EECE 571F: Deep Learning with Structures

Lecture 6: Autoregressive Models I (Images)

Renjie Liao

University of British Columbia
Winter, Term 1, 2023

Course Scope

- Brief Intro to Deep Learning
- Geometric Deep Learning
 - Deep Learning Models for Sets and Sequences: Deep Sets & Transformers
 - Deep Learning Models for Graphs: Message Passing & Graph Convolution GNNs
 - Group Equivariant Deep Learning
- Probabilistic Deep Learning
 - Auto-regressive models, Large Language Models (LLMs)
 - Variational Auto-Encoders (VAEs) and Generative Adversarial Networks (GANs)
 - Energy based models (EBMs)
 - Diffusion/Score based models

Course Scope

- Brief Intro to Deep Learning
- Geometric Deep Learning
 - Deep Learning Models for Sets and Sequences: Deep Sets & Transformers
 - Deep Learning Models for Graphs: Message Passing & Graph Convolution GNNs
 - Group Equivariant Deep Learning
- Probabilistic Deep Learning
 - Auto-regressive models, Large Language Models (LLMs)
 - Variational Auto-Encoders (VAEs) and Generative Adversarial Networks (GANs)
 - Energy based models (EBMs)
 - Diffusion/Score based models

Autoregressive Models

Long history in statistics, econometrics, and signal processing.

We are a given n-dimensional data x

$$p_{\theta}(\mathbf{x}) = \prod_{i=1}^{n} p_{\theta}(\mathbf{x}_i | \mathbf{x}_1, \dots, \mathbf{x}_{i-1}) = \prod_{i=1}^{n} p_{\theta}(\mathbf{x}_i | \mathbf{x}_{< i})$$

Graphical model:

PixelCNNs

Autoregressive model for images.

$$p_{\theta}(\mathbf{x}) = \prod_{i=1}^{n} p_{\theta}(\mathbf{x}_i | \mathbf{x}_1, \dots, \mathbf{x}_{i-1}) = \prod_{i=1}^{n} p_{\theta}(\mathbf{x}_i | \mathbf{x}_{< i})$$

 X_i is pixel value, e.g., $\{0, 1, ..., 255\}$

 $n = \text{height} \times \text{width}$

Every term $p_{\theta}(\mathbf{x}_i|\mathbf{x}_{< i})$ is modeled by the same CNN (softmax readout)

PixelCNNs

$$p_{\theta}(\mathbf{x}_i|\mathbf{x}_{< i})$$

Conditioned on all pixels that are top-left!

One can also vectorize an image as a sequence and use RNNs to build the autoregressive model, e.g., PixelRNNs [2].

What About Color Images?

Autoregressive conditioning again along channels:

$$p_{\theta}(\mathbf{x}_{R}, \mathbf{x}_{G}, \mathbf{x}_{B}) = \prod_{i}^{n} p_{\theta}(x_{R,i} | \mathbf{x}_{R,< i}, \mathbf{x}_{G,< i}, \mathbf{x}_{B,< i}) \times$$

$$p_{\theta}(x_{G,i} | x_{R,i}, \mathbf{x}_{R,< i}, \mathbf{x}_{G,< i}, \mathbf{x}_{B,< i}) \times$$

$$p_{\theta}(x_{B,i} | x_{G,i}, x_{R,i}, \mathbf{x}_{R,< i}, \mathbf{x}_{G,< i}, \mathbf{x}_{B,< i})$$

How to Implement?

- 1. Mask Input
- 2. Convolution

How to Implement?

For each image, we need $H \times W$ masks and convolutions to compute the likelihood!

Solutions in PixelCNNs

Masked Filter + Smart Stack of Regular Convolutions!

1	1	1	1	1
1	1	1	1	1
1	1	0	0	0
0	0	0	0	0
0	0	0	0	0

Masked 3×3 filter

Naively applying masked filter causes blind spots (blue area)!

Applying two stacks of masked convolutions!

Horizontal Stack (Implemented by masked 2D convolution)

Horizontal Mask 1

Horizontal Mask 2

Horizontal Stack (Implemented by masked 2D convolution)

Horizontal Mask 1

Mask $1 \rightarrow \text{Mask } 2 \rightarrow ... \rightarrow \text{Mask } 2$

Horizontal Stack (Implemented by masked 2D convolution)

Horizontal Mask 1

Avoid using information at current location!

Horizontal Stack (Implemented by masked 2D convolution)

Note that the same masked filter is convolved everywhere!

Horizontal Mask 1

Avoid using information at current location!

Horizontal Stack (Implemented by masked 2D convolution)

Horizontal Mask 2

Horizontal Stack (Implemented by masked 2D convolution)

Horizontal Mask 2

Horizontal Stack (Implemented by masked 2D convolution)

Horizontal Mask 2

Horizontal Stack (Implemented by masked 2D convolution)

Horizontal Mask 2

Vertical Stack (Implemented by masked 2D convolution)

Vertical Mask 1

Vertical Stack (Implemented by masked 2D convolution)

Vertical Mask 1

Avoid using information at current location!

Vertical Stack (Implemented by masked 2D convolution)

Vertical Mask 1

Applying vertical masked filter causes blind spots (blue area) too!

Vertical Stack (Implemented by masked 2D convolution)

We again use two masked filters to remove blind spots!

Vertical Mask 1

Vertical Mask 2

Vertical Stack (Implemented by masked 2D convolution)

Vertical Mask 1

Vertical Stack (Implemented by masked 2D convolution)

Note that the same masked filter is convolved everywhere!

Vertical Mask 1

Vertical Stack (Implemented by masked 2D convolution)

Vertical Mask 1

Mask $1 \rightarrow \text{Mask } 2 \rightarrow ... \rightarrow \text{Mask } 2$

Vertical Stack (Implemented by masked 2D convolution)

Vertical Mask 1

Mask $1 \rightarrow \text{Mask } 2 \rightarrow ... \rightarrow \text{Mask } 2$

Vertical Stack (Implemented by masked 2D convolution)

Vertical Mask 1

Vertical Stack (Implemented by masked 2D convolution)

Vertical Mask 1

Vertical Stack (Implemented by masked 2D convolution)

Vertical Mask 1

Mask $1 \rightarrow \text{Mask } 2 \rightarrow ... \rightarrow \text{Mask } 2$

Vertical Stack (Implemented by masked 2D convolution)

Vertical Mask 1

Mask $1 \rightarrow \text{Mask } 2 \rightarrow ... \rightarrow \text{Mask } 2$

Vertical Stack (Implemented by masked 2D convolution)

Vertical Mask 2

Mask $1 \rightarrow$ Mask $2 \rightarrow ... \rightarrow$ Mask 2

Vertical Stack (Implemented by masked 2D convolution)

Vertical Mask 2

Mask $1 \rightarrow Mask 2 \rightarrow ... \rightarrow Mask 2$

Vertical Stack (Implemented by masked 2D convolution)

Vertical Mask 2

Mask $1 \rightarrow$ Mask $2 \rightarrow ... \rightarrow$ Mask 2

Combine Horizontal and Vertical Stacks

Horizontal Mask 1

Vertical Mask 1

Layer $1 \rightarrow \text{Layer } 2 \rightarrow ... \rightarrow \text{Layer } L$

Combine Horizontal and Vertical Stacks

Horizontal Mask 2

Vertical Mask 2

Combine Horizontal and Vertical Stacks

Horizontal Mask 2

Vertical Mask 2

Combine Horizontal and Vertical Stacks

Horizontal Mask 2

Vertical Mask 2

Combine Horizontal and Vertical Stacks

Horizontal Mask 2

Vertical Mask 2

PixelCNN Architecture

PixelCNN Architecture

Gated Convolutions

$$\mathbf{y} = \tanh\left(\mathbf{W}_f \mathbf{x}\right) \odot \sigma\left(\mathbf{W}_g \mathbf{x}\right)$$

CIFAR 10:

Model	NLL Test (Train)
Uniform Distribution: [30]	8.00
Multivariate Gaussian: [30]	4.70
NICE: [4]	4.48
Deep Diffusion: [24]	4.20
DRAW: [9]	4.13
Deep GMMs: [31, 29]	4.00
Conv DRAW: [8]	3.58 (3.57)
RIDE: [26, 30]	3.47
PixelCNN: [30]	3.14 (3.08)
PixelRNN: [30]	3.00 (2.93)
Gated PixelCNN:	3.03 (2.90)

Unconditional Generation:

Conditional Generation (Image Completion):

Image Credit: [4]

Conditional Generation (Class Label):

Image Credit: [1]

+ Parallel Training

One forward pass to compute losses at all locations (i.e., all conditional probabilities)!

Image Credit: [1]

+ Parallel Training

One forward pass to compute losses at all locations (i.e., all conditional probabilities)!

+ Strong Performances

PixelCNN++ [3] further improves performances by:

- 1. Softmax → discretized mixture of logistic distributions
- 2. Downsample & upsample, dropout, skip connections, etc.

$$\nu \sim \sum_{i=1}^{K} \pi_i \operatorname{logistic}(\mu_i, s_i)$$

$$P(x|\pi, \mu, s) = \sum_{i=1}^{K} \pi_i \left[\sigma((x + 0.5 - \mu_i)/s_i) - \sigma((x - 0.5 - \mu_i)/s_i) \right],$$

Image Credit: [3]

+ Parallel Training

One forward pass to compute losses at all locations (i.e., all conditional probabilities)!

+ Strong Performances

PixelCNN++ [3] further improves performances by:

- 1. Softmax → discretized mixture of logistic distributions
- 2. Downsample & upsample, dropout, skip connections, etc.

- Slow Sampling

This is due to the sequential nature of autoregressive sampling. It could be further improved by methods, e.g., [5].

Parallel Nonlinear Equation Solving [5] speeds up auto-regressive sampling:

References

- [1] van den Oord, A., et al. "Conditional Image Generation with PixelCNN Decoders." In Advances in Neural Information Processing Systems 29, pp. 4790–4798 (2016).
- [2] van den Oord, A., et al. "Pixel Recurrent Neural Networks." arXiv preprint arXiv:1601.06759 (2016).
- [3] Salimans, Tim, et al. "PixelCNN++: Improving the PixelCNN with Discretized Logistic Mixture Likelihood and Other Modifications." arXiv preprint arXiv:1701.05517 (2017).
- [4] https://uvadlc-notebooks.readthedocs.io/en/latest/tutorial_notebooks/tutorial12/Autoregressive_Image_Modeling.html
- [5] Song, Y., Meng, C., Liao, R. and Ermon, S., 2021, July. Accelerating feedforward computation via parallel nonlinear equation solving. In International Conference on Machine Learning (pp. 9791-9800). PMLR.

Questions?