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Generative Adversarial Networks (GANs)

In a GAN [1], two neural networks (players) play a zero-sum game, 1.¢€., one player’s gain is equivalent to
the other’s loss.
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Generative Adversarial Networks (GANs)

In a GAN [1], two neural networks (players) play a zero-sum game, 1.¢€., one player’s gain is equivalent to
the other’s loss.

Training set V / Discriminator
/ N
Random Z7 / — | — {Fa e
Generator —/ /Fake image

Min-max loss:

minmax  Exopy.,(x)[log Do(X)] + Ezpz)[log(l = Dy (Go(2))

Image Credit: [2]
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Optimal Discriminator of GANs

X
1. Fix generator, the optimal discriminator 1s D:; (X) = Pdata(X)

 paata(X) + pg, (X)
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1. Fix generator, the optimal discriminator 1s D:; (X) = Pdata(X)

B pdata(X) -+ PGy (X)
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Optimal Discriminator of GANs
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1. Fix generator, the optimal discriminator is D (X) =
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Optimal Discriminator of GANs

. . . .. . * pdata<X)
1. Fix generator, the optimal discriminator is D (X) =
o) = () + v (D)

Why?

aqery qu) — EXdiata(X) log D¢<X)] + IEj‘ZNP(Z) [log(1 — Dﬁb(G@ (2))] Law Of The Unconscious
= E X o paaea (X) log Dy (X)] + IEXNPGQ (X) log(1l — Dyg(X))] Statistician (LOTUS)

— [ aata(X) 108 Dy(X) + i, (X) o1 — Do(X))dX

Set the gradient of loss w.r.t. D to be zero, we obtain the optimal discriminator
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Global Minimum of Min-Max Loss

Suppose we found the optimal discriminator, our loss function becomes

C(G@) — Hll)aX f(G@, D¢)
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Global Minimum of Min-Max Loss

Suppose we found the optimal discriminator, our loss function becomes

C(G@) — Hll)aX f(G@, D¢)

¢

— EXdiata(X)
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log D;;(X)] + Expe, (X) log(1 — D;;(X)):

pdata<X>

log (
| Pdata

(X) +pG9(X))] T Exope, (x)

2. The global minimum of C'(Gp) is achieved iff. Pdata (X) = pg,(X)

Why?  ClG) = Exapgaa(X) [10% (

(Paata(X) + pa, (X)) /2
PGy (X)
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Global Minimum of Min-Max Loss

2. The global minimum of C'(Gy) is achieved iff. Pdata(X) = P, (X)

G =B o8 (G o )
Exepe, 00 08 (Gt oo )| + 203

2
= JSD(Pdata(X)[lpa, (X)) — log(4)

Jensen—Shannon divergence (JSD) is in [0, log;, 2] (base b) and is zero iff. P=Q

1 P+Q P+Q

ISD(P|Q) = SKL(P]|

) + SKL(Q]

)



Global Minimum of Min-Max Loss

Jensen—Shannon divergence (JSD) is in [0, log;, 2] (base b) and is zero iff. P=Q
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Given two Gaussian distribution, p
with mean=0 and std=1 and q with
mean=1 and std=1. The average of
two distributions is labelled as m.
KL divergence is asymmetric but JS
divergence is symmetric.



Global Minimum of Min-Max Loss

Jensen—Shannon divergence (JSD) is in [0, log;, 2] (base b) and is zero iff. P=Q
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Image Credit: [3]
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Given two Gaussian distribution, p
with mean=0 and std=1 and q with
mean=1 and std=1. The average of
two distributions is labelled as m.
KL divergence is asymmetric but JS
divergence is symmetric.

If high density areas of data and model

(generator) distributions have less
overlap, JSD is not a good objective!
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Architectures
Deep Convolutional Generative Adversarial Network (DCGANSs) [4] : using CNNs as both Generator and
Discriminator.
128
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Generator

Image Credit: [2]
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Results

Samples from GANSs during training on SVHNs (left) and MNIST (right)

Image Credit: [2]



Challenges 1n Training GANSs

1) Training instability

Hard to reach Nash Equilibrium:

A simulation for updating x to
minimize xy and updating y to
minimize —xYy. The learning
rate n = 0.1 . With more
iterations, the oscillation grows
more and more unstable.

0 20 40 60 80 100
lterations

Image & Example Credit: [3]



Challenges 1n Training GANSs

1) Training instability

Convergence Failure: e.g., caused

by imbalance training of
generator and discriminator

Image Credit: [5]



Challenges 1n Training GANSs

1) Training instability, 2) Mode collapse

Mode Collapse: generating samples
that are very similar or even identical

Image Credit: [5]



Challenges 1n Training GANSs

1) Training instability, 2) Mode collapse, 3) Vanishing gradient

Gradient of the generator with the original cost
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Image & Example Credit: [6]

First, a DCGAN is trained for 1, 10 and
25 epochs. Then, with the generator
fixed, a discriminator 1s trained from

scratch and measure the gradients with the
original cost function. We see the gradient
norms decay quickly (in log scale), in the
best case 5 orders of magnitude after 4000
discriminator iterations.
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Earth Mover Distance (Wasserstein-1 Distance)

Suppose we have two distributions P. and Py, we want to match them by “moving dirt” from PB. to Pg.

P, F

Image & Example Credit: [7]



Earth Mover Distance (Wasserstein-1 Distance)

Suppose we have two distributions P. and Pg, we want to match them by “moving dirt” from PB. to Pg.

P. Py

Transportation Plan: we split the “dirt” (probability) and move it to different locations to match them.

Image & Example Credit: [7]



Earth Mover Distance (Wasserstein-1 Distance)

EMD(F, Fy) = inf ; |z = ylv(@,y) = inf B y)slle =yl = inf (D, T)r

11 is the set of all distributions
whose marginals are P, P
respectively, called couplings.



Earth Mover Distance (Wasserstein-1 Distance)

EMD(Fy, Fo) = inf Y llz —yly(e,y) = inf Eqy)yllz —yll = inf (D,T)p
T,y

— e

Image Credit: [7]

I' = v(x,y)

vyell

D = |z —y|

yell

11 is the set of all distributions
whose marginals are P, P
respectively, called couplings.



Earth Mover Distance (Wasserstein-1 Distance)
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Transportation Plan

D = [z —y||
Cost

11 is the set of all distributions
whose marginals are P, P
respectively, called couplings.



Earth Mover Distance (Wasserstein-1 Distance)
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Image Credit: [7]

I

I' = v(x,y)

Transportation Plan

D = [z —y||
Cost

11 is the set of all distributions
whose marginals are P, P
respectively, called couplings.

One can generalize it to
Wasserstein-p Distance:

1/p
Wp(Pra P@) - (’%rellﬁ[ E(m,y)w’yd(xv y)p)



Why Wasserstein Distance?

V(z,y) € P =0, y~U(0,1)
Vieg,y) €eQ z=0(0<60<1), y~U(0,1)

Consider two distributions:
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Example & Image Credit: [3]
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Why Wasserstein Distance?

V(z,y) € P =0, y~U(0,1)
Vieg,y) €eQ z=0(0<60<1), y~U(0,1)

Consider two distributions:

If 6 #0:
1
1.0 - _ _
— Dgr(P|Q) = Z_% 1'10g6—+00
— Q y~U(0,1)
0.8 - .
Drr(Q|P) = ;_:0 1-log 5 = +o0
0.6 - y~U(0,1)
> 1
0.4 - DJS(P,Q)—§( ; 1-log 1/2+ Z 1-log 1/2) log 2
y~U(0,1) y0(0,1)
0.2 W(P,Q) = 0|
00- Else:
0.0 0.2 0.4 0.6 0.8 1.0 Dir(P||Q) = Dkr(Q||P) = D;s(P,Q) =0
x W(P,Q) =0 =4

Wasserstein distance is smooth, which is helpful for gradient based learning!

Example & Image Credit: [3]



Wasserstein GANS

Earth Mover Distance / Wasserstein Metric:  EMD(P,., Py) = inf Z |z —yl[v(z,y) = inf E poyllz =y
yell . vyell ’

vell

It 1s typically hard to compute (need to solve linear programming for discrete distributions)!
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Earth Mover Distance / Wasserstein Metric:  EMD(P,., Py) = inf Z |z —yl[v(z,y) = inf E poyllz =y
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It 1s typically hard to compute (need to solve linear programming for discrete distributions)!

Wasserstein distance (using Kantorovich-Rubinstein duality, see, e.g., [8]):
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Wasserstein-GAN [8] proposes a unified objective:

Learn Discriminator via qubaJX E X pyaea (X) [P (X)] = Eerope) [Dop (Gol(€))]

Learn Generator via meil’l IEprdm()() [ng(X)] - Eefvp(e) [qu(GH(E))]



Wasserstein GANS

Earth Mover Distance / Wasserstein Metric:  EMD(P,., Py) = inf Z |z —yl[v(z,y) = inf E poyllz =y
yell . vyell ’

vell

It 1s typically hard to compute (need to solve linear programming for discrete distributions)!

Wasserstein distance (using Kantorovich-Rubinstein duality, see, e.g., [8]):

EMD(P,, Py) = sup E,.p f(x)—E.vp, f(x).

1fllL<a

Wasserstein-GAN [8] proposes a unified objective:

Learn Discriminator via qubaJX E X pyaea (X) [P (X)] = Eerope) [Dop (Gol(€))]
Learn Generator via m@in Ex pana (X) [P (X)] = Eep(e)[Do (Go(€))]

To enforce Lipschitz condition, one can clip weights [8], add gradient penalty (WGAN-GP) [9],
and use spectral normalization [10]



Wasserstein GANS

Algorithm 1 WGAN, our proposed algorithm. All experiments in the paper used
the default values o = 0.00005, ¢ = 0.01, m = 64, ncritic = O.

Require: : «, the learning rate. ¢, the clipping parameter. m, the batch size.
Neritics the number of iterations of the critic per generator iteration.
Require: : wy, initial critic parameters. 6, initial generator’s parameters.

1: while 6 has not converged do

1ot = 0.« ligaps 0O
Sample {z(¥}™, ~ P, a batch from the real data.
Sample {2(!)}™, ~ p(z) a batch of prior samples.
Gw  Vu [% E:ll fw(x(i)) - % Z;’ll fw(gg(z(i)))]
w + w + o - RMSProp(w, g,)
w <« clip(w, —c, ¢)

end for

Sample {z(¥}™  ~ p(z) a batch of prior samples.

go —VG% b By fuw(ge(2"))

it 6 + 6 — o - RMSProp(4, go)

12: end while

[
S

Image Credit: [8]



Wasserstein GANS

DCGAN LSGAN WGAN (clipping) WGAN-GP (ours)

Basellne (G- DCGAN - DCGAN)

Image Credit: [9]
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Progressive GANs

Image Credit: [11]
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Figure 1: Our training starts with both the generator (G) and discriminator (D) having a low spa-
tial resolution of 4 x4 pixels. As the training advances, we incrementally add layers to G and D,
thus increasing the spatial resolution of the generated images. All existing layers remain trainable

throughout the process. Here

N x N

refers to convolutional layers operating on NV X N spatial

resolution. This allows stable synthesis in high resolutions and also speeds up training considerably.
One the right we show six example images generated using progressive growing at 1024 x 1024.



Progressive GANs

Figure 5: 1024 x 1024 images generated using the CELEBA-HQ dataset. See Appendix F for a
larger set of results, and the accompanying video for latent space interpolations.

Image Credit: [11]
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Cycle GANSs

Cycle-Consistent Generative Adversarial Networks [12] learn the image-to-image translation without a
training set of aligned image pairs

Image Credit: [13]
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Cycle-Consistent Generative Adversarial Networks [12] learn the image-to-image translation without a
training set of aligned image pairs

Image Credit: [12,13]



Cycle GANSs

Cycle-Consistent Generative Adversarial Networks [12] learn the image-to-image translation without a
training set of aligned image pairs

EGAN(Fa Dx, X, Y) — Emr\/pdata(w) [lOg Dx (.CU)] + Eprdata(y) [log(l — Dx (F(y))]

Image Credit: [12,13]



Cycle GANSs

Cycle-Consistent Generative Adversarial Networks [12] learn the image-to-image translation without a
training set of aligned image pairs

EGAN(Fa Dx, X, Y) — Emwpdata(:v) [log Dx (.CU)] + Eprdata(y) [log(l — Dx (F(y))]

EGAN (G7 DY? X7 Y) — ]E‘prdata(y) [log DY (y>] + Ew’\“pdata(w) [log(]‘ o DY (G(.:U))]

Image Credit: [12,13]



Cycle GANSs

Cycle-Consistent Generative Adversarial Networks [12] learn the image-to-image translation without a
training set of aligned image pairs

EGAN(Fa Dx, X, Y) — Emwpdata(:v) [log Dx (.CU)] + Eprdata(y) [log(l — Dx (F(y))]
EGAN (G7 DY? X7 Y) — ]E‘prdata(y) [log DY (y>] + Ew’\“pdata(w) [log(]‘ o DY (G(.:U))]

Loye(G F) =Egpmpiia(@) IF(G(2) = 21] + Eynpaua ) IGF (Y)) = yll]

Image Credit: [12,13]



Cycle GANSs

Cycle-Consistent Generative Adversarial Networks [12] learn the image-to-image translation without a
training set of aligned image pairs

EGAN(Fa Dx, X, Y) — Emwpdata(:v) [log Dx (.CU)] + Eprdata(y) [log(l — Dx (F(y))]
Laan(G, Dy, X,Y) = Eypon 108 Dy (Y)] + Epoponin (@) [log(1 — Dy (G(2))]
Leye(G, F) =Epnpgora @) 1F(G(2)) — zll1] + Eyapinea ) IIG(F(Y)) — yll1]

E(Ga F7 DXaDY) :EGAN(Ga DYaXa Y) + 'CGAN(Fa DX7Y7 X) + )\Ecyc(Ga F)

Image Credit: [12,13]



Cycle GANSs
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Image Credit: [14]



Cycle GANSs
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Image Credit: [14]



Cycle GANSs
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MolGANSs

MolGANSs [15] generate molecular graphs without graph matching:
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Image Credit: [15]
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MolGANSs

MolGANSs [15] generate molecular graphs without graph matching:

Adjacency tensor A

Generator

A~ %
z ~p(z)

Image Credit: [15]
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