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Course Scope

* Brief Intro to Deep Learning

* Geometric Deep Learning
* Deep Learning Models for Sets and Sequences: Deep Sets & Transformers

* Deep Learning Models for Graphs: Message Passing & Graph Convolution GNNs
* Group Equivariant Deep Learning

* Probabilistic Deep Learning

Auto-regressive models, Large Language Models (LLMs)
Variational Auto-Encoders (VAEs) and Generative Adversarial Networks (GANS)

Energy based models (EBMs)
Diffusion/Score based models
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Motivating Applications for Sets

* Population Statistics
* Point Cloud Classification

Table Airplane Earphone

Image Credit: https://github.com/AnTao97/PointCloudDatasets
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Invariance & Equivariance

* Invariance:

A mathematical object (or a class of mathematical objects) remains unchanged after operations or
transformations of a certain type are applied to the objects

f(X) = f(g(X))
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Invariance & Equivariance

* Invariance:

A mathematical object (or a class of mathematical objects) remains unchanged after operations or
transformations of a certain type are applied to the objects

* Equivariance:

Applying a transformation and then computing the function produces the same result as computing the
function and then applying the transformation



Revisit Convolution

Matrix multiplication views of (discrete) convolution:
* Filter => Toeplitz matrix

* Data => Toeplitz matrix



Revisit Convolution

Matrix multiplication views of (discrete) convolution:

* Filter => Toeplitz matrix

* Data => Toeplitz matrix Consider a special Toeplitz matrix: circulant matrix (must be square!)

Convolution with padding
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Image Credit: https://towardsdatascience.com/deriving-convolution-from-first-principles-4ff124888028
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Translation/Shift Operator
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Image Credit: https://towardsdatascience.com/deriving-convolution-from-first-principles-4ff124888028
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Translation/Shift Operator

Shift operator is also a circulant matrix!
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Image Credit: https://towardsdatascience.com/deriving-convolution-from-first-principles-4ff124888028
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Translation/Shift Equivariance

Matrix multiplication 1s non-commutative. But not for circulant matrices!

C(w) ST ST
shift operator shift operator

Image Credit: https://towardsdatascience.com/deriving-convolution-from-first-principles-4ff124888028

C(w)
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Translation/Shift Equivariance

Matrix multiplication 1s non-commutative. But not for circulant matrices!

C(w) ST ST
shift operator shift operator

Convolution is translation equivariant, i.e., Conv(Shift(X)) = Shift(Conv(X))!

Image Credit: https://towardsdatascience.com/deriving-convolution-from-first-principles-4ff124888028

C(w)
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Translation/Shift Invariance

Global pooling gives you shift-invariance!
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@ convolution+ReLLU

@ max pooling
1" fully connected+ReLU

ﬁ softmax

Image Credit: https://towardsdatascience.com/covolutional-neural-network-cb0883dd6529
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Translation/Shift Equivariance Invariance

Yann LeCun’s LeNet Demo:
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Image Credit: http://vann.lecun.com/exdb/lenet/translation.html
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Permutation Invariance

Point Clouds X € R™* 3
Probability of Classes Y € RIXK
Permutation / Shuffle P € RAT

Table

Image Credit: https://github.com/AnTao97/PointCloudDatasets



https://github.com/AnTao97/PointCloudDatasets

Permutation Invariance

Point Clouds X € R™* 3
Probability of Classes Y € RIXK
Permutation / Shuffle P € RAT
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Image Credit: https://github.com/AnTao97/PointCloudDatasets
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Geometric Interpretation of Permutation Matrix

Birkhoff Polytope
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Birkhoff—von Neumann Theorem:

1. Birkhoff Polytope is the convex hull of permutation matrices

2. Permutation matrices = Vertices of Birkhoff Polytope S n



Geometric Interpretation of Permutation Matrix

Birkhoff Polytope
B, ={P € R™"|ViVj P;; >0,¥i » Py;=1Vj » Pj=1}

j
Doubly Stochastic Matrix

Birkhoff—von Neumann Theorem:

1. Birkhoff Polytope is the convex hull of permutation matrices

2. Permutation matrices = Vertices of Birkhoff Polytope S

Image Credit: https://arxiv.org/pdf/1710.09508.pdf



https://arxiv.org/pdf/1710.09508.pdf

Permutation Invariance

Point Clouds X € R™* 3
Probability of Classes Y € RIXK
Permutation / Shuffle P € RAT

Y = f(PX) VPEeS,

Image Credit: https://github.com/AnTao97/PointCloudDatasets
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Permutation Equivariance

Image Credit: https://github.com/AnTao97/PointCloudDatasets

Point Clouds

Probability of Classes

Permutation / Shuffle

Point Representations
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https://github.com/AnTao97/PointCloudDatasets

Permutation Equivariance

Point Clouds X € R™* 3

Probability of Classes Y € RIXK

Permutation / Shuffle P € RAT

Point Representations H c R™X d
H = f(X)

Image Credit: https://github.com/AnTao97/PointCloudDatasets
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Permutation Equivariance

Point Clouds X € R™* 3

Probability of Classes Y € RIXK

Permutation / Shuffle P € RAT

Point Representations H c R™X d
H = f(X)

PH = Pf(X) = f(PX)

Image Credit: https://github.com/AnTao97/PointCloudDatasets
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Permutation Equivariance

Point Clouds X € R™* 3

Probability of Classes Y € RIXK

Permutation / Shuffle P € RAT

Point Representations H c R™X d
H = f(X)

PH = Pf(X) = f(PX)

Image Credit: https://github.com/AnTao97/PointCloudDatasets
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More on Invariance & Equivariance

* What about other transformations, e.g., scaling, 2D/3D rotations, Gauge transformation?
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Image Credit: http://vann.lecun.com/exdb/lenet/scale.html
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More on Invariance & Equivariance

* What about other transformations, e.g., scaling, 2D/3D rotations, Gauge transformation?
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* Generalize to Group Invariance & Equivariance
Recommend Taco Cohen’s PhD Thesis: https://pure.uva.nl/ws/files/60770359/Thesis.pdf

Image Credit: http://vann.lecun.com/exdb/lenet/scale.html



https://pure.uva.nl/ws/files/60770359/Thesis.pdf
http://yann.lecun.com/exdb/lenet/scale.html

Deep Learning for Sets

* Point-level Tasks
Input: a vector per point
Output: a label/vector per point

Predictions of individual points are independent, e.g., image classification



Deep Learning for Sets

* Point-level Tasks
Input: a vector per point
Output: a label/vector per point

Predictions of individual points are independent, e.g., image classification

e Set-level Tasks

Input: a set of vectors, each corresponds to a point
Output: a label/vector per set

Prediction of a set depends on all points, e.g., point cloud classification



Deep Learning for Sets

Key Challenges:
* Varying-sized input sets
* Permutation equivariant and invariant models

* Expressive models



Deep Learning for Sets

* Deep Sets [1]

Theorem 2 A function f(X) operating on a set X having elements from a countable universe, is a
valid set function, 1.€., invariant to the permutation of instances in X, iff it can be decomposed in the

form p (3" .cx ¢(x)), for suitable transformations ¢ and p.
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Deep Learning for Sets

* Deep Sets [1]

Theorem 2 A function f(X) operating on a set X having elements from a countable universe, is a
valid set function, 1.€., invariant to the permutation of instances in X, iff it can be decomposed in the

form p (3" .cx ¢(x)), for suitable transformations ¢ and p.

Sketch of Proof

Sufficiency: summation is permutation invariant!

Necessity: find an unique representation of any set and then map it!

1. Construct a mapping c: X —> N
2. Let ¢($) — 4—<®) Base 2 does not work! Why?
3. Injection X ¢ X _ Z ¢(33)

reX



Deep Learning for Sets

* Deep Sets [1]

Invariant Architecture
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Image Credit: [1]



Deep Learning for Sets

* Deep Sets [1] fo(x) = o(0x) © € RM*M

Lemma 3 The function fo : RM — RM defined above is permutation equivariant iff all the off-
diagonal elements of © are tied together and all the diagonal elements are equal as well. That is,

O =M+~ (11") MYyeER 1=11,...,1]" eRM I ¢ RM*M s the identity matrix
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* Deep Sets [1] fo(x) = o(0x) © € RM*M

Lemma 3 The function fo : RM — RM defined above is permutation equivariant iff all the off-
diagonal elements of © are tied together and all the diagonal elements are equal as well. That is,

O =M+~ (11") MYyeER 1=11,...,1]" eRM I ¢ RM*M s the identity matrix

Sketch of Proof

Permutation Equivariance O'(@ﬂ'X) = 7TO'(@X) (w. element-wise bijective nonlinearity) reduces to 7TOX = Omx

Sufficiency: © is commutable with permutation matrix

. . . i : ... —1
Necessity: consider a special permutation (i.e., transposition / swap) T ;I‘ =T = Ty

1. All diagonal elements are identical
T1© =Omp; = T, Om =0 = (m0m k)i =011 = Orr =06,
2. All off-diagonal elements are identical
Wj/,jﬂi,i/@ = @Wj/,jﬂ'z',i/ = 7Tj/’j7'('i,i/@(’ﬂ'j/,jﬂ'i,i/)_l =06 =

T 4,5 Oy 45 50 = O = (W 73 5Oy 475 50)i5 = Op 5 = Op jv = Oy ;



Deep Learning for Sets

* Deep Sets [1]

Equivariant Architecture f(x) = a(xA — 11TxI‘)
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Image Credit: [1]



Deep Learning for Sets

* Deep Sets [1]
Recipe for making the model deep:

Stack multiple equivariant layers (+ invariant layer at the end), e.g., PointNet [2]
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Deep Learning for Sequences

* Language Models
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Image Credit: http://web.stanford.edu/class/cs224n/
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Deep Learning for Sequences

* Language Models

Pz 2®

 Machine Translation
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Image Credit: http://web.stanford.edu/class/cs224n/
https://jalammar.github.io/illustrated-transformer/
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Deep Learning for Sequences

Key Challenges:

* Varying-sized input sequences
* Orders “may” be crucial for cognition

Aoccdrnig to a rscheearch at Cmabrigde Uinervtisy, it deosn't mttaer in waht oredr the Itteers in a
wrod are, the olny iprmoetnt tihng is taht the frist and Isat Itteer be at the rghit pclae. The rset can be
a toatl mses and you can sitll raed it wouthit porbelm. Tihs is bcuseae the huamn mnid deos not raed
ervey lteter by istlef, but the wrod as a wlohe.

Image Credit: https://www.mrc-cbu.cam.ac.uk/people/matt.davis/cmabridge
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Deep Learning for Sequences

Key Challenges:

* Varying-sized input sequences
* Orders “may” be crucial for cognition

Aoccdrnig to a rscheearch at Cmabrigde Uinervtisy, it deosn't mttaer in waht oredr the Itteers in a
wrod are, the olny iprmoetnt tihng is taht the frist and Isat Itteer be at the rghit pclae. The rset can be
a toatl mses and you can sitll raed it wouthit porbelm. Tihs is bcuseae the huamn mnid deos not raed
ervey lteter by istlef, but the wrod as a wlohe.

* Complex statistical dependencies (e.g. long-range ones)

As aliens entered our planet

Image Credit: https://www.mrc-cbu.cam.ac.uk/people/matt.davis/cmabridge/
https://towardsdatascience.com/illustrated-guide-to-transformers-step-by-step-explanation-f74876522bc0
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Deep Learning for Sequences

Key Challenges:

* Varying-sized input sequences
* Orders “may” be crucial for cognition

Aoccdrnig to a rscheearch at Cmabrigde Uinervtisy, it deosn't mttaer in waht oredr the Itteers in a
wrod are, the olny iprmoetnt tihng is taht the frist and Isat Itteer be at the rghit pclae. The rset can be
a toatl mses and you can sitll raed it wouthit porbelm. Tihs is bcuseae the huamn mnid deos not raed
ervey lteter by istlef, but the wrod as a wlohe.

* Complex statistical dependencies (e.g. long-range ones)

LSTM [3]
GRU [4]
Seq2Seq [5]
Transformer [6]

As aliens entered our planet

Image Credit: https://www.mrc-cbu.cam.ac.uk/people/matt.davis/cmabridge/
https://towardsdatascience.com/illustrated-guide-to-transformers-step-by-step-explanation-f74876522bc0
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Scaled Scores

Why square root?
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Hugging Face Demos

Image Credit: https://transformer.huggingface.co/

https://transformer.huggingface.co/

6 /
Write With Transformer

Get a modern neural network to
auto-complete your thoughts.

This web app, built by the Hugging Face team, is the official demo of the
@ /transformers repository's text generation capabilities.

C) star 57,016


https://transformer.huggingface.co/
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* O(L"2) time/memory cost for self-attention

* How can we incorporate prior knowledge into attention
rather than having a fully connected attention?

Encourage sparse attention

Inject known graph structures



Pre-Norm vs. Post-Norm

Where to place the Layer Normalization?

Image Credit: [8]
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Pre-Norm vs. Post-Norm
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Pre-Norm vs. Post-Norm

Where to place the Layer Normalization?

Image Credit: [8]

Gradient norm in the Post-Norm
Transformer is large for parameters
near the output and will be likely to
decay as the layer gets closer to input

Training the Pre-Norm Transformer
does not rely on the learning rate
warm-up stage and can be trained
much faster than the Post-Norm
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Extensions: Vision Transformer

Image Credit: [9] & https://github.com/lucidrains/vit-pytorch
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Extensions: Swin Transformer

Standard MSA

Attention for each patch is computed against all patches,
resulting in quadratic complexity

Image Credit: https://towardsdatascience.com/a-comprehensive-guide-to-swin-transformer-64965f89d14c
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Extensions: Swin Transformer

Standard MSA Window-based MSA

Attention for each patch is computed against all patches,
resulting in quadratic complexity Window size is 2x2 in this example.

Image Credit: https://towardsdatascience.com/a-comprehensive-guide-to-swin-transformer-64965f89d14c

Attention for each patch is only computed within its own w

ndow (

drawn

n red).
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Extensions: Swin Transformer

Window-based MSA Shifted Window MSA

Attention for each patch is only computed within its own window (drawn in red).

Windaw, Soeis 26 IS ampR: Step 1: Shift window by a factor of M/2, where M = window size

Image Credit: https://towardsdatascience.com/a-comprehensive-guide-to-swin-transformer-64965f89d14c
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Extensions: Swin Transformer

Shifted Window MSA

Step 1: Shift window by a factor of M/2, where M = window size

Layer | Layer 1+1

A local window to
perform self-attention

A patch

Image Credit: https://towardsdatascience.com/a-comprehensive-guide-to-swin-transformer-64965f89d14c, [10]
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