EECE 571F: Deep Learning with Structures

Lecture 2: Invariance, Equivariance, and
Deep Learning Models for Sets/Sequences

Renjie Liao

University of British Columbia
Winter, Term 1, 2023

Course Scope

* Brief Intro to Deep Learning

* Geometric Deep Learning
* Deep Learning Models for Sets and Sequences: Deep Sets & Transformers

* Deep Learning Models for Graphs: Message Passing & Graph Convolution GNNs
* Group Equivariant Deep Learning

* Probabilistic Deep Learning

Auto-regressive models, Large Language Models (LLMs)
Variational Auto-Encoders (VAEs) and Generative Adversarial Networks (GANS)

Energy based models (EBMs)
Diffusion/Score based models

Course Scope

* Brief Intro to Deep Learning

* Geometric Deep Learning
* Deep Learning Models for Sets and Sequences: Deep Sets & Transformers

* Deep Learning Models for Graphs: Message Passing & Graph Convolution GNNs
* Group Equivariant Deep Learning

* Probabilistic Deep Learning

Auto-regressive models, Large Language Models (LLMs)
Variational Auto-Encoders (VAEs) and Generative Adversarial Networks (GANS)

Energy based models (EBMs)
Diffusion/Score based models

Motivating Applications for Sets

* Population Statistics
* Point Cloud Classification

Table Airplane Earphone

Image Credit: https://github.com/AnTao97/PointCloudDatasets

https://github.com/AnTao97/PointCloudDatasets

Invariance & Equivariance

* Invariance:

A mathematical object (or a class of mathematical objects) remains unchanged after operations or
transformations of a certain type are applied to the objects

f(X) = f(g(X))

Invariance & Equivariance

* Invariance:

A mathematical object (or a class of mathematical objects) remains unchanged after operations or
transformations of a certain type are applied to the objects

f(X) = f(g(X))

Invariance & Equivariance

* Invariance:

A mathematical object (or a class of mathematical objects) remains unchanged after operations or
transformations of a certain type are applied to the objects

* Equivariance:

Applying a transformation and then computing the function produces the same result as computing the
function and then applying the transformation

Revisit Convolution

Matrix multiplication views of (discrete) convolution:
* Filter => Toeplitz matrix

* Data => Toeplitz matrix

Revisit Convolution

Matrix multiplication views of (discrete) convolution:

* Filter => Toeplitz matrix

* Data => Toeplitz matrix Consider a special Toeplitz matrix: circulant matrix (must be square!)

Convolution with padding

WX L ITTTTTTTTTTIrTrd

C(w)

<< LT T T T TITTTI

Image Credit: https://towardsdatascience.com/deriving-convolution-from-first-principles-4ff124888028

https://towardsdatascience.com/deriving-convolution-from-first-principles-4ff124888028

Translation/Shift Operator

£.11 .

S ST

i

ST S

Image Credit: https://towardsdatascience.com/deriving-convolution-from-first-principles-4ff124888028

https://towardsdatascience.com/deriving-convolution-from-first-principles-4ff124888028

Translation/Shift Operator

Shift operator is also a circulant matrix!

il

S ST ST

Image Credit: https://towardsdatascience.com/deriving-convolution-from-first-principles-4ff124888028

https://towardsdatascience.com/deriving-convolution-from-first-principles-4ff124888028

Translation/Shift Equivariance

Matrix multiplication 1s non-commutative. But not for circulant matrices!

C(w) ST ST
shift operator shift operator

Image Credit: https://towardsdatascience.com/deriving-convolution-from-first-principles-4ff124888028

C(w)

https://towardsdatascience.com/deriving-convolution-from-first-principles-4ff124888028

Translation/Shift Equivariance

Matrix multiplication 1s non-commutative. But not for circulant matrices!

C(w) ST ST
shift operator shift operator

Convolution is translation equivariant, i.e., Conv(Shift(X)) = Shift(Conv(X))!

Image Credit: https://towardsdatascience.com/deriving-convolution-from-first-principles-4ff124888028

C(w)

https://towardsdatascience.com/deriving-convolution-from-first-principles-4ff124888028

Translation/Shift Invariance

Global pooling gives you shift-invariance!

224 x224x3 224x224x64

56

28><28><5121

4096 1x1x1000

| e—

@ convolution+ReLLU

@ max pooling
1" fully connected+ReLU

ﬁ softmax

Image Credit: https://towardsdatascience.com/covolutional-neural-network-cb0883dd6529

https://towardsdatascience.com/covolutional-neural-network-cb0883dd6529

Translation/Shift Equivariance Invariance

Yann LeCun’s LeNet Demo:

S

answer:

S LeNet 5 | 5 (el Net :
0

)

e p s |15

it)

£ ?
\5
i}
[
m -
"
"
[
-
)
dJ

o

Image Credit: http://vann.lecun.com/exdb/lenet/translation.html

http://yann.lecun.com/exdb/lenet/translation.html

Permutation Invariance

Point Clouds X € R™* 3
Probability of Classes Y € RIXK
Permutation / Shuffle P € RAT

Table

Image Credit: https://github.com/AnTao97/PointCloudDatasets

https://github.com/AnTao97/PointCloudDatasets

Permutation Invariance

Point Clouds X € R™* 3
Probability of Classes Y € RIXK
Permutation / Shuffle P € RAT

> = W Ot N
1
O = O O O
o O O O -
o O = OO
_ O O O O
O OO = O
U= W N

Image Credit: https://github.com/AnTao97/PointCloudDatasets

https://github.com/AnTao97/PointCloudDatasets

Geometric Interpretation of Permutation Matrix

Birkhoff Polytope

B, ={P € R™"|ViVj P;; >0,¥i » Py;=1Vj » Pj=1}
j i
Doubly Stochastic Matrix

Geometric Interpretation of Permutation Matrix

Birkhoff Polytope
B, ={P € R™"|ViVj P;; >0,¥i » Py;=1Vj » Pj=1}

j
Doubly Stochastic Matrix

Birkhoff—von Neumann Theorem:

1. Birkhoff Polytope is the convex hull of permutation matrices

2. Permutation matrices = Vertices of Birkhoff Polytope S n

Geometric Interpretation of Permutation Matrix

Birkhoff Polytope
B, ={P € R™"|ViVj P;; >0,¥i » Py;=1Vj » Pj=1}

j
Doubly Stochastic Matrix

Birkhoff—von Neumann Theorem:

1. Birkhoff Polytope is the convex hull of permutation matrices

2. Permutation matrices = Vertices of Birkhoff Polytope S

Image Credit: https://arxiv.org/pdf/1710.09508.pdf

https://arxiv.org/pdf/1710.09508.pdf

Permutation Invariance

Point Clouds X € R™* 3
Probability of Classes Y € RIXK
Permutation / Shuffle P € RAT

Y = f(PX) VPEeS,

Image Credit: https://github.com/AnTao97/PointCloudDatasets

https://github.com/AnTao97/PointCloudDatasets

Permutation Equivariance

Image Credit: https://github.com/AnTao97/PointCloudDatasets

Point Clouds

Probability of Classes

Permutation / Shuffle

Point Representations

X e R™°

Y € RlXK
P e R""™

H e R™*

https://github.com/AnTao97/PointCloudDatasets

Permutation Equivariance

Point Clouds X € R™* 3

Probability of Classes Y € RIXK

Permutation / Shuffle P € RAT

Point Representations H c R™X d
H = f(X)

Image Credit: https://github.com/AnTao97/PointCloudDatasets

https://github.com/AnTao97/PointCloudDatasets

Permutation Equivariance

Point Clouds X € R™* 3

Probability of Classes Y € RIXK

Permutation / Shuffle P € RAT

Point Representations H c R™X d
H = f(X)

PH = Pf(X) = f(PX)

Image Credit: https://github.com/AnTao97/PointCloudDatasets

https://github.com/AnTao97/PointCloudDatasets

Permutation Equivariance

Point Clouds X € R™* 3

Probability of Classes Y € RIXK

Permutation / Shuffle P € RAT

Point Representations H c R™X d
H = f(X)

PH = Pf(X) = f(PX)

Image Credit: https://github.com/AnTao97/PointCloudDatasets

https://github.com/AnTao97/PointCloudDatasets

More on Invariance & Equivariance

* What about other transformations, e.g., scaling, 2D/3D rotations, Gauge transformation?

3= PAE e
ER e e M'

L ik

= ‘
@mrl feNet5 | geseancu

g AL
e

T

iz
g |
N
Y
N

1 =7,

Image Credit: http://vann.lecun.com/exdb/lenet/scale.html

http://yann.lecun.com/exdb/lenet/scale.html

More on Invariance & Equivariance

* What about other transformations, e.g., scaling, 2D/3D rotations, Gauge transformation?

.
.y
jm}

RESEARCH

N rs
.IZ 4/

et R LR

1. L
l|: i l‘i‘l[; h[|

8
-
A
[
q
LE

* Generalize to Group Invariance & Equivariance
Recommend Taco Cohen’s PhD Thesis: https://pure.uva.nl/ws/files/60770359/Thesis.pdf

Image Credit: http://vann.lecun.com/exdb/lenet/scale.html

https://pure.uva.nl/ws/files/60770359/Thesis.pdf
http://yann.lecun.com/exdb/lenet/scale.html

Deep Learning for Sets

* Point-level Tasks
Input: a vector per point
Output: a label/vector per point

Predictions of individual points are independent, e.g., image classification

Deep Learning for Sets

* Point-level Tasks
Input: a vector per point
Output: a label/vector per point

Predictions of individual points are independent, e.g., image classification

e Set-level Tasks

Input: a set of vectors, each corresponds to a point
Output: a label/vector per set

Prediction of a set depends on all points, e.g., point cloud classification

Deep Learning for Sets

Key Challenges:
* Varying-sized input sets
* Permutation equivariant and invariant models

* Expressive models

Deep Learning for Sets

* Deep Sets [1]

Theorem 2 A function f(X) operating on a set X having elements from a countable universe, is a
valid set function, 1.€., invariant to the permutation of instances in X, iff it can be decomposed in the

form p (3" .cx ¢(x)), for suitable transformations ¢ and p.

Deep Learning for Sets

* Deep Sets [1]

Theorem 2 A function f(X) operating on a set X having elements from a countable universe, is a
valid set function, 1.€., invariant to the permutation of instances in X, iff it can be decomposed in the

form p (3" .cx ¢(x)), for suitable transformations ¢ and p.

Sketch of Proof

Sufficiency: summation is permutation invariant!

Deep Learning for Sets

* Deep Sets [1]

Theorem 2 A function f(X) operating on a set X having elements from a countable universe, is a
valid set function, 1.€., invariant to the permutation of instances in X, iff it can be decomposed in the

form p (3" .cx ¢(x)), for suitable transformations ¢ and p.

Sketch of Proof

Sufficiency: summation is permutation invariant!
Necessity: find an unique representation of any set and then map it!

1. Construct a mapping c: X —> N

Deep Learning for Sets

* Deep Sets [1]

Theorem 2 A function f(X) operating on a set X having elements from a countable universe, is a
valid set function, 1.€., invariant to the permutation of instances in X, iff it can be decomposed in the

form p (3" .cx ¢(x)), for suitable transformations ¢ and p.

Sketch of Proof

Sufficiency: summation is permutation invariant!
Necessity: find an unique representation of any set and then map it!
1. Construct a mapping c: X —> N

2. Let ¢(CC) = 4_6(96)

Deep Learning for Sets

* Deep Sets [1]

Theorem 2 A function f(X) operating on a set X having elements from a countable universe, is a
valid set function, 1.€., invariant to the permutation of instances in X, iff it can be decomposed in the

form p (3" .cx ¢(x)), for suitable transformations ¢ and p.

Sketch of Proof

Sufficiency: summation is permutation invariant!

Necessity: find an unique representation of any set and then map it!

1. Construct a mapping c: X —> N
2. Let ¢(CC) = 4_6(96)
3. Injection X ¢ X _ Z ¢(33)

reX

Deep Learning for Sets

* Deep Sets [1]

Theorem 2 A function f(X) operating on a set X having elements from a countable universe, is a
valid set function, 1.€., invariant to the permutation of instances in X, iff it can be decomposed in the

form p (3" .cx ¢(x)), for suitable transformations ¢ and p.

Sketch of Proof

Sufficiency: summation is permutation invariant!

Necessity: find an unique representation of any set and then map it!

1. Construct a mapping c: X —> N
2. Let ¢($) — 4—<®) Base 2 does not work! Why?
3. Injection X ¢ X _ Z ¢(33)

reX

Deep Learning for Sets

* Deep Sets [1]

Invariant Architecture

‘EOpﬁonaI

i conditioning

i based on meta-
}information

II__Ii »@»? S0

Image Credit: [1]

Deep Learning for Sets

* Deep Sets [1] fo(x) = o(0x) © € RM*M

Lemma 3 The function fo : RM — RM defined above is permutation equivariant iff all the off-
diagonal elements of © are tied together and all the diagonal elements are equal as well. That is,

O =M+~ (11") MYyeER 1=11,...,1]" eRM I ¢ RM*M s the identity matrix

Deep Learning for Sets

* Deep Sets [1] fo(x) = o(0x) © € RM*M

Lemma 3 The function fo : RM — RM defined above is permutation equivariant iff all the off-
diagonal elements of © are tied together and all the diagonal elements are equal as well. That is,

O =M+~ (11") MYyeER 1=11,...,1]" eRM I ¢ RM*M s the identity matrix
Sketch of Proof

Permutation Equivariance O'(@ﬂ'X) = 7TO'(@X) (w. element-wise bijective nonlinearity) reduces to 7TOX = Omx

Deep Learning for Sets

* Deep Sets [1] fo(x) = o(0x) © € RM*M

Lemma 3 The function fo : RM — RM defined above is permutation equivariant iff all the off-
diagonal elements of © are tied together and all the diagonal elements are equal as well. That is,

O =M+~ (11") MYyeER 1=11,...,1]" eRM I ¢ RM*M s the identity matrix

Sketch of Proof

Permutation Equivariance O'(@ﬂ'X) = 7TO'(@X) (w. element-wise bijective nonlinearity) reduces to 7TOX = Omx

Sufficiency: © is commutable with permutation matrix

Deep Learning for Sets

* Deep Sets [1] fo(x) = o(0x) © € RM*M

Lemma 3 The function fo : RM — RM defined above is permutation equivariant iff all the off-
diagonal elements of © are tied together and all the diagonal elements are equal as well. That is,

O =M+~ (11") MYyeER 1=11,...,1]" eRM I ¢ RM*M s the identity matrix

Sketch of Proof

Permutation Equivariance O'(@ﬂ'X) = 7TO'(@X) (w. element-wise bijective nonlinearity) reduces to 7TOX = Omx

Sufficiency: © is commutable with permutation matrix
. . . L . T -1 _
Necessity: consider a special permutation (i.e., transposition / swap) T = T i = Ty
1. All diagonal elements are identical
T1© =Omp; = T, Om =0 = (m0m k)i =011 = Orr =06,

Deep Learning for Sets

* Deep Sets [1] fo(x) = o(0x) © € RM*M

Lemma 3 The function fo : RM — RM defined above is permutation equivariant iff all the off-
diagonal elements of © are tied together and all the diagonal elements are equal as well. That is,

O =M+~ (11") MYyeER 1=11,...,1]" eRM I ¢ RM*M s the identity matrix

Sketch of Proof

Permutation Equivariance O'(@ﬂ'X) = 7TO'(@X) (w. element-wise bijective nonlinearity) reduces to 7TOX = Omx

Sufficiency: © is commutable with permutation matrix

. . . i : ... —1
Necessity: consider a special permutation (i.e., transposition / swap) T ;I‘ =T = Ty

1. All diagonal elements are identical
T1© =Omp; = T, Om =0 = (m0m k)i =011 = Orr =06,
2. All off-diagonal elements are identical
Wj/,jﬂi,i/@ = @Wj/,jﬂ'z',i/ = 7Tj/’j7'('i,i/@(’ﬂ'j/,jﬂ'i,i/)_l =06 =

T 4,5 Oy 45 50 = O = (W 73 5Oy 475 50)i5 = Op 5 = Op jv = Oy ;

Deep Learning for Sets

* Deep Sets [1]

Equivariant Architecture f(x) = a(xA — 11TxI‘)

":Opﬁonal

+ conditioning

' based on meta-
{information

Image Credit: [1]

Deep Learning for Sets

* Deep Sets [1]
Recipe for making the model deep:

Stack multiple equivariant layers (+ invariant layer at the end), e.g., PointNet [2]

‘EOpﬁonaI

t conditioning
{based on meta-
finformation

||_'r.A.

Image Credit: [1]

Deep Learning for Sequences

* Language Models

books

/ laptops
Pz 2® M) the students opened their —
\\ exams

minds

Image Credit: http://web.stanford.edu/class/cs224n/

http://web.stanford.edu/class/cs224n/

Deep Learning for Sequences

* Language Models

Pz 2®

 Machine Translation

INPU

Je suis

Image Credit: http://web.stanford.edu/class/cs224n/
https://jalammar.github.io/illustrated-transformer/

L) the students opened their
\
, : THE
étudiant | ——» TRANSEORMER
2 oo
J

am

books

/‘ / laptops

\\ exams

minds

a student

http://web.stanford.edu/class/cs224n/
https://jalammar.github.io/illustrated-transformer/

Deep Learning for Sequences

Key Challenges:

* Varying-sized input sequences

Deep Learning for Sequences

Key Challenges:

* Varying-sized input sequences
* Orders “may” be crucial for cognition

Aoccdrnig to a rscheearch at Cmabrigde Uinervtisy, it deosn't mttaer in waht oredr the Itteers in a
wrod are, the olny iprmoetnt tihng is taht the frist and Isat Itteer be at the rghit pclae. The rset can be
a toatl mses and you can sitll raed it wouthit porbelm. Tihs is bcuseae the huamn mnid deos not raed
ervey lteter by istlef, but the wrod as a wlohe.

Image Credit: https://www.mrc-cbu.cam.ac.uk/people/matt.davis/cmabridge

https://www.mrc-cbu.cam.ac.uk/people/matt.davis/cmabridge/

Deep Learning for Sequences

Key Challenges:

* Varying-sized input sequences
* Orders “may” be crucial for cognition

Aoccdrnig to a rscheearch at Cmabrigde Uinervtisy, it deosn't mttaer in waht oredr the Itteers in a
wrod are, the olny iprmoetnt tihng is taht the frist and Isat Itteer be at the rghit pclae. The rset can be
a toatl mses and you can sitll raed it wouthit porbelm. Tihs is bcuseae the huamn mnid deos not raed
ervey lteter by istlef, but the wrod as a wlohe.

* Complex statistical dependencies (e.g. long-range ones)

As aliens entered our planet

Image Credit: https://www.mrc-cbu.cam.ac.uk/people/matt.davis/cmabridge/
https://towardsdatascience.com/illustrated-guide-to-transformers-step-by-step-explanation-f74876522bc0

https://www.mrc-cbu.cam.ac.uk/people/matt.davis/cmabridge/
https://towardsdatascience.com/illustrated-guide-to-transformers-step-by-step-explanation-f74876522bc0

Deep Learning for Sequences

Key Challenges:

* Varying-sized input sequences
* Orders “may” be crucial for cognition

Aoccdrnig to a rscheearch at Cmabrigde Uinervtisy, it deosn't mttaer in waht oredr the Itteers in a
wrod are, the olny iprmoetnt tihng is taht the frist and Isat Itteer be at the rghit pclae. The rset can be
a toatl mses and you can sitll raed it wouthit porbelm. Tihs is bcuseae the huamn mnid deos not raed
ervey lteter by istlef, but the wrod as a wlohe.

* Complex statistical dependencies (e.g. long-range ones)

LSTM [3]
GRU [4]
Seq2Seq [5]
Transformer [6]

As aliens entered our planet

Image Credit: https://www.mrc-cbu.cam.ac.uk/people/matt.davis/cmabridge/
https://towardsdatascience.com/illustrated-guide-to-transformers-step-by-step-explanation-f74876522bc0

https://www.mrc-cbu.cam.ac.uk/people/matt.davis/cmabridge/
https://towardsdatascience.com/illustrated-guide-to-transformers-step-by-step-explanation-f74876522bc0

Transtormers

OUTPUT[I am a student]

s N s
ENCODER > DECODER
L 7 .
4 4
4) {
ENCODER DECODER
4§ J .
/) /)
s N s
ENCODER DECODER
. 7 .
[} [}
s N s
ENCODER DECODER
- 7 .
i 4
s N s
ENCODER DECODER
. J .
4 4
e ~ e
ENCODER DECODER
. J .
_ Y

INPUT H Je suis étudiant ”

Image Credit: https://jalammar.github.io/illustrated-transformer/

https://jalammar.github.io/illustrated-transformer/

Transtormers

OUTPUT[I am a student]

(~\
ENCODER > DECODER
\ J
L) 4
4 B
ENCODER DECODER
\ J
4 4
e 2
ENCODER DECODER
\ J
4 4
e 2
ENCODER DECODER
L J
4 4
e \
ENCODER DECODER
\ J
4 4
s ~
ENCODER DECODER
\ J
_ Y

INPUT | Je suis étudiant

Image Credit: https://jalammar.github.io/illustrated-transformer/

ENCODER

i

DECODER '

Feed Forward

(

Feed Forward

4

4

Encoder-Decoder Attention

(

Self-Attention

(
J]_(
)

Self-Attention

4

t

https://jalammar.github.io/illustrated-transformer/

Transtormers

Output
Probabilities

(- N\
Add & Norm

Feed
Forward
A

I
l Add & Norm lﬁ

4)
r—>' Add & Norm l -
Multi-Head
Feed Attention N x
Forward A gy g3
A
~—]
Nx
(—>' Add & Norm l
Masked
Multi-Head Multi-Head
Attention Attention
* A ’ * A ’
~—] -/
_ J G J
Positional ®_€9 6)_® Positional
Encoding Encoding

Input
Embedding

f

Inputs

Output
Embedding

f

Outputs
(shifted right)

Image Credit: [6] & https://jalammar.github.io/illustrated-transformer/

t

Feed Forward

&

Self-Attention

t

t

Feed Forward

4

Encoder-Decoder Attention

4

N\ ()

Self-Attention

-/

t

https://jalammar.github.io/illustrated-transformer/

Transtormers

Output
Probabilities

(- ™\
Add & Norm

Feed
Forward t
1 y (Feed Forward
(A & vom) t T
(r—P' Add & Norm \l Add & Rorm Feed Forward (Encoder-Decoder Attention
Multi-Head 'y
Feed Attention N x
Forward A g g3 Self-Attention Self-Attention
A 5
 — t
Nx Add & Norm

(—>' Add & Norm l
Masked

_

—]

Multi-Head
Attention

4+

Multi-Head
Attention

J

Positional
Encoding

o

Input
Embedding

f

Inputs

\.

i+

I —

J

O

Output
Embedding

f

Outputs

(shifted right)

Image Credit: [6] & https://jalammar.github.io/illustrated-transformer/

Positional
Encoding

https://jalammar.github.io/illustrated-transformer/

Transtormers

Output
Probabilities

(- ™\
Add & Norm

Feed
Forward
A

I
l Add & Norm lﬁ

4)
r—>' Add & Norm l -
Multi-Head
Feed Attention N x
Forward g3 gy g3
A
~—]
Nx
(—>' Add & Norm l
Masked
Multi-Head Multi-Head
Attention Attention
* A ’ * A ’
~—] -/
_ J G J
Positional ®_€9 E)_® Positional
Encoding Encoding

Input
Embedding

f

Inputs

Output
Embedding

f

Outputs
(shifted right)

Image Credit: [6] & https://jalammar.github.io/illustrated-transformer/

t

T

Feed Forward

Feed Forward

4

Self-Attention

Encoder-Decoder Attention

4

t

Self-Attention

—_J

t

https://jalammar.github.io/illustrated-transformer/

Transtormers

Output
Probabilities

(- ™\
Add & Norm

Feed
Forward
A

I
l Add & Norm lﬁ

4)
r—>' Add & Norm l -
Multi-Head
Feed Attention N x
Forward g3 gy g3
A —
N
N
(—>' Add & Norm l
Masked
Multi-Head Multi-Head
Attention Attention
* A ’ * jt }
——— J ——
Positional ®_€9 E)_® Positional
Encoding Encoding
Input Output
Embedding Embedding
Inputs Outputs

(shifted right)

Image Credit: [6] & https://jalammar.github.io/illustrated-transformer/

t

Feed Forward

&

t

Feed Forward

4

)

Encoder-Decoder Attention

—_—

Self-Attention

t

2

Self-Attention

3

https://jalammar.github.io/illustrated-transformer/

Transtormers

Output
Probabilities

(- ™\
Add & Norm

Feed
Forward $

A
Feed Forward

t
(r—F' Add & Norm \l S e (Feed Forward

)
J I (Encoder-Decoder Attention

Multi-Head 7y
Feed Attention N x (
Forward é ’ Self-Attention Self-Attention
T #
9 T t

~—]

Add & Norm
(—>' Add & Norm l
Masked

l

Multi-Head Multi-Head
Attention Attention
_ J . —
Positional / 9 E N Positional
Encoding Encoding
Input Output
Embedding Embedding
Inputs Outputs

(shifted right)

Image Credit: [6] & https://jalammar.github.io/illustrated-transformer/

https://jalammar.github.io/illustrated-transformer/

Transtormers

Output
Probabilities
Softmax
Linear
(",)
Add & Norm
Feed
Forward 1
1 Feed Forward
~ t
(r—P' Add & Norm \l Add &' Sorn (Feed Forward Encoder-Decoder Attention
Multi-Head 7y _ yy
Feed Attention N x
Forward } } } Self-Attention J [Self-Attention J
A
| t t
Nx Add & Norm
(—>' Add & Norm l
Masked
Multi-Head Multi-Head
Attention Attention
~—] I
_ J _ J
Positional _9 6' Positional
Encoding Encoding
Input Output
Embedding Embedding
Inputs Outputs

(shifted right)

Image Credit: [6] & https://jalammar.github.io/illustrated-transformer/

https://jalammar.github.io/illustrated-transformer/

Input Encoding

Image Credit: [6]

Output
Probabilities

¢ 2
Add & Norm

Feed
Forward
A

.
' Add & Norm |<ﬂ

4 O\
(—P' Add & Norm l -
Multi-Head
Feed Attention N x
Forward A gy g3
A
~—
Nx Add & Norm
r—>' Add & Norm I
Masked
Multi-Head Multi-Head
Attention Attention
A A
N 8 A)
(Positional _9 \ E' Positional
Encoding c ‘ Encoding
Input Output
Embedding Embedding
\ Inputs) Outputs

(shifted right)

Input Embedding

Output
Probabilities

()
Add & Norm
Feed
Forward
A
.
e ~\ ' Add & Norm |<ﬂ Embeddlng
f—P' Add & Norm l
Multi-Head
Feed Attention Nx
Forward A gy g3 T ? A; T
1 | | | |
N—— I | 1 |
Nx Add & Norm [I [I
Add & Norm P 5 h
aske
Multi-Head Multi-Head H I OW a re yo u
Attention Attention
A A
4+ i+
O — J \ ——
Positional _9 G' Positional
Encoding ‘ Encoding
Input Output
Embedding Embedding
Inputs Outputs

(shifted right)

Image Credit: [6] & https://towardsdatascience.com/illustrated-guide-to-transformers-step-by-step-explanation-f74876522bc0

https://towardsdatascience.com/illustrated-guide-to-transformers-step-by-step-explanation-f74876522bc0

Positional Encoding

Output
Probabilities

()
Add & Norm
Feed
Forward
A
.
s N\ ' Add & Norm |<ﬂ
f—P' Add & Norm l
Multi-Head
Feed Attention Nx
Forward A gy g3
A
~—
Nx Add & Norm
f—P' Add & Norm I
Masked
Multi-Head Multi-Head
Attention Attention
A A
N L A)
Positional G' Positional
Encoding ‘ Encoding
Input Output
Embedding Embedding
Inputs Outputs

(shifted right)

Embedding

A 4 4
I I I
| | |
I I I
I I I

Hi how are you

PE(pos,%) = S'in(pos/lOOOOZi/dmodel)
PE(pos,2i11) = cos(pos/ 100002/ dmodet)

Image Credit: [6] & https://towardsdatascience.com/illustrated-guide-to-transformers-step-by-step-explanation-f74876522bc0

https://towardsdatascience.com/illustrated-guide-to-transformers-step-by-step-explanation-f74876522bc0

Positional Encoding

6 100 12

0 80 0
1

PE(pos,2i) = Sin(p08/100002i/dmodel)

PE (o5 2i11) = cos(pos/ 10()()()2i/dmodez)

Image Credit: https://lilianweng.github.io/lil-log/2020/04/07/the-transformer-family.html

https://lilianweng.github.io/lil-log/2020/04/07/the-transformer-family.html

Encoder

Output
Probabilities

()
Add & Norm
Feed
Forward
A
(\ .
f s \ ' Add & Norm |<ﬂ .
f—P' Add & Norm l Embedd'ng
Multi-Head
Feed Attention Nx
Forward L } } } 4 * + *
A
| : 1 : 1
Nx Add & Norm I \ I
/—P' Add & Norm I I w I |
Masked :
Multi-Head Multi-Head Hi how are you
Attention Attention
* A ’ * A ’
. J \ J
Positional _9 G' Positional
Encoding c ‘ Encoding
Input Output
Embedding Embedding
Inputs Outputs

(shifted right)

Image Credit: [6] & https://towardsdatascience.com/illustrated-guide-to-transformers-step-by-step-explanation-f74876522bc0

https://towardsdatascience.com/illustrated-guide-to-transformers-step-by-step-explanation-f74876522bc0

Multi-Head Attention

Vs

~—]

f—F[mz Norm

f—>| Add & l

~
Norm
Feed
Forward

Output
Probabilities

(- ™\
Add & Norm

Feed
Forward

|
l Add & Norm lﬁ

N

Multi-Head
Attention

2 4

N

_

—]

Multi-Head
Attention

4+

Add & Norm

Masked
Multi-Head
Attention

J

Positional
Encoding

-

Input
Embedding

f

Inputs

\.

i+

I —

J

O

Output
Embedding

f

Outputs
(shifted right)

Image Credit: [6] & https://theaisummer.com/transformer/

Positional
Encoding

— K

Attention(Q, K, V') = softmax(

-T

Vi

WV

https://theaisummer.com/transformer/

Multi-Head Attention

Output
Probabilities

query key value

BBFB HBFB BHFB

e ~N Tl U e | G
Add & Norm Linear Linear Linear
Feed
Forward
A
.
e N\ ' Add & Norm |<ﬂ
f—P' Add & Norm l
Multi-Head
Feed Attention Nx
Forward A J) g3
A
N ~—
X Add & Norm
Add & Norm
f_hﬁ Masked
Multi-Head Multi-Head
Attention Attention
* A ’ * A
— _}—J
\ Y, N\ J
Positional _9 G' Positional
Encoding c ‘ Encoding
Input Output
Embedding Embedding
Inputs Outputs

(shifted right)

Image Credit: [6] & https://towardsdatascience.com/illustrated-guide-to-transformers-step-by-step-explanation-f74876522bc0

https://towardsdatascience.com/illustrated-guide-to-transformers-step-by-step-explanation-f74876522bc0

Multi-Head Attention

Output
Probabilities

query value

BBFB HBFB BHFB

e ~N Tl e | T
Add & Norm Linear Linear Linear
Feed
Forward
A
.
e ~\ ' Add & Norm |<ﬂ
f—P' Add & Norm l
Multi-Head
Feed Attention Nx
Forward A g g
A
N —
X Add & Norm
Add & Norm | Hi how are
T Masked
Multi-Head Multi-Head .
e [|| T o]
A A

Input Output

—) == EOan
Ereoins. Q- (V) i
Daos
Embedding Embedding
A A
(shifted right)

Inputs Outputs

Image Credit: [6] & https://towardsdatascience.com/illustrated-guide-to-transformers-step-by-step-explanation-f74876522bc0

https://towardsdatascience.com/illustrated-guide-to-transformers-step-by-step-explanation-f74876522bc0

Multi-Head Attention

Output
Probabilities

Hi how are
| EEEE
= ki B Bl

I
D ==
Add & Norm

Multi-Head
Feed Attention Nx
Forward A J) g3
A
N ~—]
X Add & Norm
Add & Norm)
- Masked Scaled Scores
Multi-Head Multi-Head
Attention Attention
* A ’ * A ’
~—] ./

\ Y, N\ J
Positional _9 G' Positional
Encoding c ‘ Encoding

Input Output
Embedding Embedding
Inputs Outputs

(shifted right)

Image Credit: [6] & https://towardsdatascience.com/illustrated-guide-to-transformers-step-by-step-explanation-f74876522bc0

https://towardsdatascience.com/illustrated-guide-to-transformers-step-by-step-explanation-f74876522bc0

Multi-Head Attention

Output
Probabilities

Scaled Scores

(" N\
Add & Norm

Feed
Forward
A

.
e N\ ' Add & Norm |<ﬂ
f—P' Add & Norm l

Multi-Head
Feed Attention Nx
Forward A J) g3)
1 Hi how are you
Nx
rm
—] Hi
Add & Norm Moskod
Multi-Head Multi-Head
Attention Attention how
A A [—
N S - A Softmax () =
_ J \ J
are
Positional _9 G' Positional
Encoding c ‘ Encoding
you
Input Output
Embedding Embedding
Inputs Outputs . ex 1,)(.1,' i)
(shifted right) softmaz(x); =

Z./. exp(z;))

Image Credit: [6] & https://towardsdatascience.com/illustrated-guide-to-transformers-step-by-step-explanation-f74876522bc0

https://towardsdatascience.com/illustrated-guide-to-transformers-step-by-step-explanation-f74876522bc0

Multi-Head Attention

r

~—]

(_m Norm |

Feed
Forward

~

f—P' Add & Norm l

Output
Probabilities

(" N\
Add & Norm

Feed

Forward
A

.
' Add & Norm |<ﬂ

Multi-Head
Attention

2 4

A

\.

—]

Multi-Head
Attention

L+

J

Positional
Encoding

¢
Input
Embedding

f

Inputs

Add & Norm

Masked
Multi-Head
Attention

\

L+

J

¢

Output
Embedding

f

Outputs
(shifted right)

Positional
Encoding

Hi
how
Softmax() =

are

you

softmax(x); =

Image Credit: [6] & https://towardsdatascience.com/illustrated-guide-to-transformers-step-by-step-explanation-f74876522bc0

Scaled Scores

Why square root?

https://towardsdatascience.com/illustrated-guide-to-transformers-step-by-step-explanation-f74876522bc0

Multi-Head Attention

Output
Probabilities

Hi how are you

Hi

how

Softmax() =

() are
Add & Norm

Feed
Forward you
A
.
4 ~\ ' Add & Norm |<ﬂ / () (,"171)('.1.,,)
Add & Norm - softmaz(x); = =———~—
E Multi-Head ‘ : Z - ('.I'/)(,I'/-)
Feed Attention Nx J J
Forward g g g
A
N —
X Add & Norm
Add & Norm . .
e Masked attention weights output
Multi-Head Multi-Head
Attention Attention
* A ’ * A ’
_ J 1\ —J)

Positional _9 G' Positional
Encoding c ‘ Encoding X e
Input Output
Embedding Embedding

f f

Inputs Outputs
(shifted right)

Image Credit: [6] & https://towardsdatascience.com/illustrated-guide-to-transformers-step-by-step-explanation-f74876522bc0

https://towardsdatascience.com/illustrated-guide-to-transformers-step-by-step-explanation-f74876522bc0

Multi-Head Attention

Output
Probabilities

(" N\
Add & Norm

Feed
Forward
A

.
e N\ ' Add & Norm |<ﬂ
f—P' Add & Norm l

Multi-Head
Feed Attention Nx
Forward g g g
A
N ~—
X Add & Norm
Add & Norm
f_hﬁ Masked
Multi-Head Multi-Head
Attention Attention
* A ’ A
. J \ J
Positional _9 G' Positional
Encoding c ‘ Encoding
Input Output
Embedding Embedding
Inputs Outputs

(shifted right)

Image Credit: [6] & https://towardsdatascience.com/illustrated-guide-to-transformers-step-by-step-explanation-f74876522bc0

https://towardsdatascience.com/illustrated-guide-to-transformers-step-by-step-explanation-f74876522bc0

Layer Norm & Residual Connection

Output
Probabilities

()
Add & Norm
Feed
Forward
A
.
e ~\ ' Add & Norm |<ﬂ
f—P' Add & Norm l
Multi-Head
Feed Attention Nx
Forward A J) g3
A
N ~—
X Add & Norm
(_>' Add & Norm |
T Masked
Multi-Head Multi-Head
Attention Attention
A A
4+ i+
O — J \ ——
Positional _9 G' Positional ¢
Encoding c ‘ Encoding
Input Output R
Embedding Embedding Tik =
f f |
Inputs Outputs
(shifted right) Yi =

Image Credit: [6] & [7] & https://towardsdatascience.com/illustrated-guide-to-transformers-step-by-step-explanation-f74876522bc0

https://towardsdatascience.com/illustrated-guide-to-transformers-step-by-step-explanation-f74876522bc0

Decoder

Output \
Probabilities

(" N\
Add & Norm

Feed
Forward

1 Transformers
- N || | Gade Nomm) Decoder

f—P' Add & Norm l -
Multi-Head
Feed Attention Nx
Forward A J) g3
—
Nx
f—P'Add&Norml T
aske [T
Multi-Head Multi-Head
Attention Attention <start>
A A
=) =)
Positional _9 G' Positional
Encoding c ‘ Encoding
Tnput Output For certain applications like language
Embedding Embedding .
1 1 models, decoder should be autoregressive!
Inputs Outputs

(shifted right)

Image Credit: [6] & https://towardsdatascience.com/illustrated-guide-to-transformers-step-by-step-explanation-f74876522bc0

https://towardsdatascience.com/illustrated-guide-to-transformers-step-by-step-explanation-f74876522bc0

Masked Multi-Head Attention

Output \
Probabilities

<start> |

wore [T]2
== BEED
= amforfosJos 69
A

= '
Vs ~\ Add & Norm

(—P' Add & Norm l -
Multi-Head
Feed Attention N x
Forward A gy g3
_k
Nx .
—{Add & Nomm] — Prevent attending from future!
Multi-Head Multi-Head
Attention Attention
—

\) =
Positional _9 G' Positional
Encoding c ‘ Encoding

Input Output
Embedding Embedding
Inputs Outputs

(shifted right)

Image Credit: [6] & https://towardsdatascience.com/illustrated-guide-to-transformers-step-by-step-explanation-f74876522bc0

https://towardsdatascience.com/illustrated-guide-to-transformers-step-by-step-explanation-f74876522bc0

Masked Multi-Head Attention

Output \
Probabilities

<start> |

ere [IR[BE
(EEEmN 01] 06 | 62|60
= amJorfoafos |60
A

= ne [o
Vs ~\ Add & Norm

f—P' Add & Norm l
Multi-Head

Feed Attention Nx
Forward g g g
A
N —
X Add & N
—+ (A0 & Nom) — Scaled Scores Look-Ahead Mask Masked Scores
Masked
Multi-Head Multi-Head
Attention Attention
o) || Emmmn EOae

—) =~

” “ mmmm o []]
Positional _9 G' Positional
Encoding : : Encoding m n m

Input Output

Enbgiing Enbeding orfos]os]os) CEaE

Inputs Outputs
(shifted right)

Image Credit: [6] & https://towardsdatascience.com/illustrated-guide-to-transformers-step-by-step-explanation-f74876522bc0

https://towardsdatascience.com/illustrated-guide-to-transformers-step-by-step-explanation-f74876522bc0

Masked Multi-Head Attention

Output \
Probabilities

Scaled Scores Look-Ahead Mask Masked Scores

Sl R
el . FREE - FEEE

()
o o R o o R e e
Feed
ponn
7\
.
e N\ ' Add & Norm |<ﬂ
/—P' Add & Norm l
Multi-Head
Feed Attention Nx
Forward % % <start> | am
7\
—
Nx Add & Norm <start>
(_>' Add & Norm I
Masked
Multi-Head Multi-Head
Attention Attention
A 7\ Y A 7\ Y

L =0 Elel=l=
N~ / & j Softmax(

Positional _9 G' Positional m
e A4 DEEE

Input Output
Embedding Embedding
Inputs Outputs

(shifted right)

Image Credit: [6] & https://towardsdatascience.com/illustrated-guide-to-transformers-step-by-step-explanation-f74876522bc0

https://towardsdatascience.com/illustrated-guide-to-transformers-step-by-step-explanation-f74876522bc0

Hugging Face Demos

Image Credit: https://transformer.huggingface.co/

https://transformer.huggingface.co/

6 /
Write With Transformer

Get a modern neural network to
auto-complete your thoughts.

This web app, built by the Hugging Face team, is the official demo of the
@ /transformers repository's text generation capabilities.

C) star 57,016

https://transformer.huggingface.co/
https://transformer.huggingface.co/

Limitations

Output
Probabilities

¢ 2
Add & Norm

Feed
Forward
A

.
' Add & Norm |<ﬂ

4 O\
(—P' Add & Norm l
Multi-Head
Feed Attention N x
Forward A gy g3
A
~—
Nx Add & Norm
r—P' Add & Norm I
Masked
Multi-Head Multi-Head
Attention Attention
* A ’ * A
— _}—J
\ J \ J
Positional _9 E' Positional
Encoding c ‘ Encoding
Input Output
Embedding Embedding
Inputs Outputs

Image Credit: [6]

(shifted right)

* O(L"2) time/memory cost for self-attention

* How can we incorporate prior knowledge into attention
rather than having a fully connected attention?

Encourage sparse attention

Inject known graph structures

Pre-Norm vs. Post-Norm

Where to place the Layer Normalization?

Image Credit: [8]

X1+1

t

Layer Norm

t

addition

N\

FFN
Layer Norm
addition
A ;
Multi-Head
Attention

£

X1

Post-Norm

X1+1
addition
7y
FFN
Layer Norm
1/
addition
A \
Multi-Head
Attention
Layer Norm
£
X1
Pre-Norm

Pre-Norm vs. Post-Norm

. X1+1 X1+1
Where to place the Layer Normalization? . T
Layer Norm addition
$ 3
* Gradient norm in the Post-Norm addition .
Transformer is large for parameters \ i
near the output and will be likely to FFN Layer Norm
decay as the layer gets closer to input 1 /
3
Layer Norm addition
t A \
addition Multi-Head
1 \ Attention
Multi-Head T
Attention Layer Norm
[4 [4
F 3 ' 3
X1 X1
Post-Norm Pre-Norm

Image Credit: [8]

Pre-Norm vs. Post-Norm

Where to place the Layer Normalization?

Image Credit: [8]

Gradient norm in the Post-Norm
Transformer is large for parameters
near the output and will be likely to
decay as the layer gets closer to input

Training the Pre-Norm Transformer
does not rely on the learning rate
warm-up stage and can be trained
much faster than the Post-Norm

X1+1

t

Layer Norm

T

addition

N\

FFN

Layer Norm

t

addition

N

Multi-Head
Attention

|

[
F 3

X

Post-Norm

X1+1

1

addition
ry

FFN

T

Layer Norm

.

addition

e
RN

Multi-Head
Attention

T

[
A

X1

Pre-Norm

Layer Norm

Extensions: Vision Transformer

Image Credit: [9] & https://github.com/lucidrains/vit-pytorch

https://github.com/lucidrains/vit-pytorch

Extensions: Swin Transformer

Standard MSA

Attention for each patch is computed against all patches,
resulting in quadratic complexity

Image Credit: https://towardsdatascience.com/a-comprehensive-guide-to-swin-transformer-64965f89d14c

https://towardsdatascience.com/a-comprehensive-guide-to-swin-transformer-64965f89d14c

Extensions: Swin Transformer

Standard MSA Window-based MSA

Attention for each patch is computed against all patches,
resulting in quadratic complexity Window size is 2x2 in this example.

Image Credit: https://towardsdatascience.com/a-comprehensive-guide-to-swin-transformer-64965f89d14c

Attention for each patch is only computed within its own w

ndow (

drawn

n red).

https://towardsdatascience.com/a-comprehensive-guide-to-swin-transformer-64965f89d14c

Extensions: Swin Transformer

Window-based MSA Shifted Window MSA

Attention for each patch is only computed within its own window (drawn in red).

Windaw, Soeis 26 IS ampR: Step 1: Shift window by a factor of M/2, where M = window size

Image Credit: https://towardsdatascience.com/a-comprehensive-guide-to-swin-transformer-64965f89d14c

https://towardsdatascience.com/a-comprehensive-guide-to-swin-transformer-64965f89d14c

Extensions: Swin Transformer

Shifted Window MSA

Step 1: Shift window by a factor of M/2, where M = window size

Layer | Layer 1+1

A local window to
perform self-attention

A patch

Image Credit: https://towardsdatascience.com/a-comprehensive-guide-to-swin-transformer-64965f89d14c, [10]

https://towardsdatascience.com/a-comprehensive-guide-to-swin-transformer-64965f89d14c

Transtormer

Swin

Extensions

X2 ’

e 5 N
1

_ sE%

I 2 %9

< v ogm
: m - M y,
1
" SurSIaN yored
—l D ﬁ IIIII

e
[} 4 5)
! £

o o =4
" S8
1en I 2 m
I S
1S \o ﬂ J
1N
" SuiSIoN yored
/I A
_s (" m N
1
o 5 =4
" ER-g-
sl TEF
"wo \ M J
1
, SwiSIoy yo1ed
| {

N e e e e e e e e -
C(5)
| £5%

1 W v —
1 7 gM
AN = y,
1 -~
A A
“ Surppequry Jeaury
‘. #
uonn.red yojed
- A
7]
0]
3| 2
H —

- e e o am wm = = = P

- Em s o o o o

~

! _
1 1
ESEEEN - A
< mAILAr\ >l 4 [
_H .H. W N1
| & N 2 ~_
N e e et et et et e, e, e, e, e, e, e, e, e, - - - ’
P l/
] 1
1 1
1 < 1
Y Y
ar s JdD & :
avvai=halel asom bl a el
_lZ .dz W ./,Z.
\ 4

Image Credit: [10]

References

[1] Zaheer, M., Kottur, S., Ravanbakhsh, S., Poczos, B., Salakhutdinov, R. and Smola, A., 2017. Deep sets. arXiv preprint
arXiv:1703.06114.

[2] Q1, C.R., Su, H., Mo, K. and Guibas, L.J., 2017. Pointnet: Deep learning on point sets for 3d classification and segmentation. In
Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 652-660).

[3] Hochreiter, S. and Schmidhuber, J., 1997. Long short-term memory. Neural computation, 9(8), pp.1735-1780.

[4] Cho, K., Van Merriénboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H. and Bengio, Y., 2014. Learning phrase
representations using RNN encoder-decoder for statistical machine translation. arXiv preprint arXiv:1406.1078.

[5] Sutskever, 1., Vinyals, O. and Le, Q.V., 2014. Sequence to sequence learning with neural networks. In Advances in neural
information processing systems (pp. 3104-3112).

[6] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L. and Polosukhin, I., 2017. Attention is all you
need. In Advances in neural information processing systems (pp. 5998-6008).

[7] Ba, J.L., Kiros, J.R. and Hinton, G.E., 2016. Layer normalization. arXiv preprint arXiv:1607.06450.

[8] Xiong, R., Yang, Y., He, D., Zheng, K., Zheng, S., Xing, C., Zhang, H., Lan, Y., Wang, L. and Liu, T., 2020, November. On layer
normalization in the transformer architecture. In International Conference on Machine Learning (pp. 10524-10533). PMLR.

[9] Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G.,
Gelly, S. and Uszkoreit, J., 2020. An image 1s worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929.

[10] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S. and Guo, B., 2021. Swin transformer: Hierarchical vision transformer
using shifted windows. In Proceedings of the IEEE/CVF International Conference on Computer Vision (pp. 10012-10022).

Questions?

