Image Credit: [1]

Neural Relational Inference

Let us formalize the problem: |
We have N particles (nodes) V = {vy,...,un} ..°'.
$ 4
At time t, the feature i b= {x! ¢ °
ime t, the feature is x' = {x7, ., Xn} i S o
. . 0.. ‘.o ooo
For all nodes, we have N trajectories s o
Oooo QA",,'/H .
X = (X17 7XT)] .'.. N ®

Interaction graph

For any pair of node (vi,v;) , we introduce Observed dynamics

a discrete latent variable z;; to model interaction

Image Credit: [1]

Neural Relational Inference

o

00°
0°°

)

Let us formalize the problem:
We have N particles (nodes) V = {vy,...,un} ..°'.
$
At time t, the feature i b= {x! ¢ »
ime t, the feature is x' = {x7, ., Xn} i S o
. . Oo. ‘.o ooo
For all nodes, we have N trajectories S S
Looxh) S o - o
Interaction graph

For any pair of node (vi,v;) , we introduce Observed dynamics

a discrete latent variable z;; to model interaction

Our goal is to infer the set of all latent variables , which forms the latent graph!

Image Credit: [1]

Neural Relational Inference

We use VAEs as the probabilistic framework

Neural Relational Inference

We use VAEs as the probabilistic framework
« Encoder q4(z|x)
* Decoder po(x|2)

e Prior p(z)

Neural Relational Inference

We use VAEs as the probabilistic framework

« Encoder q4(z|x)
* Decoder po(x|2)
e Prior p(z)

* Learning the model by maximizing the ELBO

£ = By, (apoylog 1o (x]2)] — KLigg(2])]1ps (2)]

Neural Relational Inference

Image Credit: [1]

We use VAEs as the probabilistic framework

(Legend: [B: Node emb. [[l: Edge emb. —:MLP fl..,: Concrete distribution --+: Sampling)

e—v

e—v

\ J \

L
xﬁ-

BITTI

Encoder

Decoder

Neural Relational Inference

Encoder: A GNN applied to a fully connected graph e (z|x) = H e (Zij|x)
]

(Legend: [B: Node emb. [[l: Edge emb. —:MLP fl..,: Concrete distribution --+: Sampling)

\ J \

Decoder

Encoder

Image Credit: [1]

Neural Relational Inference

Encoder: A GNN applied to a fully connected graph

= H q¢(Zij|x)

(Legend: [B: Node emb. [[l: Edge emb. —:MLP fl..,: Concrete distribution --+: Sampling)

J \,

Node to Edge
Edge to Node
Node to Edge

Image Credit: [1]

Encoder

vV—e

e— .

v—e

hj = fomb(x;)
hlm) fe ([hi, hj])

hj = fo (X hi; ;)

h(; ;) = f2([hi, b))

Decoder

Readout 44 (%ij|x) = SOftmaX(h?i,j))

Neural Relational Inference

Decoder: A GNN applied to the sampled graph po(x|z) = [1—, po(x'T1|xt, ..., x", z)

(Legend: [B: Node emb. [[l: Edge emb. —:MLP fl..,: Concrete distribution --+: Sampling)

e—v e—v

L
xﬁ-

\ J \ J \

BITTI

Decoder

Encoder

Image Credit: [1]

Neural Relational Inference

Decoder: A GNN applied to the sampled graph po(x|z) = [1—, po(x'T1|xt, ..., x", z)

(Legend: [B: Node emb. [[l: Edge emb. —:MLP fl..,: Concrete distribution --+: Sampling)

\, J \,

l
Encoder qu(z\x) Decoder
Option I: Markovian Node to Edge v—e: h(z N = Z ZijkJ, ¥ ([t X;])
k

po(x"TIx’s Xt 2) = pp(x"x",2) EdgetoNode e—v: pith=xb+ fu(X,4 R)

p(x; T x' 2) = N (pj™, o)

Image Credit: [1]

Neural Relational Inference

Decoder: A GNN applied to the sampled graph po(x|z) = [1—, po(x'T1|xt, ..., x", z)

(Legend: [B: Node emb. [[l: Edge emb. —:MLP fl..,: Concrete distribution --+: Sampling)

\, J \,

Decoder

Encoder

Node to Edge v—e: flfi,j) = Zzz’j,kff([flfa fl;])
Option II: Auto-Regressive e
Edge to Node e—v: MSG; =3, h{

Fil t ot Tt
hi™" = GRU([MSG}, x}], hj)
pih = xh + fou (RS
p(x!xt, . xt z) = Nt %)
Image Credit: [1]

Neural Relational Inference

Decoder: A GNN applied to the sampled graph po(x|z) = [1—, po(x'T1|xt, ..., x", z)

(Legend: [B: Node emb. [[l: Edge emb. —:MLP fl..,: Concrete distribution --+: Sampling)

HEEEN |-

\, J \,

Encoder Decoder

Node to Edge v—e: flfi,j) = Zzij,kff([ﬁga fl;])

Option II: Auto-Regressive k

EdgetoNode e—v: MSG) =3, hl
To avoid degenerated decoder: hi+! — GRU(IMSG!, xt], ht)
J J27)
 One .message.: network per edge type M;-I—l _ X; X fout(ﬁ§+1)
 Predict multiple futures p(xt 1l xt, . x z) = N (i, o2T)

Image Credit: [1]

Neural Relational Inference

Image Credit: [1]

Prior: Independent uniform distributions over edge types po(z) = H po(Zi;)

(o]
(Legend: [B: Node emb. [[l: Edge emb. —:MLP fl..,: Concrete distribution --+: Sampling)

\ J

\

Encoder

Decoder

Neural Relational Inference

Image Credit: [1]

Learning VAE

(Legend: [B: Node emb. [[l: Edge emb. —:MLP fl..,: Concrete distribution --+: Sampling)

e—v

e—v

\ J \

L
xso.

BITTI

Encoder

Decoder

Sampling discrete latent variables

Neural Relational Inference

Learning VAE

(Legend: [B: Node emb. [[l: Edge emb. —:MLP fl..,: Concrete distribution --+: Sampling)

e—v e—v

\, J \, J \,

L
xﬁ-

BITTI

Decoder

Encoder

Sampling discrete latent variables

* Score function estimator (REINFORCE)

* Gumbel-Softmax / Concrete (Relaxation + Reparameterization)

Image Credit: [1]

Neural Relational Inference

Learning VAE

(Legend: [B: Node emb. [[l: Edge emb. —:MLP fl..,: Concrete distribution --+: Sampling)

e—v e—v

\, J \, J \,

L
xﬁ-

BITTI

Decoder

Encoder

Sampling discrete latent variables

* Score function estimator (REINFORCE)

* Gumbel-Softmax / Concrete (Relaxation + Reparameterization)

Image Credit: [1]

Neural Relational Inference

Predicting the walking motion

LLbhL
MAAAL

prediction

truth

i
ei

Image Credit: [1]

Neural Relational Inference

Learned latent graphs

Right hand focus Left hand focus

Image Credit: [1]

Learning Discrete Structures for GNNs

Suppose we are given a single graph and want to perform (transductive) node classification

Learning Discrete Structures for GNNs

Suppose we are given a single graph and want to perform (transductive) node classification
* Transductive vs. Inductive

Transductive: reasoning from observed, specific (training) cases to specific (test) cases

Inductive: reasoning from observed training cases to general rules, which are then applied to the test cases

Learning Discrete Structures for GNNs

Suppose we are given a single graph and want to perform (transductive) node classification
* Transductive vs. Inductive

Transductive: reasoning from observed, specific (training) cases to specific (test) cases

Inductive: reasoning from observed training cases to general rules, which are then applied to the test cases

o e @\@@Q o e

Transductive Inductive

Learning Discrete Structures for GNNs

Suppose we are given a single graph and want to perform (transductive) node classification

Suppose the graph is incomplete or even completely missing

Learning Discrete Structures for GNNs

Suppose we are given a single graph and want to perform (transductive) node classification
Suppose the graph is incomplete or even completely missing

Can we learn a latent graph and then apply GNNs?

Learning Discrete Structures for GNNs

Suppose we are given a single graph and want to perform (transductive) node classification
Suppose the graph is incomplete or even completely missing
Can we learn a latent graph and then apply GNNs?

One can formulate a bi-level optimization problem [2]:

min Z U fwa (X, A)y,yo)

A
vE Va1
s.t. w4 = argmin Z U fu (X, A)y, Yo) + Qw)

w
vE VI‘rain

Learning Discrete Structures for GNNs

Suppose we are given a single graph and want to perform (transductive) node classification
Suppose the graph is incomplete or even completely missing
Can we learn a latent graph and then apply GNNs?

One can formulate a bi-level optimization problem [2]:

mjn z‘; U fuwr (X, A)0, Yo) Outer level/loop
VE Vyal

s.t. w4 = argmin Z U fu (X, A)y, Yo) + Qw)

w
vE VI‘rain

Learning Discrete Structures for GNNs

Suppose we are given a single graph and want to perform (transductive) node classification
Suppose the graph is incomplete or even completely missing
Can we learn a latent graph and then apply GNNs?

One can formulate a bi-level optimization problem [2]:

mjn EV: U fuwr (X, A)0, Yo) Outer level/loop
VE Vyal

s.t. wA—Ergmin Z U(fuw(X, A)y,yy) + Q(w)] Inner level/loop

w
vE VI‘rain

Learning Discrete Structures for GNNs

Suppose we are given a single graph and want to perform (transductive) node classification
Suppose the graph is incomplete or even completely missing
Can we learn a latent graph and then apply GNNs?

One can formulate a bi-level optimization problem [2]:

mjn Z U fuwr (X, A)0, Yo) Outer level/loop
'UE‘/Val
s.t. wy —Ergmin Z U(fuw(X, A)y,yy) + Q(w)] Inner level/loop
v UEVI‘rain

W A 1is a function (parameterized by the optimization algorithm) of A !

Learning Discrete Structures for GNNs

One can formulate a bi-level optimization problem [2]:

min > (fuwa (X, A, yo)

A
vE Vyal
s.t. w4 = argmin Z U fuw(X, A)y,yy) + Q(w)

w
veE %rain

This problem is a hard mixed-integer programming problem!

Learning Discrete Structures for GNNs

One can formulate a bi-level optimization problem [2]:

min > (fuwa (X, A, yo)

A
vE Vyal
s.t. w4 = argmin Z U fuw(X, A)y,yy) + Q(w)

W (S %rain
This problem is a hard mixed-integer programming problem!

We can relax it (introducing edge-independent Bernoulli distribution):

min EANBer(G) |: Z g(fwA(Xa A)vayv):|

0
’UEWal

s.t. wy = argmin IEj’ArwBer(@) |: Z g(fw(Xv A)vayv)—I_Q(w)

w
veE VI‘rain

Learning Discrete Structures for GNNs

One can formulate a bi-level optimization problem [2]:

min Z U(fuwa (X, A)v, yo)

A
vE Vyal
s.t. w4 = argmin Z U fuw(X, A)y,yy) + Q(w)

v VE Virain
This problem is a hard mixed-integer programming problem!

We can relax it (introducing edge-independent Bernoulli distribution):

min EANBer(Q) Z g(fwA (X7 A)va yv)

0
’UE‘/Val

We can unroll SGD for a few steps!

s.t. wp = argmin [E4per(s) Z U fuw(X, A)y, Yp) + Q(w)

w
veE VI‘rain

Learning Discrete Structures for GNNs

Denoting the outer objective as F(w,A) = Z U(fuw(X, Ay, ys)
vEVya1
Denoting the inner objective as L(w, A) Z U(fuw(X, Ay, yy) + Q2(w)

VE VIrain

Learning Discrete Structures for GNNs

Denoting the outer objective as F(w,A) = Z U(fuw(X, Ay, ys)
UE‘/Val

Denoting the inner objective as L(w, A) Z U(fuw(X, Ay, yy) + Q2(w)
UE-VTI‘& in

The bi-level optimization is simplified as
min - K4 per(o) [F'(wa, A)]
s.t. wp = argmin K4 per(o) [L(w, A)]

w

Learning Discrete Structures for GNNs

Denoting the outer objective as F(w,A) = Z U(fuw(X, Ay, ys)
UE‘/Val

Denoting the inner objective as L(w, A) Z U(fuw(X, Ay, yy) + Q2(w)
UE-VTI‘& in

The bi-level optimization is simplified as

min - K4 per(o) [F'(wa, A)]
s.t. wp = argmin K4 per(o) [L(w, A)]

w

For Inner optimization, we unroll SGD as Wwe t+1 — Wt — Vt VL<w9,t> At)

Learning Discrete Structures for GNNs

Denoting the outer objective as F(w,A) = Z U(fuw(X, Ay, ys)
UE‘/Val

Denoting the inner objective as L(w, A) Z U(fuw(X, Ay, yy) + Q2(w)
UE-VTI‘aln

The bi-level optimization is simplified as
min - K4 per(o) [F'(wa, A)]
s.t. wp = argmin K4 per(o) [L(w, A)]
w

For Inner optimization, we unroll SGD as Wwe t+1 — Wt — Vt VL<w9,t> At)
The (hyper) gradient is
8F(wQ,T, A) 8w9,T I 8F(w9,T, A) 0A

Owg. T 00 0A 00

vHEANBer(Q) [F(wG,Ta A)] — IE4:ANBer(Q)

Learning Discrete Structures for GNNs

The (hyper) gradient is

8F(w97T, A) 8w9,T i 8F(w9,T, A) (‘9A

VQEANBQI-(Q) [F(wQ,T7 A)] —]E’ANBeI'(Q) Owg T 00 0A 00

Learning Discrete Structures for GNNs

The (hyper) gradient is

8F(w97T, A) an’T i 8F(w9,T, A (‘9A

VQEANBQI-(Q) [F(wQ,Ta A)] —]E’ANBeT(Q) Owg T 00 0A 00

A is discrete samples drawn from edge-independent Bernoulli distribution

Since it 1s non-differentiable, we use straight-through estimator [2]

Learning Discrete Structures for GNNs

The (hyper) gradient is

VGEANBer(G) [F(wQ,Ta A)] — EANBer(Q)

8F(w9,T, A) 8w9,T i

OF (w1, A 0A

A 1s discrete samples drawn from edge-independent Bernoulli distribution

Since it 1s non-differentiable, we use straight-through estimator [2]

Data points

O O
OQO

angT 06

0A

00

Initialize Sample graphs Compute gradients of and Compute hypergradients
parameters update GCN parameters and update 0 of graph generator
A~Py Validati
Graph P W = O(W,A) = w, - YVL(W,A)) Vo E[F(W, 0)] : 1;;110@2
generator: > oo e 0
A NPQ Wi Qt#—t-l <« Wiip A ®)
. T
GCN: W * Wit™ Wiige1 - YVLt+r—1(Wt+r—laAt) O/

Learning Discrete Structures for GNNs

Transductive Classification:

Wine Cancer Digits Citeseer Cora 20news FMA
LogReg 92.1(1.3) 933(0.5) 855(1.5 622(0.0) 60.8(0.0) 42.7(1.7) 37.3(0.7)
Linear SVM 939 (1.6) 90.6(45) 87.1(1.8) 58.3(0.0) 589(0.0) 403(1.4) 35.7(1.5)
RBF SVM 94129 91.73.1) 869@3.2) 602(0.0) 59.70.0) 41.0(1.1) 38.3(1.0)
RF 93.7(1.6) 921 (1.7) 83.1(2.6) 60.7(0.7) 58.7(0.4) 40.0(1.1) 37.9(0.6)
FFNN 89.7(1.9) 929(1.2) 363(10.3) 56.7(1.7) 56.1(1.6) 38.6(1.4) 33.2(1.3)
LP 89.8(3.7) 76.6(0.5) 91.9@3.1) 232(6.7) 37.8(0.2) 353(0.9 14.1(2.1)
ManiReg 90.5(0.1) &81.8(0.1) 839(0.1) 67.7(1.6) 62.3(09) 46.6(1.5) 34.2(1.1)
SemiEmb 919(.1) 89.7(0.1) 9090.1) 68.1(0.1) 63.1(0.1) 46.90.1) 34.1(1.9)
Sparse-GCN 63.5(6.6) 72529 13415 33.1(09 306@R2.1) 247@1.2) 23414
Dense-GCN 90.6 (2.8) 90.52.77 356(21.8) 584(1.1) 59.1(0.6) 40.1(1.5) 34.5(0.9)
RBF-GCN 906 (2.3) 92.6(2.2) 70.8(5.5) 581(1.2) 57.1(19) 393(14) 33.7(14)
kENN-GCN 93.2(3.1) 938(14) 91.3(00.5) 683(1.3) 66504 41.3(0.6) 37.8(0.9)
ENN-LDS (dense) 97.5(1.2) 949@0.5) 9210.79 709@1.3) 7091.1) 45.6(2.2) 38.6(0.6)
ENN-LDS 97.3(04) 94419 9250.79 71.5@1.1) 715(0.8) 46.4(1.6) 39.7(14)

Conclusions

Summary:
* Neural Relational Inference
Amortized inference, thus being applicable to inductive and transductive setting

Use Edge-Independent Categorical and Gumbel-Softmax to learn latent graphs

Conclusions

Summary:
* Neural Relational Inference
Amortized inference, thus being applicable to inductive and transductive setting
Use Edge-Independent Categorical and Gumbel-Softmax to learn latent graphs
* Learning Latent Graphs via Bi-level Optimization
Learn a single latent graph, thus being inapplicable to inductive setting

Use Edge-Independent Bernoulli and Straight-Through to learn latent graphs

Open Questions

« (Can we use more expressive generative models over graphs? E.g., deep auto-regressive models?

* For bi-level optimization, it may be beneficial to run inner SGD until convergence. Can we still
efficiently learn the latent graph in this case?

Yes, Implicit Differentiation [3, 4]!

References

[1] Kipf, T., Fetaya, E., Wang, K.C., Welling, M. and Zemel, R., 2018, July. Neural relational inference for interacting systems. In
International Conference on Machine Learning (pp. 2688-2697). PMLR.

[2] Franceschi, L., Niepert, M., Pontil, M. and He, X., 2019, May. Learning discrete structures for graph neural networks. In
International conference on machine learning (pp. 1972-1982). PMLR.

[3] Liao, R., Xiong, Y., Fetaya, E., Zhang, L., Yoon, K., Pitkow, X., Urtasun, R. and Zemel, R., 2018, July. Reviving and improving
recurrent back-propagation. In International Conference on Machine Learning (pp. 3082-3091). PMLR.

[4] Bai, S., Kolter, J.Z. and Koltun, V., 2019. Deep equilibrium models. Advances in Neural Information Processing Systems, 32.

Questions?

