EECE 571F: Deep Learning with Structures

Lecture 2: Invariance, Equivariance, and Deep Learning Models for Sets/Sequences

Renjie Liao

University of British Columbia Winter, Term 1, 2023

Course Scope

- Brief Intro to Deep Learning
- Geometric Deep Learning
 - Deep Learning Models for Sets and Sequences: Deep Sets & Transformers
 - Deep Learning Models for Graphs: Message Passing & Graph Convolution GNNs
 - Group Equivariant Deep Learning
- Probabilistic Deep Learning
 - Auto-regressive models, Large Language Models (LLMs)
 - Variational Auto-Encoders (VAEs) and Generative Adversarial Networks (GANs)
 - Energy based models (EBMs)
 - Diffusion/Score based models

Course Scope

- Brief Intro to Deep Learning
- Geometric Deep Learning
 - Deep Learning Models for Sets and Sequences: Deep Sets & Transformers
 - Deep Learning Models for Graphs: Message Passing & Graph Convolution GNNs
 - Group Equivariant Deep Learning
- Probabilistic Deep Learning
 - Auto-regressive models, Large Language Models (LLMs)
 - Variational Auto-Encoders (VAEs) and Generative Adversarial Networks (GANs)
 - Energy based models (EBMs)
 - Diffusion/Score based models

Motivating Applications for Sets

- Population Statistics
- Point Cloud Classification

Invariance & Equivariance

• Invariance:

A mathematical object (or a class of mathematical objects) remains unchanged after operations or transformations of a certain type are applied to the objects

$$f(X) = f(g(X))$$

Invariance & Equivariance

• Invariance:

A mathematical object (or a class of mathematical objects) remains unchanged after operations or transformations of a certain type are applied to the objects

$$f(X) = f(g(X))$$

Invariance & Equivariance

• Invariance:

A mathematical object (or a class of mathematical objects) remains unchanged after operations or transformations of a certain type are applied to the objects

$$f(X) = f(g(X))$$

• Equivariance:

Applying a transformation and then computing the function produces the same result as computing the function and then applying the transformation

$$g(f(X)) = f(g(X))$$

Revisit Convolution

Matrix multiplication views of (discrete) convolution:

- Filter => Toeplitz matrix
- Data => Toeplitz matrix

Revisit Convolution

Matrix multiplication views of (discrete) convolution:

- Filter => Toeplitz matrix
- Data => Toeplitz matrix

Consider a special Toeplitz matrix: circulant matrix (must be square!)

Translation/Shift Operator

Translation/Shift Operator

Shift operator is also a circulant matrix!

Translation/Shift Equivariance

Matrix multiplication is non-commutative. But not for circulant matrices!

Translation/Shift Equivariance

Matrix multiplication is non-commutative. But not for circulant matrices!

Convolution is translation equivariant, i.e., Conv(Shift(X)) = Shift(Conv(X))!

Translation/Shift Invariance

Global pooling gives you shift-invariance!

Translation/Shift Equivariance Invariance

Yann LeCun's LeNet Demo:

Permutation Invariance

$$X \in \mathbb{R}^{n \times 3}$$

$$Y \in \mathbb{R}^{1 \times K}$$

$$P \in \mathbb{R}^{n \times n}$$

Permutation Invariance

Table

$$X \in \mathbb{R}^{n \times 3}$$

$$Y \in \mathbb{R}^{1 \times K}$$

$$P \in \mathbb{R}^{n \times n}$$

$$\begin{bmatrix} 2 \\ 5 \\ 3 \\ 1 \\ 4 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \\ 5 \end{bmatrix}$$

Geometric Interpretation of Permutation Matrix

Birkhoff Polytope

$$B_n = \{ P \in \mathbb{R}^{n \times n} | \forall i \forall j \ P_{ij} \ge 0, \forall i \ \sum_j P_{ij} = 1, \forall j \ \sum_i P_{ij} = 1 \}$$

Doubly Stochastic Matrix

Geometric Interpretation of Permutation Matrix

Birkhoff Polytope

$$B_n = \{ P \in \mathbb{R}^{n \times n} | \forall i \forall j \ P_{ij} \ge 0, \forall i \ \sum_j P_{ij} = 1, \forall j \ \sum_i P_{ij} = 1 \}$$

Doubly Stochastic Matrix

Birkhoff-von Neumann Theorem:

- 1. Birkhoff Polytope is the convex hull of permutation matrices
- 2. Permutation matrices = Vertices of Birkhoff Polytope S_n

Geometric Interpretation of Permutation Matrix

Birkhoff Polytope

$$B_n = \{ P \in \mathbb{R}^{n \times n} | \forall i \forall j \ P_{ij} \ge 0, \forall i \ \sum_j P_{ij} = 1, \forall j \ \sum_i P_{ij} = 1 \}$$

Doubly Stochastic Matrix

Birkhoff-von Neumann Theorem:

- 1. Birkhoff Polytope is the convex hull of permutation matrices
- 2. Permutation matrices = Vertices of Birkhoff Polytope S_n

Permutation Invariance

$$X \in \mathbb{R}^{n \times 3}$$

$$Y \in \mathbb{R}^{1 \times K}$$

$$P \in \mathbb{R}^{n \times n}$$

$$Y = f(PX) \qquad \forall P \in S_n$$

Table

Point Clouds

 $X \in \mathbb{R}^{n \times 3}$

Probability of Classes

 $Y \in \mathbb{R}^{1 \times K}$

Permutation / Shuffle

 $P \in \mathbb{R}^{n \times n}$

Point Representations

 $H \in \mathbb{R}^{n \times d}$

$$X \in \mathbb{R}^{n \times 3}$$

$$Y \in \mathbb{R}^{1 \times K}$$

$$P \in \mathbb{R}^{n \times n}$$

$$H \in \mathbb{R}^{n \times d}$$

$$H = f(X)$$

$$X \in \mathbb{R}^{n \times 3}$$

$$Y \in \mathbb{R}^{1 \times K}$$

$$P \in \mathbb{R}^{n \times n}$$

$$H \in \mathbb{R}^{n \times d}$$

$$H = f(X)$$

$$PH = Pf(X) = f(PX)$$

$$X \in \mathbb{R}^{n \times 3}$$

$$Y \in \mathbb{R}^{1 \times K}$$

$$P \in \mathbb{R}^{n \times n}$$

$$H \in \mathbb{R}^{n \times d}$$

$$H = f(X)$$

$$PH = Pf(X) = f(PX)$$

More on Invariance & Equivariance

• What about other transformations, e.g., scaling, 2D/3D rotations, Gauge transformation?

More on Invariance & Equivariance

• What about other transformations, e.g., scaling, 2D/3D rotations, Gauge transformation?

• Generalize to Group Invariance & Equivariance

Recommend Taco Cohen's PhD Thesis: https://pure.uva.nl/ws/files/60770359/Thesis.pdf

• Point-level Tasks

Input: a vector per point

Output: a label/vector per point

Predictions of individual points are independent, e.g., image classification

Point-level Tasks

Input: a vector per point

Output: a label/vector per point

Predictions of individual points are independent, e.g., image classification

• Set-level Tasks

Input: a set of vectors, each corresponds to a point

Output: a label/vector per set

Prediction of a set depends on all points, e.g., point cloud classification

Key Challenges:

- Varying-sized input sets
- Permutation equivariant and invariant models
- Expressive models

• Deep Sets [1]

Theorem 2 A function f(X) operating on a set X having elements from a countable universe, is a valid set function, i.e., **invariant** to the permutation of instances in X, iff it can be decomposed in the form $\rho\left(\sum_{x\in X}\phi(x)\right)$, for suitable transformations ϕ and ρ .

• Deep Sets [1]

Theorem 2 A function f(X) operating on a set X having elements from a countable universe, is a valid set function, i.e., **invariant** to the permutation of instances in X, iff it can be decomposed in the form $\rho\left(\sum_{x\in X}\phi(x)\right)$, for suitable transformations ϕ and ρ .

Sketch of Proof

Sufficiency: summation is permutation invariant!

• Deep Sets [1]

Theorem 2 A function f(X) operating on a set X having elements from a countable universe, is a valid set function, i.e., **invariant** to the permutation of instances in X, iff it can be decomposed in the form $\rho\left(\sum_{x\in X}\phi(x)\right)$, for suitable transformations ϕ and ρ .

Sketch of Proof

Sufficiency: summation is permutation invariant!

Necessity: find an unique representation of any set and then map it!

1. Construct a mapping $c:\mathfrak{X}\to\mathbb{N}$

• Deep Sets [1]

Theorem 2 A function f(X) operating on a set X having elements from a countable universe, is a valid set function, i.e., invariant to the permutation of instances in X, iff it can be decomposed in the form $\rho\left(\sum_{x\in X}\phi(x)\right)$, for suitable transformations ϕ and ρ .

Sketch of Proof

Sufficiency: summation is permutation invariant!

Necessity: find an unique representation of any set and then map it!

Construct a mapping

$$c:\mathfrak{X}\to\mathbb{N}$$

2. Let

$$c: \mathfrak{X} \to \mathbb{N}$$
$$\phi(x) = 4^{-c(x)}$$

• Deep Sets [1]

Theorem 2 A function f(X) operating on a set X having elements from a countable universe, is a valid set function, i.e., **invariant** to the permutation of instances in X, iff it can be decomposed in the form $\rho\left(\sum_{x\in X}\phi(x)\right)$, for suitable transformations ϕ and ρ .

Sketch of Proof

Sufficiency: summation is permutation invariant!

Necessity: find an unique representation of any set and then map it!

1. Construct a mapping
$$c:\mathfrak{X} \to \mathbb{N}$$

2. Let
$$\phi(x) = 4^{-c(x)}$$

3. Injection
$$X \in 2^{\mathfrak{X}} \to \sum_{x \in Y} \phi(x)$$

• Deep Sets [1]

Theorem 2 A function f(X) operating on a set X having elements from a countable universe, is a valid set function, i.e., **invariant** to the permutation of instances in X, iff it can be decomposed in the form $\rho\left(\sum_{x\in X}\phi(x)\right)$, for suitable transformations ϕ and ρ .

Sketch of Proof

Sufficiency: summation is permutation invariant!

Necessity: find an unique representation of any set and then map it!

1. Construct a mapping

$$c:\mathfrak{X}\to\mathbb{N}$$

2. Let

$$\phi(x) = 4^{-c(x)}$$

Base 2 does not work! Why?

3. Injection

$$X \in 2^{\mathfrak{X}} \to \sum_{x \in X} \phi(x)$$

• Deep Sets [1]

Invariant Architecture

• Deep Sets [1]

$$\mathbf{f}_{\Theta}(\mathbf{x}) \doteq \boldsymbol{\sigma}(\Theta \mathbf{x}) \quad \Theta \in \mathbb{R}^{M \times M}$$

Lemma 3 The function $\mathbf{f}_{\Theta} : \mathbb{R}^M \to \mathbb{R}^M$ defined above is permutation **equivariant** iff all the off-diagonal elements of Θ are tied together and all the diagonal elements are equal as well. That is,

$$\Theta = \lambda \mathbf{I} + \gamma \ (\mathbf{1}\mathbf{1}^\mathsf{T}) \qquad \lambda, \gamma \in \mathbb{R} \quad \mathbf{1} = [1, \dots, 1]^\mathsf{T} \in \mathbb{R}^M \qquad \mathbf{I} \in \mathbb{R}^{M \times M} \text{is the identity matrix}$$

• Deep Sets [1]

$$\mathbf{f}_{\Theta}(\mathbf{x}) \doteq oldsymbol{\sigma}(\Theta\mathbf{x}) \quad \Theta \in \mathbb{R}^{M imes M}$$

Lemma 3 The function $\mathbf{f}_{\Theta} : \mathbb{R}^M \to \mathbb{R}^M$ defined above is permutation **equivariant** iff all the off-diagonal elements of Θ are tied together and all the diagonal elements are equal as well. That is,

$$\Theta = \lambda \mathbf{I} + \gamma \ (\mathbf{1}\mathbf{1}^\mathsf{T}) \qquad \lambda, \gamma \in \mathbb{R} \quad \mathbf{1} = [1, \dots, 1]^\mathsf{T} \in \mathbb{R}^M \qquad \mathbf{I} \in \mathbb{R}^{M \times M} \textit{is the identity matrix}$$

Sketch of Proof

Permutation Equivariance $\sigma(\Theta \pi \mathbf{x}) = \pi \sigma(\Theta \mathbf{x})$ (w. element-wise bijective nonlinearity) reduces to $\pi \Theta \mathbf{x} = \Theta \pi \mathbf{x}$

• Deep Sets [1]

$$\mathbf{f}_{\Theta}(\mathbf{x}) \doteq \boldsymbol{\sigma}(\Theta \mathbf{x}) \quad \Theta \in \mathbb{R}^{M \times M}$$

Lemma 3 The function $\mathbf{f}_{\Theta} : \mathbb{R}^M \to \mathbb{R}^M$ defined above is permutation equivariant iff all the off-diagonal elements of Θ are tied together and all the diagonal elements are equal as well. That is,

$$\Theta = \lambda \mathbf{I} + \gamma \ (\mathbf{1}\mathbf{1}^\mathsf{T}) \qquad \lambda, \gamma \in \mathbb{R} \quad \mathbf{1} = [1, \dots, 1]^\mathsf{T} \in \mathbb{R}^M \qquad \mathbf{I} \in \mathbb{R}^{M \times M} \textit{is the identity matrix}$$

 $\mathcal{O} = \lambda \mathbf{I} + \gamma (\mathbf{I} \mathbf{I})$ $\lambda, \gamma \in \mathbb{R}$ $\mathbf{I} = [1, \dots, 1] \in \mathbb{R}$ is the identity matrix

Sketch of Proof

Permutation Equivariance $\sigma(\Theta \mathbf{x}) = \pi \sigma(\Theta \mathbf{x})$ (w. element-wise bijective nonlinearity) reduces to $\pi \Theta \mathbf{x} = \Theta \pi \mathbf{x}$

Sufficiency: Θ is commutable with permutation matrix

• Deep Sets [1]

$$\mathbf{f}_{\Theta}(\mathbf{x}) \doteq \boldsymbol{\sigma}(\Theta\mathbf{x}) \quad \Theta \in \mathbb{R}^{M \times M}$$

Lemma 3 The function $\mathbf{f}_{\Theta}: \mathbb{R}^M \to \mathbb{R}^M$ defined above is permutation equivariant iff all the offdiagonal elements of Θ are tied together and all the diagonal elements are equal as well. That is,

$$\Theta = \lambda \mathbf{I} + \gamma \ (\mathbf{1}\mathbf{1}^\mathsf{T}) \qquad \lambda, \gamma \in \mathbb{R} \quad \mathbf{1} = [1, \dots, 1]^\mathsf{T} \in \mathbb{R}^M \qquad \mathbf{I} \in \mathbb{R}^{M \times M} \text{is the identity matrix}$$

Sketch of Proof

Permutation Equivariance $\sigma(\Theta \pi \mathbf{x}) = \pi \sigma(\Theta \mathbf{x})$ (w. element-wise bijective nonlinearity) reduces to $\pi \Theta \mathbf{x} = \Theta \pi \mathbf{x}$

Sufficiency: Θ is commutable with permutation matrix

Necessity: consider a special permutation (i.e., transposition / swap)

$$\pi_{i,j}^{\top} = \pi_{i,j}^{-1} = \pi_{j,i}$$

1. All diagonal elements are identical

$$\pi_{k,l}\Theta = \Theta\pi_{k,l} \Rightarrow \pi_{k,l}\Theta\pi_{l,k} = \Theta \Rightarrow (\pi_{k,l}\Theta\pi_{l,k})_{l,l} = \Theta_{l,l} \Rightarrow \Theta_{k,k} = \Theta_{l,l}$$

• Deep Sets [1]

$$\mathbf{f}_{\Theta}(\mathbf{x}) \doteq oldsymbol{\sigma}(\Theta\mathbf{x}) \quad \Theta \in \mathbb{R}^{M imes M}$$

Lemma 3 The function $\mathbf{f}_{\Theta}: \mathbb{R}^M \to \mathbb{R}^M$ defined above is permutation equivariant iff all the offdiagonal elements of Θ are tied together and all the diagonal elements are equal as well. That is,

$$\Theta = \lambda \mathbf{I} + \gamma \ (\mathbf{1}\mathbf{1}^\mathsf{T}) \qquad \lambda, \gamma \in \mathbb{R} \quad \mathbf{1} = [1, \dots, 1]^\mathsf{T} \in \mathbb{R}^M \qquad \mathbf{I} \in \mathbb{R}^{M \times M} \textit{is the identity matrix}$$

Sketch of Proof

Permutation Equivariance $\sigma(\Theta \pi \mathbf{x}) = \pi \sigma(\Theta \mathbf{x})$ (w. element-wise bijective nonlinearity) reduces to $\pi \Theta \mathbf{x} = \Theta \pi \mathbf{x}$

Sufficiency: Θ is commutable with permutation matrix

Necessity: consider a special permutation (i.e., transposition / swap)

$$\pi_{i,j}^{\top} = \pi_{i,j}^{-1} = \pi_{j,i}$$

1. All diagonal elements are identical

$$\pi_{k,l}\Theta = \Theta\pi_{k,l} \Rightarrow \pi_{k,l}\Theta\pi_{l,k} = \Theta \Rightarrow (\pi_{k,l}\Theta\pi_{l,k})_{l,l} = \Theta_{l,l} \Rightarrow \Theta_{k,k} = \Theta_{l,l}$$

2. All off-diagonal elements are identical

$$\pi_{j',j}\pi_{i,i'}\Theta = \Theta\pi_{j',j}\pi_{i,i'} \Rightarrow \pi_{j',j}\pi_{i,i'}\Theta(\pi_{j',j}\pi_{i,i'})^{-1} = \Theta \Rightarrow \pi_{j',j}\pi_{i,i'}\Theta\pi_{i',i}\pi_{j,j'} = \Theta \Rightarrow (\pi_{j',j}\pi_{i,i'}\Theta\pi_{i',i}\pi_{j,j'})_{i,j} = \Theta_{i,j} \Rightarrow \Theta_{i',j'} = \Theta_{i,j}$$

• Deep Sets [1]

• Deep Sets [1]

Recipe for making the model deep:

Stack multiple equivariant layers (+ invariant layer at the end), e.g., PointNet [2]

• Language Models

• Language Models

books

• Machine Translation

Key Challenges:

• Varying-sized input sequences

Key Challenges:

- Varying-sized input sequences
- Orders "may" be crucial for cognition

According to a rscheearch at Cmabrigde Uinervtisy, it deosn't mttaer in waht oredr the ltteers in a wrod are, the olny iprmoetnt tihng is taht the frist and lsat ltteer be at the rghit pclae. The rset can be a toatl mses and you can sitll raed it wouthit porbelm. Tihs is bcuseae the huamn mnid deos not raed ervey lteter by istlef, but the wrod as a wlohe.

Key Challenges:

- Varying-sized input sequences
- Orders "may" be crucial for cognition

According to a rscheearch at Cmabrigde Uinervtisy, it deosn't mttaer in waht oredr the ltteers in a wrod are, the olny iprmoetnt tihng is taht the frist and lsat ltteer be at the rghit pclae. The rset can be a toatl mses and you can sitll raed it wouthit porbelm. Tihs is bcuseae the huamn mnid deos not raed ervey lteter by istlef, but the wrod as a wlohe.

• Complex statistical dependencies (e.g. long-range ones)

Key Challenges:

- Varying-sized input sequences
- Orders "may" be crucial for cognition

According to a rscheearch at Cmabrigde Uinervtisy, it deosn't mttaer in waht oredr the ltteers in a wrod are, the olny iprmoetnt tihng is taht the frist and lsat ltteer be at the rghit pclae. The rset can be a toatl mses and you can sitll raed it wouthit porbelm. Tihs is bcuseae the huamn mnid deos not raed ervey lteter by istlef, but the wrod as a wlohe.

• Complex statistical dependencies (e.g. long-range ones)

LSTM [3] GRU [4] Seq2Seq [5] Transformer [6]

Input Encoding

Input Embedding

Positional Encoding

$$PE_{(pos,2i)} = sin(pos/10000^{2i/d_{model}}) \ PE_{(pos,2i+1)} = cos(pos/10000^{2i/d_{model}})$$

Positional Encoding

$$PE_{(pos,2i)} = sin(pos/10000^{2i/d_{model}}) \ PE_{(pos,2i+1)} = cos(pos/10000^{2i/d_{model}})$$

Encoder

Why square root?

Layer Norm & Residual Connection

$$\mu_i = \frac{1}{K} \sum_{k=1}^K x_{i,k}$$

$$\sigma_i^2 = \frac{1}{K} \sum_{k=1}^K (x_{i,k} - \mu_i)^2$$

$$\hat{x}_{i,k} = \frac{x_{i,k} - \mu_i}{\sqrt{\sigma_i^2 + \epsilon}}$$

$$y_i = \gamma \hat{x}_i + \beta \equiv \text{LN}_{\gamma,\beta}(x_i)$$

Decoder

For certain applications like language models, decoder should be autoregressive!

Masked Multi-Head Attention

Prevent attending from future!

Masked Multi-Head Attention

Masked Multi-Head Attention

Hugging Face Demos

https://transformer.huggingface.co/

Write With Transformer

Get a modern neural network to auto-complete your thoughts.

This web app, built by the Hugging Face team, is the official demo of the // transformers repository's text generation capabilities.

57,016

Limitations

- O(L^2) time/memory cost for self-attention
- How can we incorporate prior knowledge into attention rather than having a fully connected attention?
 - Encourage sparse attention
 - Inject known graph structures
 -

Pre-Norm vs. Post-Norm

Where to place the Layer Normalization?

Pre-Norm vs. Post-Norm

Where to place the Layer Normalization?

• Gradient norm in the Post-Norm
Transformer is large for parameters
near the output and will be likely to
decay as the layer gets closer to input

Pre-Norm vs. Post-Norm

Where to place the Layer Normalization?

- Gradient norm in the Post-Norm
 Transformer is large for parameters
 near the output and will be likely to
 decay as the layer gets closer to input
- Training the Pre-Norm Transformer does not rely on the learning rate warm-up stage and can be trained much faster than the Post-Norm

Extensions: Vision Transformer

Standard MSA

Attention for each patch is computed against all patches, resulting in quadratic complexity

Standard MSA

Attention for each patch is computed against all patches, resulting in quadratic complexity

Window-based MSA

Attention for each patch is only computed within its own window (drawn in red). Window size is 2x2 in this example.

Window-based MSA

Attention for each patch is only computed within its own window (drawn in red). Window size is 2x2 in this example.

Shifted Window MSA

Step 1: Shift window by a factor of M/2, where M = window size
Step 2: For efficient batch computation, move patches into empty
slots to create a complete window.
This is known as 'cyclic shift' in the paper.

Shifted Window MSA

Step 1: Shift window by a factor of M/2, where M = window size

Step 2: For efficient batch computation, move patches into empty slots to create a complete window.

This is known as 'cyclic shift' in the paper.

References

- [1] Zaheer, M., Kottur, S., Ravanbakhsh, S., Poczos, B., Salakhutdinov, R. and Smola, A., 2017. Deep sets. arXiv preprint arXiv:1703.06114.
- [2] Qi, C.R., Su, H., Mo, K. and Guibas, L.J., 2017. Pointnet: Deep learning on point sets for 3d classification and segmentation. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 652-660).
- [3] Hochreiter, S. and Schmidhuber, J., 1997. Long short-term memory. Neural computation, 9(8), pp.1735-1780.
- [4] Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H. and Bengio, Y., 2014. Learning phrase representations using RNN encoder-decoder for statistical machine translation. arXiv preprint arXiv:1406.1078.
- [5] Sutskever, I., Vinyals, O. and Le, Q.V., 2014. Sequence to sequence learning with neural networks. In Advances in neural information processing systems (pp. 3104-3112).
- [6] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł. and Polosukhin, I., 2017. Attention is all you need. In Advances in neural information processing systems (pp. 5998-6008).
- [7] Ba, J.L., Kiros, J.R. and Hinton, G.E., 2016. Layer normalization. arXiv preprint arXiv:1607.06450.
- [8] Xiong, R., Yang, Y., He, D., Zheng, K., Zheng, S., Xing, C., Zhang, H., Lan, Y., Wang, L. and Liu, T., 2020, November. On layer normalization in the transformer architecture. In International Conference on Machine Learning (pp. 10524-10533). PMLR.
- [9] Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S. and Uszkoreit, J., 2020. An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929.
- [10] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S. and Guo, B., 2021. Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings of the IEEE/CVF International Conference on Computer Vision (pp. 10012-10022).

Questions?