EECE 571F: Deep Learning with Structures

Lecture 8 I: Generative Adversarial Networks

Renjie Liao

University of British Columbia
Winter, Term 1, 2023

Outline

* Generative Adversarial Networks (GANS)

Zero-sum game & min-max loss
Optimal discriminator

Global minimum

Architectures

Results & Challenges

e Variants

 Wasserstein GANSs
* Progressive GANs
* Cycle GANs

* MolGANs

Outline

* Generative Adversarial Networks (GANS)

Zero-sum game & min-max loss
Optimal discriminator

Global minimum

Architectures

Results & Challenges

e Variants

 Wasserstein GANSs
* Progressive GANs
* Cycle GANs

* MolGANs

Generative Adversarial Networks (GANs)

In a GAN [1], two neural networks (players) play a zero-sum game, 1.¢€., one player’s gain is equivalent to
the other’s loss.

Generative Adversarial Networks (GANs)

In a GAN [1], two neural networks (players) play a zero-sum game, 1.¢€., one player’s gain is equivalent to
the other’s loss.

Training set l/

VAR
/

Discriminator

— {Fa ke

_’
Random Z7 B —

/

Generator —/ /Fake image

Image Credit: [2]

Generative Adversarial Networks (GANs)

In a GAN [1], two neural networks (players) play a zero-sum game, 1.¢€., one player’s gain is equivalent to
the other’s loss.

Training set V / Discriminator
/ N
Random Z7 / — | — {Fa e
Generator —/ /Fake image

Min-max loss:

minmax Exopy.,(x)[log Do(X)] + Ezpz)[log(l = Dy (Go(2))

Image Credit: [2]

Outline

* Generative Adversarial Networks (GANS)

Zero-sum game & min-max loss
Optimal discriminator

Global minimum

Architectures

Results & Challenges

e Variants

 Wasserstein GANSs
* Progressive GANs
* Cycle GANs

* MolGANs

Optimal Discriminator of GANs

X
1. Fix generator, the optimal discriminator 1s D:; (X) = Pdata(X)

 paata(X) + pg, (X)

Optimal Discriminator of GANs

X
1. Fix generator, the optimal discriminator 1s D:; (X) = Pdata(X)

B pdata(X) -+ PGy (X)

Why?

U(Go, Dy) = Exmpyan(x)108 Dy(X)] + Ezop(z)[log(l — Dy(Go(2))]
= E X ~paaa () 108 Do (X)] + Exope, (x)[10g(1 — Dy (X))]

— [aata(X) 108 Dy(X) + i, (X) o1 — Do(X))dX

Optimal Discriminator of GANs

. * pdata<X)
1. Fix generator, the optimal discriminator is D (X) =
o) = () + v (D)

Why?

aqery qu) — EXdiata(X) log D¢<X)] + IEj‘ZNP(Z) [log(1 — Dﬁb(G@ (2))] Law Of The Unconscious
= E X o paaea (X) log Dy (X)] + IEXNPGQ (X) log(1l — Dyg(X))] Statistician (LOTUS)

— [aata(X) 108 Dy(X) + i, (X) o1 — Do(X))dX

Optimal Discriminator of GANs

. * pdata<X)
1. Fix generator, the optimal discriminator is D (X) =
o) = () + v (D)

Why?

aqery qu) — EXdiata(X) log D¢<X)] + IEj‘ZNP(Z) [log(1 — Dﬁb(G@ (2))] Law Of The Unconscious
= E X o paaea (X) log Dy (X)] + IEXNPGQ (X) log(1l — Dyg(X))] Statistician (LOTUS)

— [aata(X) 108 Dy(X) + i, (X) o1 — Do(X))dX

Set the gradient of loss w.r.t. D to be zero, we obtain the optimal discriminator

Outline

* Generative Adversarial Networks (GANS)

* Zero-sum game & min-max loss
Optimal discriminator

Global minimum

Architectures

Results & Challenges

e Variants

 Wasserstein GANSs
* Progressive GANs
* Cycle GANs

* MolGANs

Global Minimum of Min-Max Loss

Suppose we found the optimal discriminator, our loss function becomes

C(G@) — Hll)aX f(G@, D¢)

¢

— EXdiata(X)

— EXdiata(X)

log (

log D;;(X)] + Expe, (X) log(1 — D;;(X)):

pdata<X>)] 4 EX <
Paata(X) + e, (X) PGy (X)

log (

PGy (X)

pdata(X) + PGy (X>

)

Global Minimum of Min-Max Loss

Suppose we found the optimal discriminator, our loss function becomes

C(G@) — Hll)aX f(G@, D¢)

¢

— EXdiata(X)

— EXdiata(X)

log D;;(X)] + Expe, (X) log(1 — D;;(X)):

pdata<X>

log (
| Pdata

(X) +pG9(X))] T Exope, (x)

2. The global minimum of C'(Gp) is achieved iff. Pdata (X) = pg,(X)

PGy (X)

log (
i pdata(

X) +pG9(X>

)

Global Minimum of Min-Max Loss

Suppose we found the optimal discriminator, our loss function becomes

C(G@) — Hll)aX f(G@, D¢)

¢

— EXdiata(X)

— EXdiata(X)

log D;;(X)] + Expe, (X) log(1 — D;;(X)):

pdata<X>

log (
| Pdata

(X) +pG9(X))] T Exope, (x)

2. The global minimum of C'(Gp) is achieved iff. Pdata (X) = pg,(X)

Why? ClG) = Exapgaa(X) [10% (

(Paata(X) + pa, (X)) /2
PGy (X)

PGy (X)

log (
i pdata(

Pdata(X))]

1
FEXp6, () llog (<pdata<x> T re, <X>>/2)] +2los(3)
— ISD(paara(X) PG, (X)) — log(4)

X) +pG9(X>

)

Global Minimum of Min-Max Loss

2. The global minimum of C'(Gy) is achieved iff. Pdata(X) = P, (X)

G =B o8 (G o)
Exepe, 00 08 (Gt oo)| + 203

2
= JSD(Pdata(X)[lpa, (X)) — log(4)

Jensen—Shannon divergence (JSD) is in [0, log;, 2] (base b) and is zero iff. P=Q

1 P+Q P+Q

ISD(P|Q) = SKL(P]|

) + SKL(Q]

)

Global Minimum of Min-Max Loss

Jensen—Shannon divergence (JSD) is in [0, log;, 2] (base b) and is zero iff. P=Q

0.4

0.3

0.2 A

0.1+

0.0 A

0.10 A

0.05 4

0.00 A

—0.05 A

Image Credit: [3]

JSD(P||Q) =

—— Dk (p||m)
— Dxu(ql|m

1

—KL

2

0.4

0.3 1
0.2 -
0.1 -
0.0 T
-0.11

0.03 -

0.02 -

0.01 -

0.00 —

P+Q P+Q

— Dku(pllq)
— Dxu(qllp

— Dys(pllq)

o e e e O—-

—5)

Given two Gaussian distribution, p
with mean=0 and std=1 and q with
mean=1 and std=1. The average of
two distributions is labelled as m.
KL divergence is asymmetric but JS
divergence is symmetric.

Global Minimum of Min-Max Loss

Jensen—Shannon divergence (JSD) is in [0, log;, 2] (base b) and is zero iff. P=Q

JSD(P||Q) =

0.10 A

0.05 4

0.00 A

—0.05 A

—— Dxi(p||m)
— Dxu(ql|m

Image Credit: [3]

1
2

0.4

0.3 1
0.2 -
0.1 -
0.0 -
-0.11

0.03 -

0.02 -

0.01 -

0.00 A

—KL(P||——

P+Q

2

)+ KLQ| Y

— Dx(qllp

— Dku(pllq)

— Dys(pllq)

)

Given two Gaussian distribution, p
with mean=0 and std=1 and q with
mean=1 and std=1. The average of
two distributions is labelled as m.
KL divergence is asymmetric but JS
divergence is symmetric.

If high density areas of data and model

(generator) distributions have less
overlap, JSD is not a good objective!

Outline

* Generative Adversarial Networks (GANS)

Zero-sum game & min-max loss
Optimal discriminator

Global minimum

Architectures

Results & Challenges

e Variants

 Wasserstein GANSs
* Progressive GANs
* Cycle GANs

* MolGANs

Architectures
Deep Convolutional Generative Adversarial Network (DCGANSs) [4] : using CNNs as both Generator and
Discriminator.
128
212 I Stride 2
' = 32
4 l
100 z ‘ ook, -
4 = i
. Stride 2 16
Project and reshape GOV
transpose CONV 2 o
transpose CONV 3
transpose G (Z)

Generator

Image Credit: [2]

Outline

* Generative Adversarial Networks (GANS)

* Zero-sum game & min-max loss
Optimal discriminator

Global minimum

Architectures

Results & Challenges

e Variants

 Wasserstein GANSs
* Progressive GANs
* Cycle GANs

* MolGANs

Results

Samples from GANSs during training on SVHNs (left) and MNIST (right)

Image Credit: [2]

Challenges 1n Training GANSs

1) Training instability

Hard to reach Nash Equilibrium:

A simulation for updating x to
minimize xy and updating y to
minimize —xYy. The learning
rate n = 0.1 . With more
iterations, the oscillation grows
more and more unstable.

0 20 40 60 80 100
lterations

Image & Example Credit: [3]

Challenges 1n Training GANSs

1) Training instability

Convergence Failure: e.g., caused

by imbalance training of
generator and discriminator

Image Credit: [5]

Challenges 1n Training GANSs

1) Training instability, 2) Mode collapse

Mode Collapse: generating samples
that are very similar or even identical

Image Credit: [5]

Challenges 1n Training GANSs

1) Training instability, 2) Mode collapse, 3) Vanishing gradient

Gradient of the generator with the original cost

I 1 1 1 1

10!

10° =\
1

10 Y

— After 1 epoch
—— After 10 epochs |7
—— After 25 epochs

10-2 §

|
10-% |

10-*

“T'JL[D-!IH)H

10-5
109
i

10-7

0 |
1058

500 1000 1500 2000 2500 3000 3500 4000
Training iterations

Image & Example Credit: [6]

First, a DCGAN is trained for 1, 10 and
25 epochs. Then, with the generator
fixed, a discriminator 1s trained from

scratch and measure the gradients with the
original cost function. We see the gradient
norms decay quickly (in log scale), in the
best case 5 orders of magnitude after 4000
discriminator iterations.

Outline

* Generative Adversarial Networks (GANS)

Zero-sum game & min-max loss
Optimal discriminator

Global minimum

Architectures

Results & Challenges

e Variants

 Wasserstein GANSs
* Progressive GANs
* Cycle GANs

* MolGANs

Earth Mover Distance (Wasserstein-1 Distance)

Suppose we have two distributions P. and Py, we want to match them by “moving dirt” from PB. to Pg.

P, F

Image & Example Credit: [7]

Earth Mover Distance (Wasserstein-1 Distance)

Suppose we have two distributions P. and Pg, we want to match them by “moving dirt” from PB. to Pg.

P. Py

Transportation Plan: we split the “dirt” (probability) and move it to different locations to match them.

Image & Example Credit: [7]

Earth Mover Distance (Wasserstein-1 Distance)

EMD(F, Fy) = inf ; |z = ylv(@,y) = inf B y)slle =yl = inf (D, T)r

11 is the set of all distributions
whose marginals are P, P
respectively, called couplings.

Earth Mover Distance (Wasserstein-1 Distance)

EMD(Fy, Fo) = inf Y llz —yly(e,y) = inf Eqy)yllz —yll = inf (D,T)p
T,y

— e

Image Credit: [7]

I' = v(x,y)

vyell

D = |z —y|

yell

11 is the set of all distributions
whose marginals are P, P
respectively, called couplings.

Earth Mover Distance (Wasserstein-1 Distance)

vyell

yell

EMDU%FM=3gg§:WV—MW®¢0=iM?Emmwww—sziﬁ<DJ3F
T,y

— e

Image Credit: [7]

I

I' = v(x,y)

Transportation Plan

D = [z —y||
Cost

11 is the set of all distributions
whose marginals are P, P
respectively, called couplings.

Earth Mover Distance (Wasserstein-1 Distance)

EMDG%HO=%$§;W%1Wﬂ%w=gg}&mmwm—yHZﬁgﬂlFﬁ

— e

Image Credit: [7]

I

I' = v(x,y)

Transportation Plan

D = [z —y||
Cost

11 is the set of all distributions
whose marginals are P, P
respectively, called couplings.

One can generalize it to
Wasserstein-p Distance:

1/p
Wp(Pra P@) - (’%rellﬁ[E(m,y)w’yd(xv y)p)

Why Wasserstein Distance?

V(z,y) € P =0, y~U(0,1)
Vieg,y) €eQ z=0(0<60<1), y~U(0,1)

Consider two distributions:

1.0 -
— P
0.8 -
0.6 -

0.4 1

0.2

0.0 -

0.0 0.2 0.4 0.6 0.8 1.0

Example & Image Credit: [3]

Why Wasserstein Distance?

V(z,y) € P =0, y~U(0,1)
Vieg,y) €eQ z=0(0<60<1), y~U(0,1)

Consider two distributions:

If 6 #0:
1
1.0 - _ _
b Dgr(P|Q) = Z_% 1'108;6 = +00
— yNwU_(O,l)
0.8 - |
Di1(Q||P) = ;} 1. 1og6 — +o0
0.6 - y~U(0,1)
1
>
0.4 - DJS(P,Q):§(; 1- logm%— Z 1- log1/2) log 2
y~U(0,1) y~U(0.1)
0.2 W(P,Q) = |9
0.0 -
0.0 0.2 0.4 0.6 0.8 1.0

Example & Image Credit: [3]

Why Wasserstein Distance?

V(z,y) € P =0, y~U(0,1)
Vieg,y) €eQ z=0(0<60<1), y~U(0,1)

Consider two distributions:

If 6 #0:
1
1.0 - _ _
— Dgr(P|Q) = Z_% 1'10g6—+00
— yNwU_(O,l)
0.8 - .
Drr(QIP)= Y 1 log 5 = 400
0.6 A =0
1
>
0.4 - DJS(P,Q)—§(; 1- logm%— Z 1- log1/2) log 2
y~U(0,1) y0(0,1)
0.2 W(P,Q) = 0|
00- Else:
0.0 0.2 0.4 0.6 0.8 1.0 Dir(P||Q) = Dkr(Q||P) = D;s(P,Q) =0
x W(P,Q)=0=0

Example & Image Credit: [3]

Why Wasserstein Distance?

V(z,y) € P =0, y~U(0,1)
Vieg,y) €eQ z=0(0<60<1), y~U(0,1)

Consider two distributions:

If 6 #0:
1
1.0 - _ _
— Dgr(P|Q) = Z_% 1'10g6—+00
— Q y~U(0,1)
0.8 - .
Drr(Q|P) = ;_:0 1-log 5 = +o0
0.6 - y~U(0,1)
> 1
0.4 - DJS(P,Q)—§(; 1-log 1/2+ Z 1-log 1/2) log 2
y~U(0,1) y0(0,1)
0.2 W(P,Q) = 0|
00- Else:
0.0 0.2 0.4 0.6 0.8 1.0 Dir(P||Q) = Dkr(Q||P) = D;s(P,Q) =0
x W(P,Q) =0 =4

Wasserstein distance is smooth, which is helpful for gradient based learning!

Example & Image Credit: [3]

Wasserstein GANS

Earth Mover Distance / Wasserstein Metric: EMD(P,., Py) = inf Z |z —yl[v(z,y) = inf E poyllz =y
yell . vyell ’

vell

It 1s typically hard to compute (need to solve linear programming for discrete distributions)!

Wasserstein GANS

Earth Mover Distance / Wasserstein Metric: EMD(P,., Py) = inf Z |z —yl[v(z,y) = inf E poyllz =y
yell . vyell ’

vell

It 1s typically hard to compute (need to solve linear programming for discrete distributions)!

Wasserstein distance (using Kantorovich-Rubinstein duality, see, e.g., [8]):

EMD(P,, Py) = sup E,.p f(x)—E.vp, f(x).

1fllL<a

Wasserstein GANS

Earth Mover Distance / Wasserstein Metric: EMD(P,., Py) = inf Z |z —yl[v(z,y) = inf E poyllz =y
yell . vyell ’

vell

It 1s typically hard to compute (need to solve linear programming for discrete distributions)!

Wasserstein distance (using Kantorovich-Rubinstein duality, see, e.g., [8]):

EMD(P,, Py) = sup E,.p f(x)—E.vp, f(x).

1fllL<a

Wasserstein-GAN [8] proposes a unified objective:

Learn Discriminator via qubaJX E X pyaea (X) [P (X)] = Eerope) [Dop (Gol(€))]

Learn Generator via meil’l IEprdm()() [ng(X)] - Eefvp(e) [qu(GH(E))]

Wasserstein GANS

Earth Mover Distance / Wasserstein Metric: EMD(P,., Py) = inf Z |z —yl[v(z,y) = inf E poyllz =y
yell . vyell ’

vell

It 1s typically hard to compute (need to solve linear programming for discrete distributions)!

Wasserstein distance (using Kantorovich-Rubinstein duality, see, e.g., [8]):

EMD(P,, Py) = sup E,.p f(x)—E.vp, f(x).

1fllL<a

Wasserstein-GAN [8] proposes a unified objective:

Learn Discriminator via qubaJX E X pyaea (X) [P (X)] = Eerope) [Dop (Gol(€))]
Learn Generator via m@in Ex pana (X) [P (X)] = Eep(e)[Do (Go(€))]

To enforce Lipschitz condition, one can clip weights [8], add gradient penalty (WGAN-GP) [9],
and use spectral normalization [10]

Wasserstein GANS

Algorithm 1 WGAN, our proposed algorithm. All experiments in the paper used
the default values o = 0.00005, ¢ = 0.01, m = 64, ncritic = O.

Require: : «, the learning rate. ¢, the clipping parameter. m, the batch size.
Neritics the number of iterations of the critic per generator iteration.
Require: : wy, initial critic parameters. 6, initial generator’s parameters.

1: while 6 has not converged do

1ot = 0.« ligaps 0O
Sample {z(¥}™, ~ P, a batch from the real data.
Sample {2(!)}™, ~ p(z) a batch of prior samples.
Gw Vu [% E:ll fw(x(i)) - % Z;’ll fw(gg(z(i)))]
w + w + o - RMSProp(w, g,)
w <« clip(w, —c, ¢)

end for

Sample {z(¥}™ ~ p(z) a batch of prior samples.

go —VG% b By fuw(ge(2"))

it 6 + 6 — o - RMSProp(4, go)

12: end while

[
S

Image Credit: [8]

Wasserstein GANS

DCGAN LSGAN WGAN (clipping) WGAN-GP (ours)

Basellne (G- DCGAN - DCGAN)

Image Credit: [9]

Outline

* Generative Adversarial Networks (GANS)

Zero-sum game & min-max loss
Optimal discriminator

Global minimum

Architectures

Results & Challenges

e Variants

* Wasserstein GANs
* Progressive GANs
* Cycle GANs

* MolGANs

Progressive GANs

Image Credit: [11]

Latent Latent

ﬁﬁ

4x4

HI|00
B | B S En——
II:

N
. ' Reals
v

Training progresses >

Latent
v

1024x1024 |

A 4
1024x1024 |

Figure 1: Our training starts with both the generator (G) and discriminator (D) having a low spa-
tial resolution of 4 x4 pixels. As the training advances, we incrementally add layers to G and D,
thus increasing the spatial resolution of the generated images. All existing layers remain trainable

throughout the process. Here

N x N

refers to convolutional layers operating on NV X N spatial

resolution. This allows stable synthesis in high resolutions and also speeds up training considerably.
One the right we show six example images generated using progressive growing at 1024 x 1024.

Progressive GANs

Figure 5: 1024 x 1024 images generated using the CELEBA-HQ dataset. See Appendix F for a
larger set of results, and the accompanying video for latent space interpolations.

Image Credit: [11]

Outline

* Generative Adversarial Networks (GANS)

Zero-sum game & min-max loss
Optimal discriminator

Global minimum

Architectures

Results & Challenges

e Variants

e Wasserstein GANSs
* Progressive GANs
* Cycle GANs

* MolGANs

Cycle GANSs

Cycle-Consistent Generative Adversarial Networks [12] learn the image-to-image translation without a
training set of aligned image pairs

Image Credit: [13]

Cycle GANSs

Cycle-Consistent Generative Adversarial Networks [12] learn the image-to-image translation without a
training set of aligned image pairs

Image Credit: [12,13]

Cycle GANSs

Cycle-Consistent Generative Adversarial Networks [12] learn the image-to-image translation without a
training set of aligned image pairs

EGAN(Fa Dx, X, Y) — Emr\/pdata(w) [lOg Dx (.CU)] + Eprdata(y) [log(l — Dx (F(y))]

Image Credit: [12,13]

Cycle GANSs

Cycle-Consistent Generative Adversarial Networks [12] learn the image-to-image translation without a
training set of aligned image pairs

EGAN(Fa Dx, X, Y) — Emwpdata(:v) [log Dx (.CU)] + Eprdata(y) [log(l — Dx (F(y))]

EGAN (G7 DY? X7 Y) —]E‘prdata(y) [log DY (y>] + Ew’\“pdata(w) [log(]‘ o DY (G(.:U))]

Image Credit: [12,13]

Cycle GANSs

Cycle-Consistent Generative Adversarial Networks [12] learn the image-to-image translation without a
training set of aligned image pairs

EGAN(Fa Dx, X, Y) — Emwpdata(:v) [log Dx (.CU)] + Eprdata(y) [log(l — Dx (F(y))]
EGAN (G7 DY? X7 Y) —]E‘prdata(y) [log DY (y>] + Ew’\“pdata(w) [log(]‘ o DY (G(.:U))]

Loye(G F) =Egpmpiia(@) IF(G(2) = 21] + Eynpaua) IGF (Y)) = yll]

Image Credit: [12,13]

Cycle GANSs

Cycle-Consistent Generative Adversarial Networks [12] learn the image-to-image translation without a
training set of aligned image pairs

EGAN(Fa Dx, X, Y) — Emwpdata(:v) [log Dx (.CU)] + Eprdata(y) [log(l — Dx (F(y))]
Laan(G, Dy, X,Y) = Eypon 108 Dy (Y)] + Epoponin (@) [log(1 — Dy (G(2))]
Leye(G, F) =Epnpgora @) 1F(G(2)) — zll1] + Eyapinea) IIG(F(Y)) — yll1]

E(Ga F7 DXaDY) :EGAN(Ga DYaXa Y) + 'CGAN(Fa DX7Y7 X) +)\Ecyc(Ga F)

Image Credit: [12,13]

Cycle GANSs

Start

Discriminator A -« Gexezagator N Decision [0,1]
- ~ A
~
~
~
~
~
~
~
e f "i\\\‘(=4 : L
Decision [0,1] Generated B X)) » Discriminator B
”
. ”
Cyclic A 7
o ”
e
”

Generator |, ~
B2A

Image Credit: [14]

Cycle GANSs

Generator
A2B
Cyclic B
Discriminator A <« Decision [0,1]
— Generator L
Decision [0,1] B2A = o - Discriminator B

Start

Image Credit: [14]

Cycle GANSs

Monet Z_ Photos

photo —>Monet

Phtograph

Image Credit: [13]

N

@

o

=

V]

=3 3

o ' v
=

2]

@

T— —> zebra

Summer T Winter

winter —» summer

Monet Van Gogh

Cezanne

Outline

* Generative Adversarial Networks (GANS)

Zero-sum game & min-max loss
Optimal discriminator

Global minimum

Architectures

Results & Challenges

e Variants

 Wasserstein GANSs
* Progressive GANs
* Cycle GANs

e MolGANs

MolGANSs

MolGANSs [15] generate molecular graphs without graph matching:

Generator

R
/\

Molecular graph

(

z ~p(z) \

Reward

)

\

Discriminator

=
0/1

network

Image Credit: [15]

il

MolGANSs

MolGANSs [15] generate molecular graphs without graph matching:

Adjacency tensor A

Generator

A~ %
z ~p(z)

Image Credit: [15]

Sampled A

NW

Sampled X

N

L

Graph

T

Y

/ o
\O\O' y

Molecule

-

N\

S

J

GCN

GCN

Discriminator
%

Reward network
%

References

[1] Goodfellow, 1., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A. and Bengio, Y., 2014. Generative
adversarial nets. Advances in neural information processing systems, 27.

[2] https://sthalles.github.i0/intro-to-gans/
[3] https://lilianweng.github.io/posts/2017-08-20-gan/

[4] Radford, A., Metz, L. and Chintala, S., 2015. Unsupervised representation learning with deep convolutional generative adversarial
networks. arXiv preprint arXiv:1511.06434.

[5] https://neptune.ai/blog/gan-failure-modes

[6] Arjovsky, M. and Bottou, L., 2017. Towards principled methods for training generative adversarial networks. arXiv preprint
arXiv:1701.04862.

[7] https://vincentherrmann.github.io/blog/wasserstein/

[8] Arjovsky, M., Chintala, S. and Bottou, L., 2017, July. Wasserstein generative adversarial networks. In International conference on
machine learmng (pp. 214-223). PMLR.

[9] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V. and Courville, A.C., 2017. Improved training of wasserstein gans. Advances in
neural information processing systems, 30.

[10] Miyato, T., Kataoka, T., Koyama, M. and Yoshida, Y., 2018. Spectral normalization for generative adversarial networks. arXiv
preprint arXiv:1802.05957.

https://sthalles.github.io/intro-to-gans/
https://lilianweng.github.io/posts/2017-08-20-gan/
https://neptune.ai/blog/gan-failure-modes
https://vincentherrmann.github.io/blog/wasserstein/

References

[11] Karras, T., Aila, T., Laine, S. and Lehtinen, J., 2017. Progressive growing of gans for improved quality, stability, and variation.
arXiv preprint arXiv:1710.10196.

[12] Zhu, J.Y., Park, T., Isola, P. and Efros, A.A., 2017. Unpaired image-to-image translation using cycle-consistent adversarial
networks. In Proceedings of the IEEE international conference on computer vision (pp. 2223-2232).

[13] https://junyanz.github.i0/CycleGAN/
[14] https://hardikbansal.github.10/CycleGANBIlog/

[15] De Cao, N. and Kipf, T., 2018. MolGAN: An implicit generative model for small molecular graphs. arXiv preprint
arXiv:1805.11973.

https://junyanz.github.io/CycleGAN/
https://hardikbansal.github.io/CycleGANBlog/

Questions?

