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Course Information

Course website: https://Irjconan.github.io/DL-structures

Cutting-edge topics in deep learning with structures (not an introduction!!!)

Assumes basic knowledge about machine learning, deep learning

» View relevant textbooks/courses on the website

Assumes basic knowledge about linear algebra, calculus, probability

Assumes proficiency in deep learning libraries: PyTorch, JAX, Tensorflow

» Self-learning through online tutorials, e.g. https://pytorch.org/tutorials/



https://lrjconan.github.io/DL-structures
https://pytorch.org/tutorials/

Course Information

* Two sections: Mon. & Wed. 13:30 to 3:00pm,
Room 103, Chemical and Biological Engineering Building

Office hour: TBD, will do a poll on Piazza

* TA: Jiahe Liu (jiaheliu@ece.ubc.ca) Yuanpei Gao (yuanpeig@student.ubc.ca)
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Course Information

* Two sections: Mon. & Wed. 13:30 to 3:00pm,
Room 103, Chemical and Biological Engineering Building

Office hour: TBD, will do a poll on Piazza

* TA: Jiahe Liu (jiaheliu@ece.ubc.ca) Yuanpei Gao (yuanpeig@student.ubc.ca)

* All lectures will be delivered in person without recording unless notified otherwise

* Use Piazza for discussion & questions (actively answering others’ questions get you
bonuses) and Canvas for submitting reports

https://piazza.com/ubc.ca/winterterm12023/eeceS71f



mailto:jiaheliu@ece.ubc.ca
mailto:yuanpeig@student.ubc.ca
https://piazza.com/ubc.ca/winterterm12023/eece571f

Course Information

* Expectation & Grading (More info on the website)

* [15%] One paper reading report, due Sep. 29

[15%] Project proposal, due Oct. 13

[15%] Project presentations, around last two weeks

[15%] Peer-review report of project presentations, due Dec. 8

[40%] Project report and code, due Dec. 15

* You are encouraged to team up (up to 4 members) for projects



Course Information

* How to get free GPUs for your course project?

1. Google Colab: https://research.google.com/colaboratory/

Google Colab 1s a web-based 1Python Notebook service that has access to a free Nvidia K80
GPU per Google account.

2. Google Compute Engine: https://cloud.google.com/compute

Google Compute Engine provides virtual machines with GPUs running in Google’s data
center. You get $300 free credit when you sign up.

* Strategy of using GPUs
1. Debug models on small datasets (subsets) using CPUs or low-end GPUs until they work

2. Launch batch jobs on high-end GPUs to tune hyperparameters


https://research.google.com/colaboratory/
https://cloud.google.com/compute

Course Scope

* Brief Intro to Deep Learning



Course Scope

* Brief Intro to Deep Learning

* Geometric Deep Learning

* Deep Learning Models for Sets and Sequences: Deep Sets & Transformers
* Deep Learning Models for Graphs: Message Passing & Graph Convolution GNNs
* Group Equivariant Deep Learning



Course Scope

* Brief Intro to Deep Learning

* Geometric Deep Learning
* Deep Learning Models for Sets and Sequences: Deep Sets & Transformers

* Deep Learning Models for Graphs: Message Passing & Graph Convolution GNNs
* Group Equivariant Deep Learning

* Probabilistic Deep Learning

Auto-regressive models, Large Language Models (LLMs)
Variational Auto-Encoders (VAEs) and Generative Adversarial Networks (GANS)

Energy based models (EBMs)
Diffusion/Score based models



Outline

Brief Introduction & History & Application

Basic Deep Learning Models
* Multi-Layer Perceptron (MLP)
* Convolutional Neural Network (CNN)
* Recurrent Neural Network (RNN)

Objective Function

Learning Algorithm: Back-propagation

Limitations
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What 1s Deep Learning?

* Definition from Wikipedia:

Deep learning (also known as deep structured learning) 1s part of a broader family of machine
learning methods based on artificial neural networks with representation learning.

* Key Aspects:
Data: Large (supervised) datasets, e.g., ImageNet (14 million+ annotated images)
Model: Deep (i.e., many layers) neural networks, e.g., ResNet-152

Learning algorithm: Back-propagation (BP), 1.e., stochastic gradient descent (SGD)



Brief History of Deep Learning (Connectionism)

» Artificial Neurons (McCulloch and Pitts 1943)
* Hebbian Rule: Cells that fire together wire together (Donald Hebb 1949)
* Perceptron (Frank Rosenblatt 1958)

* Discovery of orientation selectivity and columnar organization in the visual cortex (Hubel
and Wiesel, 1959)

* Neocognitron (first Convolutional Neural Network, Fukushima 1979)

* Hopfield networks (Hopfield 1982)

e Boltzmann machines (Hinton, Sejnowski 1983)

* Backpropagation (Linnainmaa 1970, Werbos 1974, Rumelhart, Hinton, Williams 1986)
* First application of BP to Neocognitron-like CNNs (LeCun et al. 1989)

* Long-short term memory (Hochreiter, Schmidhuber 1997)



Brief History of Deep Learning (Connectionism)

* Deep belief networks (DBN) (Hinton et al., 2006)

* Breakthrough in speech recognition (Dahl et al. 2010)

e Breakthrough in computer vision: AlexNet (Krizhevsky et al. 2012), ResNet (He et al. 2016)
* Breakthrough in games: DQN (Minh, 2015), AlphaGO (2016)

* Breakthrough in natural language processing: Seq2seq (Sutskever et al. 2014), Transformers
(Vaswani et al. 2017), GPT-3 (Brown et al. 2020)

* Breakthrough in protein structure prediction: AlphaFold (2020)

oooooo

The future depends on some graduate student who is deeply suspicious
of everything I have said.

- Geoffrey Hinton



Applications of Deep Learning
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Applications of Deep Learning

Text/Program Generation

€ Matt Shumer (matt@othersideai.com), 1 CC

Image Credit: https://techcrunch.com/2020/11/12/othersideai-raises-2-6m-to-let-gpt-3-write-your-emai

package main

type Ca ySummary struct {

tring
int
floatéd

func createTables(db *sql.DB) {

db.Exec("CREATE TABLE tasks (id INTEGER PRIMARY KEY, title TEXT,

func createCategorySummaries(db *sql.D

Is-for-you/

https://techcrunch.com/2021/06/29/github-previews-new-ai-tool-that-makes-coding-suggestions/

value INTEGER, category TEX1
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Applications of Deep Learning

Speech Recognition, Personal Assistants

#9000 ATAT ¥

What can | help
you with?

Image Credit: https://www.techrepublic.com/article/apples-siri-the-smart-persons-guide/
https://www.pcmag.com/news/amazon-echo-vs-google-home-which-smart-speaker-is-best
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Applications of Deep Learning

Computer Vision/Graphics, e.g., Object detection, Rendering

Image Credit: https://github.com/sergeyprokudin/smplpix
https://towardsdatascience.com/everything-you-ever-wanted-to-know-about-computer-vision-heres-a-look-why-it-s-so-awesome-e8a58dfb641e
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Applications of Deep Learning

Virtual/Augmented Reality

Image Credit: https://www.businessinsider.com/scott-galloway-metaverse-future-not-facebook-2021-8
https://www.forbes.com/sites/theyec/2019/02/06/augmented-reality-in-business-how-ar-may-change-the-way-we-work/?sh=36011cd851e5
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Applications of Deep Learning

Robotics, Autonomous Driving

Image Credit: https://techcrunch.com/2017/05/26/this-robot-arms-ai-thinks-like-we-do-about-how-to-grab-something/
https://techcrunch.com/2018/10/30/waymo-takes-the-wheel-self-driving-cars-go-fully-driverless-on-california-roads/
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Applications of Deep Learning

Protein structure prediction, Drug discovery
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Image Credit: https://www.nature.com/articles/d41586-020-03348-4
https://medium.com/neuromation-blog/creating-molecules-from-scratch-i-drug-discovery-with-generative-adversarial-networks-9d42cc496fc6
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Applications of Deep Learning

Black Holes, Physics Simulation

Representation

as particle system

Image Credit: https://medium.com/analytics-vidhya/when-neural-networks-saw-the-first-image-of-black-hole-3205e28b6578
https://meerasridhar23.medium.com/lets-10x-physics-simulations-38ad6fc5cae5
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Basic Deep Learning Models

Multi-Layer Perceptron (MLP)

Image Credit: https://becominghuman.ai/multi-layer-perceptron-mlp-models-on-real-world-banking-data-f6dd3d7e998f
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Basic Deep Learning Models

Multi-Layer Perceptron (MLP)

h

Hidden Layer

Image Credit: https://becominghuman.ai/multi-layer-perceptron-mlp-models-on-real-world-banking-data-f6dd3d7e998f
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Basic Deep Learning Models

Multi-Layer Perceptron (MLP)
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Image Credit: https://becominghuman.ai/multi-layer-perceptron-mlp-models-on-real-world-banking-data-f6dd3d7e998f

h = O'(W1X)
Y — Wgh
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Basic Deep Learning Models

Multi-Layer Perceptron (MLP)

'h
Hidden Layer h — O-(Wlx)

Input Layer

X Input 1

y:Wgh
Yy

Input 2

ReLU: o(h) = max(h,0)
1

Sigmoid: o(h) = T+ oxp(—h)

Tanh, Softplus, ELU, ...

Image Credit: https://becominghuman.ai/multi-layer-perceptron-mlp-models-on-real-world-banking-data-f6dd3d7e998f
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Basic Deep Learning Models

Convolutional Neural Network (CNN)

Convolution (Discrete)

Convolutional Filter

Image



Basic Deep Learning Models

Convolutional Neural Network (CNN)
K K

Convolution (Discrete) Yij = > . > . Win nXitm— | K/2],j+n—[K/2]

m=1n=1




Basic Deep Learning Models

Convolutional Neural Network (CNN)
K K

Convolution (Discrete) Yij = > . > . Win nXitm— | K/2],j+n—[K/2]

m=1n=1

Convolution <> Matrix Multiplication




Matrix Multiplication View I

1D Convolution (Discrete) <> Matrix Multiplication Filter => Toeplitz matrix (diagonal-constant)
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Matrix Multiplication View I

1D Convolution (Discrete) <> Matrix Multiplication Filter => Toeplitz matrix (diagonal-constant)
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Matrix Multiplication View I

1D Convolution (Discrete) <> Matrix Multiplication Filter => Toeplitz matrix (diagonal-constant)
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Matrix Multiplication View I

1D Convolution (Discrete) <> Matrix Multiplication

Filter => Toeplitz matrix (diagonal-constant)
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Matrix Multiplication View I

1D Convolution (Discrete) <> Matrix Multiplication Filter => Toeplitz matrix (diagonal-constant)

It could be very sparse (e.g., when n >>m)!
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Matrix Multiplication View Il

1D Convolution (Discrete) <> Matrix Multiplication Data => Toeplitz matrix (diagonal-constant)



Matrix Multiplication View Il

1D Convolution (Discrete) <> Matrix Multiplication

Input T
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Matrix Multiplication View Il

1D Convolution (Discrete) <> Matrix Multiplication

Data => Toeplitz matrix (diagonal-constant)
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Matrix Multiplication View Il

1D Convolution (Discrete) <> Matrix Multiplication

Data => Toeplitz matrix (diagonal-constant)
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Matrix Multiplication View Il

1D Convolution (Discrete) <> Matrix Multiplication
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Data => Toeplitz matrix (diagonal-constant)

It could be dense (e.g., when n >>m)!
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Matrix Multiplication View Il

1D Convolution (Discrete) <> Matrix Multiplication Data => Toeplitz matrix (diagonal-constant)

It could be dense (e.g., when n >>m)!
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Matrix Multiplication View Il

1D Convolution (Discrete) <> Matrix Multiplication Data => Toeplitz matrix (diagonal-constant)

This equivalence holds for 2D and other higher-order convolutions! It could be dense (e.g., when n >> m)!
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Basic Deep Learning Models

Convolutional Neural Network (CNN)

Pooling (e.g., 2X2)




Basic Deep Learning Models

Convolutional Neural Network (CNN)

Conv_1 Conv_2
Convolution Convolution

(5 x 5) kernel Max-Pooling (5 x 5) kernel
valid paddin valid padding
lid padding (2x2) lid paddi

fc_3 fc_4
Fully-Connected Fully-Connected
Neural Network Neural Network

RelLU activation |

~

Max-Pooling
(2x2)

KA\ Ar*\r*\

""""" 8 )
INPUT nl channels nl channels
(28 x 28 x 1) (24 x 24 x nl) (12x12xnl)

n2 channels n2 channels \\|
(8 x 8 xn2) (4x4xn2) |

n3 units

Image Credit: https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53

(with
dropout)

OUTPUT


https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53

Basic Deep Learning Models

Recurrent Neural Network (RNN)

Same neural network gets reused many times! hi=F (Xt, hi~t W)



Basic Deep Learning Models

Recurrent Neural Network (RNN)

Same neural network gets reused many times!

hidden state

parameters @

@

(w)

4.@_.

Data @

&)

h! =




Basic Deep Learning Models

Recurrent Neural Network (RNN)

Same neural network gets reused many times!

parameters @ @

hidden state F % F

Data @ @

F could be any neural network!
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Brief Introduction & History & Application

Basic Deep Learning Models
* Multi-Layer Perceptron (MLP)
* Convolutional Neural Network (CNN)
* Recurrent Neural Network (RNN)

Objective Function

Learning Algorithm: Back-propagation

Limitations



Objective (Loss) Function

* Supervised Learning
Given (data, label), we want to minimize empirical risk/loss

Loss = Function(label, model(data))
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Objective (Loss) Function
* Supervised Learning Empirical Risk Minimization (ERM)!
Given (data, label), we want to minimize empirical risk/loss

Loss = Function(label, model(data))

e (lassification

K
Cross-Entropy Loss: / (p7 C]) — _ Z Di log q;
1=1

* Regression

1
Mean-Squared Error (MSE): K(X, }’) = E HX — YHS



Objective (Loss) Function

Unsupervised/Self-supervised Learning

Only data 1s given



Objective (Loss) Function

Unsupervised/Self-supervised Learning

Only data 1s given

Likelihood (Autoregressive models)

Reconstruction Loss (Auto-encoders)

Contrastive Loss (noise contrastive estimation, self-supervised learning)

Min-max Loss (Generative adversarial networks)

oooooo



Objective (Loss) Function

Unsupervised/Self-supervised Learning

Only data 1s given

Likelihood (Autoregressive models)

Reconstruction Loss (Auto-encoders)

Contrastive Loss (noise contrastive estimation, self-supervised learning)

Min-max Loss (Generative adversarial networks)

Designing a good objective function itself is a challenging research question!



Objective (Loss) Function

# “Pure” Reinforcement Learning (cherry)

» The machine predicts a scalar
reward given once in a while.

» A few bits for some samples

# Supervised Learning (icing)

» The machine predicts a category
or a few numbers for each input

» Predicting human-supplied data

» 10-10,000 bits per sample ‘_
# Unsupervised/Predictive Learning (cake)
» The machine predicts any part of B
its input for any observed part. = - \ N
» Predicts future frames in videos _ ‘, - &

e

."

» Millions of bits per sample

# (Yes, I know, this picture is slightly offensive to RL folks. But I'll make it up)

Image Credit: Yann Lecun, NIPS 2016
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Basic Deep Learning Models
* Multi-Layer Perceptron (MLP)
* Convolutional Neural Network (CNN)
* Recurrent Neural Network (RNN)

Objective Function

Learning Algorithm: Back-propagation

Limitations



Learning Algorithm
Learning algorithm is about credit assignment

Assign credits based on contribution <> Adjust parameters based on loss
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Learning Algorithm
Learning algorithm is about credit assignment

Assign credits based on contribution <> Adjust parameters based on loss

The most successful learning algorithm so far is gradient based learning!
Representative method: stochastic gradient descent (SGD), Robbins and Monro, 1951

Back-propagation (BP) = SGD in the context of deep learning



Back-Propagation

Multi-Layer Perceptron (MLP)

Hidden Layer

Input Layer

Image Credit: https://becominghuman.ai/multi-layer-perceptron-mlp-models-on-real-world-banking-data-f6dd3d7e998f
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Back-Propagation

Forward Pass / Inference :

Hidden Layer

Input Layer

Image Credit: https://becominghuman.ai/multi-layer-perceptron-mlp-models-on-real-world-banking-data-f6dd3d7e998f
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Back-Propagation

Forward Pass / Inference : h

Hidden Layer

Input Layer ( >

Image Credit: https://becominghuman.ai/multi-layer-perceptron-mlp-models-on-real-world-banking-data-f6dd3d7e998f
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Back-Propagation

Forward Pass / Inference : h

Hidden Layer

Input Layer

Image Credit: https://becominghuman.ai/multi-layer-perceptron-mlp-models-on-real-world-banking-data-f6dd3d7e998f
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Back-Propagation

Compute Loss :

{g(}“ Yliabel )}

Image Credit: https://becominghuman.ai/multi-layer-perceptron-mlp-models-on-real-world-banking-data-f6dd3d7e998f
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Back-Propagation

Backward Pass / Learning : h

Lﬁ (Y y Y labelﬂ

Image Credit: https://becominghuman.ai/multi-layer-perceptron-mlp-models-on-real-world-banking-data-f6dd3d7e998f
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Back-Propagation o/ ( Oy )T O/

Backward Pass / Learning : h oW oWy dy

Hidden Layer

Input Layer

Loss

Z(}’7 Ylabel)

Image Credit: https://becominghuman.ai/multi-layer-perceptron-mlp-models-on-real-world-banking-data-f6dd3d7e998f
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Back-Propagation =Y, <3y> LY,

Backward Pass / Learning : h o/ oh

Hidden Layer ah

Input Layer ( >
-~ ,' ) \\

Loss

Z(Y? YIabel)

Input 2

Input 3

Image Credit: https://becominghuman.ai/multi-layer-perceptron-mlp-models-on-real-world-banking-data-f6dd3d7e998f
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Back-Propagation ¢ [ on\' [dy\' of
oW, (awl) (a_h> dy

Hidden Layer ah

Backward Pass / Learning : h o/

X Input 1 (/
8€ Loss
—  Input2 k > Z(Y? y1abel)
0x
Input 3 <

Image Credit: https://becominghuman.ai/multi-layer-perceptron-mlp-models-on-real-world-banking-data-f6dd3d7e998f
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Outline

Brief Introduction & History & Application

Basic Deep Learning Models
* Multi-Layer Perceptron (MLP)
* Convolutional Neural Network (CNN)
* Recurrent Neural Network (RNN)

Objective Function

Learning Algorithm: Back-propagation

Limitations
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Limitations

e MLPs/CNNs are restricted to data with fixed size

* Each sample needs to have the same size

* RNNSs can deal with varying-size data

* Only presented as sequences

* Learned representations do not explicitly encode structures of data

* Hard to interpret and manipulate



Questions?



