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Course Scope

* Brief Intro to Deep Learning

* Geometric Deep Learning

* Deep Learning Models for Sets and Sequences: Deep Sets & Transformers
* Deep Learning Models for Graphs: Message Passing & Graph Convolution GNNs
* Group Equivariant Deep Learning

* Probabilistic Deep Learning

Auto-regressive models, Large Language Models (LLMs)

Variational Auto-Encoders (VAEs) and Generative Adversarial Networks (GANs)
Energy based models (EBMs)

Diffusion/Score based models
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Autoregressive Models

Long history in statistics, econometrics, and signal processing.

We are a given n-dimensional data x

mn n
po(x) = [ [ po(xilx1. ..., xi—1) = | [ po(xslx<i)
1=1 1=1

Graphical model:




PixelCNNs

Autoregressive model for images.

mn n
po(x) = [ [ po(xilx1. ..., xi—1) = | [ po(xslx<i)
1=1 1=1

X 1s pixel value, e.g., {0, 1, ..., 255}
T = height X width

Every term P4g (Xi ‘X<i> 1s modeled by the same CNN (softmax readout)



PixelCNNs
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One can also vectorize an

image as a sequence and
use RNNss to build the
autoregressive model,
e.g., PixelRNNs [2].

Image Credit: [1]



What About Color Images?

Autoregressive conditioning again along channels:

n

Po (XR7 XaG, XB) — Hp9 (xR,ilxR,<'i7 X@G,<is xB,<i) X
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po(zG iR, XR,<i, XG,<iy XB,<i) X

po(ZB.i|TG.i, TR, XR,<iyXG,<is XB,<i)



How to Implement?

1. Mask Input
2. Convolution

Image Credit: [1]



How to Implement?

For each image, we need H X W
masks and convolutions to
compute the likelihood!

Image Credit: [1]



Solutions 1in PixelCNNs

Masked Filter + Smart Stack of Regular Convolutions!
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Image Credit: [1]
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Masked Filter

Masked 3 X 3 filter
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Masked 3 X 3 filter




Masked Filter

Masked 3 X 3 filter




Masked Filter

Masked 3 X 3 filter




Masked Filter

Masked 3 X 3 filter

Naively applying masked filter causes blind spots (blue area)!



How to Resolve Blind Spots?

Applying two stacks of masked convolutions!

Vertical stack T

el Horizontal stack

Image Credit: [1]



How to Resolve Blind Spots?

Horizontal Stack (Implemented by masked 2D convolution)

Horizontal Mask 1

Horizontal Mask 2
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How to Resolve Blind Spots?
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How to Resolve Blind Spots?
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How to Resolve Blind Spots?

Vertical Stack (Implemented by masked 2D convolution)

Vertical Mask 1

Applying vertical masked filter causes blind spots (blue area) too!




How to Resolve Blind Spots?

Vertical Stack (Implemented by masked 2D convolution)

We again use two masked filters to remove blind spots!

Vertical Mask 1

Vertical Mask 2
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How to Resolve Blind Spots?
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How to Resolve Blind Spots?

Combine Horizontal and Vertical Stacks

Horizontal Mask 1

Vertical Mask 1

Layer 1 — Layer 2 — ... — Layer L
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PixelCNN Architecture
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PixelCNN Architecture

Gated Convolutions

Image Credit: [1]

Split feature maps
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PixelCNN Performances

CIFAR 10:

Model NLL Test (Train)
Uniform Distribution: [30] 8.00
Multivariate Gaussian: [30] 4.70
NICE: [4] 448
Deep Diffusion: [24] 4.20
DRAW: [9] 4.13
Deep GMMs: [31, 29] 4.00
Conv DRAW: [8] 3.58 (3.57)
RIDE: [26, 30] 3.47
PixelCNN: [30] 3.14 (3.08)
PixelRNN: [30] 3.00 (2.93)

Gated Pixel CNN:

3.03 (2.90)




PixelCNN Performances

Unconditional Generation:
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Image Credit: [1,3,4]



PixelCNN Performances

Conditional Generation (Image Completion):

Original image and input image to sampling: Original image and input image to sampling: Original image and input image to sampling:

Image Credit: [4]



PixelCNN Performances

Conditional Generation (Class Label):
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Image Credit: [1]



Pros vs Cons

+ Parallel Training

One forward pass to compute losses at all locations (i.e., all conditional probabilities)!
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Image Credit: [1]



Pros vs Cons

+ Parallel Training

One forward pass to compute losses at all locations (i.e., all conditional probabilities)!

+ Strong Performances

Pixel CNN++ [3] further improves performances by: o S
1. Softmax — discretized mixture of logistic distributions Pixel intensity distribution

2. Downsample & upsample, dropout, skip connections, etc.
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Image Credit: [3]



Pros vs Cons

+ Parallel Training
One forward pass to compute losses at all locations (i.e., all conditional probabilities)!
+ Strong Performances
Pixel CNN++ [3] further improves performances by:
1. Softmax — discretized mixture of logistic distributions
2. Downsample & upsample, dropout, skip connections, etc.

- Slow Sampling

This is due to the sequential nature of autoregressive sampling.
It could be further improved by methods, e.g., [5].



Pros vs Cons

Parallel Nonlinear Equation Solving [5] speeds up auto-regressive sampling:

Jacobhi-type sampling
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Questions?



