EECE 571F: Deep Learning with Structures

Lecture 4: Graph Neural Networks
Graph Convolution Models

Renjie Liao

University of British Columbia
Winter, Term 1, 2023

Course Scope

* Brief Intro to Deep Learning

* Geometric Deep Learning
* Deep Learning Models for Sets and Sequences: Deep Sets & Transformers

* Deep Learning Models for Graphs: Message Passing & Graph Convolution GNNs
* Group Equivariant Deep Learning

* Probabilistic Deep Learning

Auto-regressive models, Large Language Models (LLMs)
Variational Auto-Encoders (VAEs) and Generative Adversarial Networks (GANS)

Energy based models (EBMs)
Diffusion/Score based models

Course Scope

* Brief Intro to Deep Learning

* Geometric Deep Learning
* Deep Learning Models for Sets and Sequences: Deep Sets & Transformers

* Deep Learning Models for Graphs: Message Passing & Graph Convolution GNNs
* Group Equivariant Deep Learning

* Probabilistic Deep Learning

Auto-regressive models, Large Language Models (LLMs)
Variational Auto-Encoders (VAEs) and Generative Adversarial Networks (GANS)

Energy based models (EBMs)
Diffusion/Score based models

Deep Learning for Graphs

Graph Neural Networks (GNNs)

Neural networks that can process general graph structured data

* First proposed in 2008 [1] and dates back to Recursive Neural Networks (mainly processing trees) in 90s [2]

* In fact, Boltzmann Machines [3] (fully connected graphs with binary units) in 80s can be viewed as GNNs
* Most of GNNs (if not all) can be incorporated by the Message Passing paradigm
* GNNs have been independently studied in signal processing community under Graph Signal Processing [4,5]

* The study of GNNs and other related models are also called Geometric Deep Learning [6]

Convolution on Graphs?

* Letus review Fourier Transform and Convolution Theorem

Fourier Transform

Given signal f (t) , the classical Fourier transform is:

F(&) = [f(t)e 2m¢tdt

1.e., expansion in terms of complex exponentials

Fourier Transform

Given signal f (t) , the classical Fourier transform is:

F(&) = [, f(t)e™2mitqt

1.e., expansion in terms of complex exponentials

2
Laplacian operator is: A f — V2f — %f

Fourier Transform

Given signal f (t) , the classical Fourier transform is:

F(&) = [f(t)e 2m¢tdt

1.e., expansion in terms of complex exponentials

2
Laplacian operator is: A f — V2f — %f

We have A(e_ngt) = g—;e_met — _(27T§)26—27Ti5t

Fourier Transform

Given signal f (t) , the classical Fourier transform is:

F(&) = [f(t)e 2m¢tdt

1.e., expansion in terms of complex exponentials

2
Laplacian operator is: A f — v2 f — % f
We have A(e_ngt) = g—;e_met — _(27T§)26—27Ti5t

6—277 1€t js the eigenfunction of Laplacian operator!

Fourier Transform

Given signal f (t) , the classical Fourier transform is: Inverse Fourier transform

f&) = [ft)e 2mtar (1) = [f(€)e?™Etdg

1.e., expansion in terms of complex exponentials

2
Laplacian operator is: A f — V2f — %f

. 5 . |
We have A(e_ngt) = %6_27”‘575 — _(27T§)26—27W€t

6—277 1€t js the eigenfunction of Laplacian operator!

Convolution

Given signal f (t) , filter h(t) , the convolution is defined as:

0= [s e

Convolution

Given signal f (t) , filter h(t) , the convolution is defined as:

/ f(r)h(t — 1)
Convolution Theorem tells us that

_ / F()h(t — 7)dr = / FOh(e)ermieta

where f(f) — f]R f(t)e_sztdt and iL(f) — f]R h(t)e_%iftdt

Convolution

Given signal f (t) , filter h(t) , the convolution is defined as:

0= [s e

How can we generalize

them to graphs?
Convolution Theorem tells us that

(f % h)(t) = / F(r)h(t — 7)dr = / (o)t de

where f(f) — f]R f(t)e_zmgtdt and iL(f) — f]R h(t)e_zmgtdt

Convolution on Graphs?

* Letus review Fourier Transform and Convolution Theorem

1. Based on the eigenfunction of Laplacian operator, we define Fourier transform

2. Based on the convolution theorem, we can define convolution in Fourier domain

Convolution on Graphs?

* Letus review Fourier Transform and Convolution Theorem

1. Based on the eigenfunction of Laplacian operator, we define Fourier transform

2. Based on the convolution theorem, we can define convolution in Fourier domain

* How can we generalize convolution to graphs?

1. What is the Laplacian operator on graph?

2. How can we define convolution in (graph) Fourier domain?

Graph Signal

Graph G = (V, E), graph signal (node feature) X

G A
Labelled graph Adjacency matrix
6 (0 1 0 0 1
1 01 0 1
(4) O (1) 01010
.a‘ 0 01 01
1 1 0 1 0
e KO 0 01 0

Image Credit: https://en.wikipedia.org/wiki/Laplacian_matrix

https://en.wikipedia.org/wiki/Laplacian_matrix

Graph Laplacian

Graph G = (V, E), graph signal (node feature) X

Degree matrix:

G D

Labelled graph Degree matrix
@ (2 0 0 O
0 3 0 O
(4) O (1) [0 020
.a‘ 0 0 0 3
0 0 0 O
e KO 0 0 O

Image Credit: https://en.wikipedia.org/wiki/Laplacian_matrix

0

S w o O O

N
Dii =) ;1 Aij

(O

S =

1

o = O = O

A

Adjacency matrix

0

O O = O =

= -0 = O O

1

OO O = O =

https://en.wikipedia.org/wiki/Laplacian_matrix

Graph Laplacian

Graph G = (V, E), graph signal (node feature) X

: N
Degree matrix: Dy =>" =1 Aij
(Combinatorial) Graph Laplacian: L=D-—A
G D A L=D-A
Labelled graph Degree matrix Adjacency matrix Laplacian matrix
(2 0 0 0 O O\ (O 1 0 0 1 O\ (2 -1 0 0 -1 0\
(6) 030000 101010 =S =
eea 002000|]o1o0100 0 1 2 -1 0 0
.‘ 0 003 0O 0 01 01 1 0 0 -1 3 -1 -1
e@ 0000 30 110100 -1 -1 0 -1 3 0
K000001/K000100/K000—101)

Image Credit: https://en.wikipedia.org/wiki/Laplacian_matrix

https://en.wikipedia.org/wiki/Laplacian_matrix

Graph Laplacian

Graph G = (V, E), graph signal (node feature) X

: N
Degree matrix: D =>" =1 Aij
Combinatorial) Graph Laplacian: — — :
() Grap P L D—A Compute difference between
current node and its neighbors!
G D A L=D-A
Labelled graph Degree matrix Adjacency matrix Laplacian matrix
(2 0 0 0 O O\ (O 1 0 0 1 O\ (2 —1 0 0 -1 O\

(6) 030000 101010 -1 3 -1 0 -1 0
eee 002000|]o1o0100 0 1 2 -1 0 0
.‘ 0 003 0O 0 01 01 1 0 0 -1 3 -1 -1
e@ 0000 30 110100 -1 -1 0 -1 3 0

K000001/K000100/K000—101)

Image Credit: https://en.wikipedia.org/wiki/Laplacian_matrix

https://en.wikipedia.org/wiki/Laplacian_matrix

Graph Laplacian

For undirected graphs, (Combinatorial) Graph Laplacian:

* Symmetric

* Diagonally dominant

* Positive semi-definite (PSD)

* The number of connected components in the graph the algebraic multiplicity of the 0 eigenvalue.

G D A L=D-A

Labelled graph Degree matrix Adjacency matrix Laplacian matrix
(2 0 0 0 O O\ (O 1 0 0 1 O\ (2 -1 0 0 -1 0\
@ 030000 101010 -1 3 -1 0 -1 0
090 0 0 2 0 0O 1 01 0 O 0 -1 2 -1 0 O
.‘ 0 0 0 3 0O 0 1 01 1 0 0 -1 3 -1 -1
e@ 0000 30 110100 -1 -1 0 -1 3 0
K000001/K000100/\000—101)

Image Credit: https://en.wikipedia.org/wiki/Laplacian_matrix

https://en.wikipedia.org/wiki/Laplacian_matrix

Graph Laplacian
Symmetrically Normalized Graph Laplacian:

L=D":(D-A)D i=]-D"2AD"z

Eigenvalues lie in [0, 2], why? (Try to show it by yourself!)

G D A L=D-A

Labelled graph Degree matrix Adjacency matrix Laplacian matrix

(200000 010010\ (2 -1 0 0-1 0

(6) 03000 0| [1010010 1 3 -1 0 -1 0
093 002000|]o10100 0 -1 2 -1 0 0

.‘ 000300 |oo0o1011 0 0 -1 3 -1 -1

e@ 000030 110100 1 -1 0 -1 3 0

\oooo0o01/ \ooo100/ \o 0o o -1 o 1/

Image Credit: https://en.wikipedia.org/wiki/Laplacian_matrix

https://en.wikipedia.org/wiki/Laplacian_matrix

Spectral Theorem

If L is a symmetric matrix, we have

_ LI v VA A W |
where U = [ul, Ug, -+, U N] contains eigenvectors of L and is orthogonal U = U U = [
\ -
A2
A = contains the eigenvalues of L

Spectral Theorem

If L is a symmetric matrix, we have Spectral Decomposition
_ LI v VA A N
where U = [ul, Ug,--- , 1 N] contains eigenvectors of L and is orthogonal {J/ [/ T — U TU —]
_)\1 -
A2
A = contains the eigenvalues of L

Graph Fourier Transform

Given signal f (t) , the classical Fourier transform 1s:

F(&) = [f(t)e 2m¢tdt

1.e., expansion in terms of complex exponentials (eigenfunction of Laplacian operator)

Graph Fourier Transform

Given signal f (t) , the classical Fourier transform 1s:

F(&) = [f(t)e 2m¢tdt

1.e., expansion in terms of complex exponentials (eigenfunction of Laplacian operator)

Given graph signal X € RN *1, the Graph Fourier Transform is:

Xi] =320 Ulj, i X[]

X=U'X

1.e., expansion in terms of eigenvectors of Graph Laplacian operator

Graph Fourier Transform

Given signal f (t) , the classical Fourier transform 1s:

F(&) = [f(t)e 2m¢tdt

1.e., expansion in terms of complex exponentials (eigenfunction of Laplacian operator)

Given graph signal X € RN *1, the Graph Fourier Transform is:

Xi] =320 Ulj, i X[]

X=U'X

1.e., expansion in terms of eigenvectors of Graph Laplacian operator

Inverse Graph Fourier Transform

Graph Fourier Transform

Given signal f (t) , the classical Fourier transform 1s:

F(&) = [f(t)e 2m¢tdt

1.e., expansion in terms of complex exponentials (eigenfunction of Laplacian operator)

Given graph signal X € RN *1, the Graph Fourier Transform is: Inverse Graph Fourier Transform
X 7] = Zjvzl Ulj, i X|[J] Eigenvalue corresponds to frequency!
X=U'X X=UX

1.e., expansion in terms of eigenvectors of Graph Laplacian operator

Graph Convolution (Spectral Filtering)

Convolution:

(f % h)(t) = / F(r)h(t — 7)dr = / F(e)h(e)em et de

Graph Convolution (Spectral Filtering)

Convolution:
(Fem©) = [o= = | feheeas

Graph Fourier Transform:

X=U"TX L=UAU"

Graph Convolution (Spectral Filtering)

Convolution:

/ F(r)h(t — r)dr = [R F(e)h(©)e

Graph Fourier Transform:

A

X=U"X L=UAU"

Graph Convolution in Fourier domain (Spectral Filtering):

hg x X = Uh@(A)UTX

Spectral Filters

Graph Convolution in Fourier domain (Spectral Filtering):

hg x X = Uh@(A)UTX

Directly construct h requires spectral decomposition which is O(N"3)!

Spectral Filters

Graph Convolution in Fourier domain (Spectral Filtering):

hg x X = Uh@(A)UTX

Directly construct h requires spectral decomposition which is O(N"3)!

Can we find some efficient construction of h?

Spectral Filters
Graph Convolution in Fourier domain (Spectral Filtering):
hg x X = Uh@(A)UTX
Directly construct h requires spectral decomposition which is O(N"3)!

Can we find some efficient construction of h?
e Chebyshev polynomials [7]

* Graph wavelets [7]

Chebyshev Polynomials

Chebyshev polynomials of the first kind:

To(ZIZ) =1
T(z)==x
Thi1(x) = 22T, (x) — Th—1(x)

Image Credit: https://en.wikipedia.org/wiki/Chebyshev_polynomials

https://en.wikipedia.org/wiki/Chebyshev_polynomials

Chebyshev Polynomials

Chebyshev polynomials of the first kind:

TQ(CC) =1
Ti(x)==x
Thi1(x) = 22T, (x) — Th—1(x)

Image Credit: https://en.wikipedia.org/wiki/Chebyshev_polynomials

1.0F

-0.5F

~1.0F

0.5F

0.0F

https://en.wikipedia.org/wiki/Chebyshev_polynomials

Chebyshev Polynomials

Chebyshev polynomials of the first kind:
TO (CC) =1

T(z)==x
Thi1(x) = 22T, (x) — Th—1(x)

1.0F

-0.5F

~1.0F

0.5F

0.0F

They provide orthonormal basis in some Sobolev space on [-1, 1]:

h(z) = anTa(z)

Image Credit: https://en.wikipedia.org/wiki/Chebyshev_polynomials

https://en.wikipedia.org/wiki/Chebyshev_polynomials

Chebyshev Polynomials

T T T ek Ta) e
Chebyshev polynomials of the first kind: |
T(z)==x of
Thi1(x) =22T,(x) — Th—1(x) o

Image Credit: https://en.wikipedia.org/wiki/Chebyshev_polynomials

https://en.wikipedia.org/wiki/Chebyshev_polynomials

Spectral Filters

Chebyshev expansion:

Spectral Filters

Chebyshev expansion:

Spectral filtering:

hox X =Uhg(AMU'"X

Spectral Filters

Chebyshev expansion:
o
— Z an T ()
n=0

Spectral filtering:

hox X =Uhg(AMU'"X

Truncated Chebyshev polynomials approximation:

ZHT ZQT

maX

Spectral Filters

Truncated Chebyshev polynomials approximation:

ZHT Z@T

max

Graph Convolution:

hox X =Uho(MU'X

Spectral Filters

Truncated Chebyshev polynomials approximation:

ZHT Z@T

max

Graph Convolution:

hox X =Uho(MU'X

Truncated Chebyshev polynomials based Graph Convolution:

Spectral Filters

Recall we do not want explicit spectral decomposition since it is expensive!

a 2A -
hoxXmU|(Y 0,T(~—-1)|U'X

n=0)\max

Spectral Filters

Recall we do not want explicit spectral decomposition since it is expensive!

)\max

a 2A -
hoxXmU|(Y 0,T(~—-1)|U'X

n=0

Are Chebyshev polynomials efficient?

Spectral Filters

Recall

Spectral Filters

Recall

Let

Spectral Filters

T =1
Recall 0()
Ti(x) ==
Thi1(z) =22T,(x) — T, —1(x)
~ 2A
We have To(L) =1
TW(L)=U (f—A — I) U' = 2L/ Apax — I

) 2A 2A 2A
iy =0 (2 (2)1 (2 1) (2)
— 92U (ﬂ _ 1) UTuT, (ﬂ _ I) Ul —UT, . (ﬂ _ I) Al

>\max Amax)\max

o2 1k — T+ (L
(2)

Spectral Filters

Recall T,(L)=UT, (2A [> T

)\max

Spectral Filters

Recall

We have

TMD—%H%(QA—J>UT

)\max

2A
0, T

max
0

NE

hg*X%U<

n

[
™=

0,1, (L)X
0

n

—D)UTX

Spectral Filters

Recall

We have

Let

T,(L) =UT, (28 I> U’

)\max

K
ho* X ~ U <Z QnTn(AZA

max

— I)) U'X

Spectral Filters

Recall

We have

Let

We have

Spectral Filters

Truncated Chebyshev polynomials based Graph Convolution:

where

K
ho * X ~ ZHnTn(X)

n=0
To(X) =X
T1(X) = 20X/ Amax — X

Spectral Filters

Truncated Chebyshev polynomials based Graph Convolution:

where

What if we truncate to 1%t order?

K
ho * X ~ ZHnTn(X)

n=0
To(X) =X
T1(X) = 20X/ Amax — X
- 27, .
Tt (X) = (N I) T, (X)

Spectral Filters

Truncated Chebyshev polynomials based Graph Convolution:

K
ho * X ~ ZHnTn(X)

n=0
where
To(X) =X
T1(X) = 20X/ Amax — X
. 2L
Tt (X) = (A - I)

What if we truncate to 1%t order?

That is Graph Convolutional Networks (GCNs) [8] !

Graph Convolutional Networks (GCNs)

Truncated Chebyshev polynomials based Graph Convolution:

K
ho * X =) 0,Tn(X)

n=0
To(X) =X
T1(X) = 20X/ Amax — X

)\max

Ty (X) =2 (2L 1) T (X) — T, 1(X)

Graph Convolutional Networks (GCNs)

Truncated Chebyshev polynomials based Graph Convolution:

K
n=0
To(X) =X
T1(X) = 20X/ Amax — X
jaa R YA o 2L % %
T — [

\ Amase

Graph Convolutional Networks (GCNs)

Truncated Chebyshev polynomials based Graph Convolution:

K
n=0
To(X) =X
T1(X) = 20X/ Amax — X
o) (32N a / 2L ¥ ¥
—Ln—l—l\X}—é\)\ n n—

We can use the normalize graph Laplacian so that its eigenvalues are in [0, 2]

L=I-D"2AD":

Graph Convolutional Networks (GCNs)

Truncated Chebyshev polynomials based Graph Convolution:

K
n=0
To(X) =X
T1(X) = 20X/ Amax — X
o) (32N a / 2L ¥ ¥
-Ln+l\X}—4'\)\ n n—

We can use the normalize graph Laplacian so that its eigenvalues are in [0, 2]

L=I—-D 2AD 3

Assuming Apax ~ 2 ho x X ~ 0 X + 60,T1(X)
~ 00X —0,D"2AD 2 X

Graph Convolutional Networks (GCNs)

Simplified Truncated Chebyshev polynomials based Graph Convolution:

~

hg x X ~ QoX + 91T1(X)
~0, X —0,D"2AD 2 X
iy (1 + D—%AD—%) X

Graph Convolutional Networks (GCNs)

Simplified Truncated Chebyshev polynomials based Graph Convolution:

~

hg x X ~ QoX + 91T1(X)
~0, X —0,D"2AD 2 X
iy (1 + D—%AD—%) X

I+D 2AD 2

eigenvalues are in [0, 2]

Graph Convolutional Networks (GCNs)

Simplified Truncated Chebyshev polynomials based Graph Convolution:

hg x X ~ QoX + HlTl(X')
~0, X —0,D"2AD 2 X
iy (1 + D—%AD—%) X

l\')l»—l

“3(A+1)D:
:> Dii:Z(A+I)

eigenvalues are in [0, 2] eigenvalues are in [-1, 1]

I+D 2AD 2

Graph Convolutional Networks (GCNs)

Simplified Truncated Chebyshev polynomials based Graph Convolution:

hg x X ~ QoX + 91T1(X)
~0, X —0,D"2AD 2 X
iy (1 + D—%AD—%) X

[+D 3AD 2 D 3(A+ 1D =
—> Dii=Y,(A+ 1)
eigenvalues are in [0, 2] eigenvalues are in [-1, 1]

@z
l\)l»—l

Final Form of Graph Convolution: ho* X ~ 0D 2(A+1) X

Graph Convolutional Networks (GCNs)

Graph convolution in GCNs for 1D graph signal:

N

ho* X ~0D 2(A+1)D 2 X

Graph Convolutional Networks (GCNs)

Graph convolution in GCNs for 1D graph signal:

N

ho* X ~0D 2(A+1)D 2 X

Generalize to multi-input and multi-output convolution:

hwxX~D 2(A+I)D 2 XW
LXW

Graph Convolutional Networks (GCNs)

Graph convolution in GCNs for 1D graph signal:

N

ho* X ~0D 2(A+1)D 2 X

Generalize to multi-input and multi-output convolution:

hwxX~D 2(A+I)D 2 XW
LXW

Add nonlinearity: ohw *xX)~o (EX W)

Graph Convolutional Networks (GCNs)

Our Spectral Filters are Localized:

L=D"2(A+1)D">
1-step Graph Convolution: Ay * X ~ LXW
2-step Graph Convolution: Ay, * hyy, * X = L2 X W, W,

Exponent of matrix power indicates how far the propagation is!

Graph Convolutional Networks (GCNs)

* We start with Chebyshev Polynomials which can represent any spectral filters (eigenvalues in [-1, 1])

@)

h(z) = anTn(z)

n=0

Graph Convolutional Networks (GCNs)

* We start with Chebyshev Polynomials which can represent any spectral filters (eigenvalues in [-1, 1])

@)

h(z) = anTn(z)

n=0
* Truncate the expansion at 15t order for efficiency

~

hg x X ~ 90X—|—91T1(X)

Graph Convolutional Networks (GCNs)

* We start with Chebyshev Polynomials which can represent any spectral filters (eigenvalues in [-1, 1])

@)

h(z) = anTn(z)

n=0
* Truncate the expansion at 15t order for efficiency

~

hg x X ~ 90X—|—91T1(X)

* Further simplification/approximation

N~

ho* X ~0D 2 (A+I)D™
hw x X ~ LXW

X

Graph Convolutional Networks (GCNs)

* We start with Chebyshev Polynomials which can represent any spectral filters (eigenvalues in [-1, 1])

@)

h(z) = anTn(z)

n=0
* Truncate the expansion at 15t order for efficiency

~

h@ x X ~ 90X—|—91T1(X)

* Further simplification/approximation

N~

ho* X ~0D 2 (A+I)D™
hw x X ~ LXW

X

We can remedy the lost expressiveness by stacking multiple graph convolution layers!

Graph Convolutional Networks (GCNs)

([COO0] [e)e)e)
[eYeYe) I.I.]
[eYeYo) [Q0O0]

Graph Convolutional Networks (GCNs)

[e]eTe) [e]e]e)

(elele) I°I°1 |:> G I’aphCO nv

[e]eYo) [eJeJe)

Graphs Hy = o(LXWh)

Graph Convolutional Networks (GCNs)

[e]eTe) [e]e]e)

r-mm > GraphConvn = GraphConv > Predictions

[e]eYo) [eJeJe)

Graphs H, = O'(LXWl) Hy, = O'(LH1W2)

Message Passing GNNSs

Node State

(t+1)-th message passing step/layer

Message Passing GNNSs

Message Network

h! h} l Node State

(t+1)-th message passing step/layer

ﬁg
=

m.,

Message Passing GNNSs

ht ht

i = fmsg(hj, hy)

l Node State

Message Network
l Compute

Messages

(OO00) Message

(t+1)-th message passing step/layer

m.,

Message Passing GNNs

ht ht

i = fmsg(hj, hy)

l Node State

Message Network
l Compute

Messages

GO0 Message

Aggregated
Message

(t+1)-th message passing step/layer

Message Passing GNNs

=== (t+1)-th message passing step/layer
h! h} l Node State
% Message Network
Compute
l Messages
m; = fimsg(h}, hy) EXX) Message

m; = fags ({mj;lj €Ni})| @OO0B Aggregated
Message

Message Passing GNNs

=== (t+1)-th message passing step/layer
h! h} l Node State
% Message Network
Compute
l Messages
m; = fimsg(h}, hy) EXX) Message
m; = fage ({mj;lj € Ni})| [@OO0OD Aggregated (e 00)

Message

m

Message Passing GNNSs

ht ht

mj; = finsg(hj, hy)

i = fagg ({m§z|j S M}>

&

Node State

Message Network

Compute
Messages

Message

Aggregated Message

State Update
Network

(t+1)-th message passing step/layer

Message Passing GNNs

(t+1)-th message passing step/layer

h! h’ Node State
Message Network
Compute
Messages
m’; = fmsg(h}, hi) Message

Aggregated Message

M = fagg ({m§z|j € Ni}) (e0e
State Update Network %
Update
(e/e70)

l Representation

f Bl BB

h; ™ = fupdate(hj, mj) Updated Node State

Message Passing GNNs

ht ht

mj; = finsg(hj, hy)

m; = fage ({m§z|j S M})

hﬁﬂ - fupdate(h§7 mf)

B EREE

Node State

Message Network

Compute
Messages

Message

Aggregated Message

State Update Network

Update
Representation

Updated Node State

(t+1)-th message passing step/layer

GCNs are Message Passing Networks

- Node State X « Graph Laplacian

~ ~

L=D"

N|—=

(A+1T)

D

N[

GCNs are Message Passing Networks

* Node State X « Graph Laplacian
=D tA+D)D?
« Aggregated X State Update Network 1/ %
Message

Revisit Spectral Filtering

Our Spectral Filters are Localized:

~

L=D"

N[
N[

(A+I)D~™

1-step Graph Convolution: Ay % X = LXW

2-step Graph Convolution: Ay, * hyy, * X = L2 X W, W,

e @ What if the graph diameter m is large?

Revisit Spectral Filtering

Our Spectral Filters are Localized:
m-step Graph Convolution: hw * X ~ LmXW

Revisit Spectral Filtering

Our Spectral Filters are Localized:
m-step Graph Convolution: hw * X ~ LmXW

o, . =~ L T
©50) Spectral Decomposition: L =UAU

Revisit Spectral Filtering

Our Spectral Filters are Localized:
m-step Graph Convolution: hw * X ~ LmXW

o« e . =~ L T
G50 555 Spectral Decomposition: L =UAU

L™ =UA"U"

Cubic complexity O(N”*3) !

Lanczos Algorithm

Algorithm 1 : Lanczos Algorithm
1: Input: S, x, K, €
2: Initialization: 5y = 0, g0 = 0, and ¢; =

z/||z|]
3: Forj=1,2,..., K:
4: z = Sq;
5: v = q;'_z
6: 2 =2—"iq — Bj-1qj-1
7 By=lelz
8: If 5]' < €, quit
9: 4j+1 = 2/ B;
10:

11: Q — [Q17QQ7 toe 7QK]
12: Construct T following Eq. (2)

13: Eigen decomposition 7= BRB'
14: Return V = (B and R.

Lanczos Algorithm

Tridiagonal Decomposition

L=QTQ"

Lanczos Algorithm

Tridiagonal Decomposition

L=QTQ"

Lanczos Algorithm

Tridiagonal Decomposition L = QTQT
K

|
I 1

Lanczos Algorithm

Tridiagonal Decomposition

Low-rank approximation

2

L=QTQ"

Lanczos Algorithm

Tridiagonal Decomposition L = QTQT

Low-rank approximation with top K eigenpairs

2

Multi-scale Graph Convolutional Networks
m-step GraphConv (Prior Work) H=L"XW
LanczosNet [9]:

m-step GraphConv H=UA"U"XW
. . (/‘[—A - T
Learn Nonlinear Spectral Filter H = \f@ ,'(A YU ' XW

=\
Learning Graph Kernel / Metric Li; o< exp (_H(Xi - Xj)‘]_fj|2)

References

[1] Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M. and Monfardini, G., 2008. The graph neural network model. IEEE transactions
on neural networks, 20(1), pp.61-80.

[2] Goller, C. and Kuchler, A., 1996, June. Learning task-dependent distributed representations by backpropagation through structure.
In Proceedings of International Conference on Neural Networks (ICNN'96) (Vol. 1, pp. 347-352). IEEE.

[3] Ackley, D.H., Hinton, G.E. and Sejnowski, T.J., 1985. A learning algorithm for Boltzmann machines. Cognitive science, 9(1),
pp.147-169.

[4] Shuman, D.I., Narang, S.K., Frossard, P., Ortega, A. and Vandergheynst, P., 2013. The emerging field of signal processing on

graphs: Extending high-dimensional data analysis to networks and other irregular domains. IEEE signal processing magazine, 30(3),
pp-83-98.

[5] Ortega, A., Frossard, P., Kovacevic, J., Moura, J.M. and Vandergheynst, P., 2018. Graph signal processing: Overview, challenges,
and applications. Proceedings of the IEEE, 106(5), pp.808-828.

[6] Bronstein, M.M., Bruna, J., LeCun, Y., Szlam, A. and Vandergheynst, P., 2017. Geometric deep learning: going beyond euclidean
data. IEEE Signal Processing Magazine, 34(4), pp.18-42.

[7] Hammond, D.K., Vandergheynst, P. and Gribonval, R., 2011. Wavelets on graphs via spectral graph theory. Applied and
Computational Harmonic Analysis, 30(2), pp.129-150.

[8] Kipf, T.N. and Welling, M., 2016. Semi-supervised classification with graph convolutional networks. arXiv preprint
arXiv:1609.02907.

[9] Liao, R., Zhao, Z., Urtasun, R. and Zemel, R.S., 2019. Lanczosnet: Multi-scale deep graph convolutional networks. arXiv preprint
arXiv:1901.01484.

Questions?

