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Energy-based Models (EBMs)

EBMs are a class of generative models, originated from statistical physics (e.g., statistical mechanics and
thermodynamics).

They are fundamental models in deep learning, e.g., Boltzmann Machines (BMs) [2, 3] and their variants.

It originates from Ludwig Boltzmann and his famous
distribution (a.k.a., Boltzmann distribution):

Energy of the system

EX)
KT

Boltzmann Constant Temperature

p(X) oxexp | —

Image Credit: [1]



Outline

e (Classic EBMs

« EBMs with Discrete Observable Variables and Discrete Latent Variables: RBMs
 Inference: Gibbs Sampling

* Learning: Contrastive Divergence
« EBMs with Continuous Observable Variables and Discrete Latent Variables : GRBMs

e Modern EBMs

 EBMs with Learnable Energy Functions
 Inference: Langevin Monte Carlo (LMC)
* Learning: Contrastive Divergence



Discrete Observable and Latent Variables

EBMs with both discrete observable and latent variables are extensively studied in the literature, e.g.,
Boltzmann Machines (BMs) [2,3] and Restricted Boltzmann Machines (RBMs) [4,5].



Discrete Observable and Latent Variables

EBMs with both discrete observable and latent variables are extensively studied in the literature, e.g.,
Boltzmann Machines (BMs) [2,3] and Restricted Boltzmann Machines (RBMs) [4,5].

Specifically, the success of deep stacked RBMs [5] was the starting point of deep learning back in 2006!

Therefore, let us start with RBMs!



Restricted Boltzmann Machines

EBMs with both discrete observable and latent variables are extensively studied in the literature, e.g.,
Boltzmann Machines (BMs) [2,3] and Restricted Boltzmann Machines (RBMs) [4,5].

Specifically, the success of deep stacked RBMs [5] was the starting point of deep learning back in 2006!

Therefore, let us start with RBMs!

Suppose we have binary visible units (observable variables) &, binary hidden units (latent variables) h

* Energy function Eo(x,h)=—a'x —b ' h—z' Wh



Restricted Boltzmann Machines

EBMs with both discrete observable and latent variables are extensively studied in the literature, e.g.,
Boltzmann Machines (BMs) [2,3] and Restricted Boltzmann Machines (RBMs) [4,5].

Specifically, the success of deep stacked RBMs [5] was the starting point of deep learning back in 2006!

Therefore, let us start with RBMs!

Suppose we have binary visible units (observable variables) &, binary hidden units (latent variables) h

* Energy function Eo(x,h)=—a'x —b ' h—z' Wh

1
+ Probability distribution  pe(2,h) = — exp (= Ep(z, h))



Restricted Boltzmann Machines

EBMs with both discrete observable and latent variables are extensively studied in the literature, e.g.,
Boltzmann Machines (BMs) [2,3] and Restricted Boltzmann Machines (RBMs) [4,5].

Specifically, the success of deep stacked RBMs [5] was the starting point of deep learning back in 2006!

Therefore, let us start with RBMs!

Suppose we have binary visible units (observable variables) &, binary hidden units (latent variables) h

* Energy function Eo(x,h)=—a'x —b ' h—z' Wh

1
«  Probability distribution pe(a:,h):Zexp(—Eg(a:,h)) Z = / / exp (—Fg(z,h)) dxdh

Partition function / Normalization constant
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Restricted Boltzmann Machines

Binary visible units (observable variables) x, binary hidden units (latent variables) h

* Energy function FEg(xz,h)=—a'2 —b'h—a' Wh

Bipartite Graphical Model

* Probability distribution

po (3, h) = %exp (—Ey (., h))

* Bipartite graph structure implies conditional independence

p( ‘ZC) Hj p( / ‘x) Independent
p(a;|h) — l_‘[Z p( Iz‘ h) Bernoulli distributions
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Restricted Boltzmann Machines

* Bipartite graph structure implies conditional independence p(h‘aﬁ) = Hj p(h j ‘aj)

Why?

Intuition:
* Observed visible units block the paths among hidden units
* Change of one hidden unit would not affect others

Formally:

Eg(x,h)=—a'x —b ' h—a' Wh

p(x|lh = iz) X exp (—Eg(x, h = ﬁ)) X exp (—&Tx) = || exp(—a;x;)
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Restricted Boltzmann Machines

Inference: Computing Marginals p(x) & Maximum A Posterior (MAP) arg max p(h|z)
h

 MAP is simple for RBMs due to the conditional independence.
* For computing marginals, we need Markov chain Monte Carlo, e.g., Gibbs sampling

In general, Gibbs sampler draw samples from p(xl, Lo, ..., :Un)
by iteratively sampling from the conditional distributions.

In RBMs, we do not iterative over ~ Given initial sample (z(9), R(9)

individual variables. Instead, fort=1,...,7T do

we do block-Gibbs sampling, i.e., ) ~p (hlz = 2=Y)
sampling a block of variables M ~p (z|h = h®)
conditioned on the other block. end

Return (2(™), h(T)

The block-Gibbs shares the same convergence guarantee as Gibbs (due to conditional independence) but is
more efficient due to parallel sampling!
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Learning: Maximum Likelihood

max  logpy(z) = 1Og/p9($>h)dh
— log/exp log pg(x, h)dh

= log/exp (—Fg(x,h) —log Z)dh




Learning RBMs

Learning: Maximum Likelihood

max log pg(x) = log/pg(a:,h)dh

— log/exp log pg(x, h)dh

= log/exp (—Eg(x, h) — log[Z) dh

Intractable! Z = //exp (—Eg(x,h))dzdh



Stochastic Approximated Gradient

Learning: Maximum Likelihood

. / (— 225852 ) exp (~ Eg(2, h)) Z — 9% exp (~ By (x, m)
 po(x) Z?




Stochastic Approximated Gradient

Learning: Maximum Likelihood

(_ aE%(;c,h)) exp (—Eg(x,h)) Z — 3% exp (—Eg(z, b))

Ologpe(x) 1 N
90 po(z) 72
B pgix) / (_8E08(gjh))pe(:v,h)dh— petﬂﬁ) /%g—?pe(a:,h)dh
_ / <—8E9§g’h))p9<h\x>dh—/%g—?pe(hmdh
-/ (— e h)) po(hfz)dh — 27
= / <— 8E9§g,h)> po(h|z)dh — %affexp(—gg(x,h))dxdh
- / (_aEegg’m)p@(h\x)dh— // (—8E9§g7h)>p9(x,h)d:cdh
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which in expectation amounts to:
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Stochastic Approximated Gradient

Learning: Maximum Likelihood

310%2;0(@ _ /( 8E9($ h))pe hlx)dh — //( 8E0 (z,1) )pg(az,h)dmdh

8E9 (CL‘, h) 6Eg (:U, h)
= Epg (h]a) 90 | Epo () 00

Recall we sample multiple training data and maximize the summed log likelihood of them,
which in expectation amounts to:

mein KL (pdata(x)HpQ (33)) — /pdata(x) lngdata(CU)d[E - /pdata(x) 10gp0 (CIZ)dCE

= ~Hpyoea(z) T CrossEntropy(pgata(x), pe(z))

m@in CrossEntropy(pgata (), pe(z)) < m@ax/pdata(a:)logpg(:v)dx

Maximum Likelihood
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Learning: Maximum Likelihood

310%2;9(@ :/( 8E9 (,h) )p@ h|z)dh — //( 8E0 (@) )pe x, h)dzdh

8E9<£L' h) 6E6([E h)
= Bpona) | =59 | ~Eretra) |75

Since we care about meax / Pdata () log pe(x)dx



Stochastic Approximated Gradient

Learning: Maximum Likelihood

810%2;9(56) :/< (9E9(a? h) )pe h|z)dh — //( 8E9 (@, h) )pg x, h)dzdh

8E9<£L' h) 6E6([E h)
= Bpothla) | =55 | T Eretha) | T 50

Since we care about meax / Pdata () log pe(x)dx

we have the gradient

0 log pe () OFq(x, h) OEy(x, h)
/pdata(w) 90 dr = Epe(h|x)pdata(a:) - BT — Epg(h,sc) _ o




Stochastic Approximated Gradient

Learning: Maximum Likelihood

Stochastic Approximated Gradient

0 log po (-T) OF)y (:U7 h) OE, (37, h)
/pdata(f) dr = ]Epe(h|x)pdata(as) — — Epe(h,w) _

00 00 00

Monte Carlo Estimation!



Stochastic Approximated Gradient

Learning: Maximum Likelihood

Stochastic Approximated Gradient

0 log pg (-T) 0Fy (:U7 h) OE, (.T, h)
/pdata(iﬁ) 90 dxr = ]Epe(h|x)pdata(ac) - By — Epe(h,x) _ 5

Monte Carlo Estimation!

Positive Gradient: sample from the data distribution po(h|T)pdata(T)
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Learning: Maximum Likelihood

Stochastic Approximated Gradient

0log pe(z) OEp(x, h) DEy(x. 1)
/pdata(of) 90 dr = ]Epe(h|x)pdata(:c) - By — ]Epe(h,x) _ 5

Monte Carlo Estimation!
Positive Gradient: sample from the data distribution po(h|7)paatal)

Negative Gradient: sample from the model distribution D¢ (h,x)



Stochastic Approximated Gradient

Learning: Maximum Likelihood

Stochastic Approximated Gradient

0log pe(z) OEp(x, h) DEy(x. 1)
/pdata(of) 90 dr = ]Epe(h|x)pdata(:c) - By — ]Epe(h,x) _ 5

Monte Carlo Estimation!
Positive Gradient: sample from the data distribution po(h|T)pdata(T)
Negative Gradient: sample from the model distribution D¢ (h,x)

If we use finite-step Gibbs sampler, this method is called Contrastive Divergence (CD) [6]!
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GRBMs: Gaussian-Bernoulli (a.k.a. Gaussian-Binary) Restricted Boltzmann Machines [7]
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Gaussian-Bernoulli Restricted Boltzmann Machines

GRBMs: Gaussian-Bernoulli (a.k.a. Gaussian-Binary) Restricted Boltzmann Machines [7]

Continuous visible units (observable variables) Vv , binary hidden units (latent variables) h

-
1 _ _ T
Energy function: Fjy(v,h) = 5 (V H) (V “) — (l) Wh—-b'h

o o Vo iz

Conditional distributions (conditional independence holds again): GRBMs

p(vih) =N (v|Wh + p, diag(c”?))

p(h; = 1|v) = [Sigmoid (WTL + b)]

o2

J

Recent work [8] introduces Gibbs-Langevin sampling, which
makes CD-based learning work much better than before!



Gaussian-Bernoulli Restricted Boltzmann Machines

Results of training GRBMs for modelling MNIST Images [§]

sample at 000 step

LN o f
D S

Image Credit: [8]

Methods FID

VAE 16.13
2sVAE (Dai & Wipf,2019) 12.60
Pixel CNN++ (Salimans et al.) 11.38
WGAN (Arjovsky et al;,2017) | 10.28
NVAE (Vahdat & Kautz, 2020 7.93

GRBMs

Gibbs 47.53
Langevin wo. Adjust 43.80
Langevin w. Adjust 41.24
Gibbs-Langevin wo. Adjust 17.49
Gibbs-Langevin w. Adjust 19.27

Table 1: Results on MNIST dataset.



Gaussian-Bernoulli Restricted Boltzmann Machines

Results of training GRBMs for modelling Fashion-MNIST and CelebA-32 Images [8]
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independence.
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Why not learn the energy function from data?
Yes! But there are at least two requirements on the parameterization of the energy function:
» It should be expressive enough to capture the complicated unnormalized probability density of data.

It should be differentiable to enable CD-based learning.



Deep EBMs

1

Recall EBMs without latent variables are: Po(x) = ~ €XP (—FEp(x))

We know energy function design is key to EBMs, e.g., RBM’s energy function implies conditional
independence.

However, it is typically hard to know how to design energy function in advance.

Why not learn the energy function from data?

Yes! But there are at least two requirements on the parameterization of the energy function:
» It should be expressive enough to capture the complicated unnormalized probability density of data.
It should be differentiable to enable CD-based learning.

We already have the answer, 1.e., deep neural networks!



Deep EBMs
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How to parameterize the energy function using deep neural networks? po(x) = — exp (—Ep(x))
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Deep EBMs

How to parameterize the energy function using deep neural networks? Po(x) =

For image generation, U-Net architecture 1s crucial [9, 10].
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Deep EBMs

How to parameterize the energy function using deep neural networks?

For image generation, U-Net architecture 1s crucial [9, 10].
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po(x) = — exp (—Ey(x))

Recall energy is a scalar, we have
several design choices:

Ey(x) = x" fo(x)
Ep(x) = (x — fo(x))’
Ey(x) = f3(x)



Deep EBMs

How to parameterize the energy function using deep neural networks?

For image generation, U-Net architecture 1s crucial [9, 10].

input
image
tile
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po(x) = — exp (—Ey(x))

Recall energy is a scalar, we have
several design choices:

(B (x) = x" fo(x)
By (x) = (x = fo(x))?
By (x) = f3(x)

The inner-product version works
the best empirically [10]!




Deep EBMs

We can also use deep EBMs for supervised learning tasks like classification [13,14].

1

pH(X7 Y) — E exXp <_E9(X7 Y))

object recognition sequence labeling image restoration

Image Credit: [12]
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Sampling from Deep EBMs

Suppose we have a deep EBM over continuous random variables, how can we draw samples from it?

1

po(x) = — ©XP (—Fy(x))
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Suppose we have a deep EBM over continuous random variables, how can we draw samples from it?

1

po(x) = — ©XP (—Fy(x))

One popular approach is Langevin Monte Carlo [15,16] originated from Langevin Diffusion [17].

dx = Vlogpy(x)dt+ +/2dB,

drift term diffusion term

This is a stochastic differential equation (SDE), known as [f6 diffusion.
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po(x) = — ©XP (—Fy(x))

One popular approach is Langevin Monte Carlo [15,16] originated from Langevin Diffusion [17].

dx = Vlog pg(x)dt + v2dB, standard Brownian motion
drif’:?erm diffusion term

This is a stochastic differential equation (SDE), known as [f6 diffusion.



Langevin Monte Carlo

Suppose we have a deep EBM over continuous random variables, how can we draw samples from it?

1

po(x) = — ©XP (—Fy(x))
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Langevin Monte Carlo

Suppose we have a deep EBM over continuous random variables, how can we draw samples from it?

1

po(x) = — ©XP (—Fy(x))

One popular approach is Langevin Monte Carlo [15,16] originated from Langevin Diffusion [17].

dx = Vlog pg(x)dt + v2dB, standard Brownian motion
drif’:?erm diffusion term

This is a stochastic differential equation (SDE), known as [f6 diffusion.
One can prove Langevin Diffusion is irreducible, strong Feller, and aperiodic [18].

In other words, pg(X) is the stationary distribution of Langevin Diffusion. Therefore, we can use it as a
Markov chain Monte Carlo sampling method.
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Langevin Monte Carlo

To turn the Langevin Diffusion into a sampling algorithm, we need to discretize (Euler-Maruyama method) it:

dx = Vlogpe(x)dt + V2dB;
(W -~ J/ H/_/

drift term diffusion term
2
Xt+n — Xt = Vlogpe(x¢)(t+1n—1t) + \/§(Bt+"7 — By)
§ Increments of Brownian motion satisfy:
Xi4n = X¢ + NV log pg(xt) + V2€ € = Biyy — By ~ N(0,nI)
2

Xt4n — Xt -+ 77V logpg(xt) + 2776 €~ N(Oa I)



Langevin Monte Carlo

We can construct the Unadjusted Langevin Algorithm (ULA) based on the Euler-Maruyama discretization:
Xty = Xt + NV 1og po(xt) + 1/ 2n€ e ~ N(0,1)

Given initial sample xq, step size n
fort=0,...,7—1do

€t N(07 I)
xt4+1 = X¢ + NV 1og pg(x) + v/2ne;
end

Return xr
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Langevin Monte Carlo

We can construct the Unadjusted Langevin Algorithm (ULA) based on the Euler-Maruyama discretization:

Xty = Xt + NV 1og po(xt) + 1/ 2n€ e ~ N(0,1)
Given initial sample xq, step size n
fort=0,...,7—1do Score function (in ML):
€t ~ N(Ov I)
X1 = X + T{V log po(x)|+ v/2n€; Vlogpg(x) =V (—Ep(x) —log Z) = =V Ey(x)
end
Return xr

One can also perform Metropolis-Hasting to ensure detailed balance, which implies stationary distribution,
leading to Metropolis-adjusted Langevin Algorithm (MALA).

But the acceptance probability decreases as the dimension increases, making it impractical in deep learning.



Outline

e (Classic EBMs

« EBMs with Discrete Observable Variables and Discrete Latent Variables: RBMs
 Inference: Gibbs Sampling

* Learning: Contrastive Divergence
« EBMs with Continuous Observable Variables and Discrete Latent Variables : GRBMs

e Modern EBMs

 EBMs with Learnable Energy Functions
 Inference: Langevin Monte Carlo (LMC)
* Learning: Contrastive Divergence



Learning Deep EBMs

To learn deep EBMs, we still resort to maximum likelihood and contrastive divergence:

0log pe() 1 Opy(z)
00 po(x) 00
1 3% exp (—Ey(x))
 pe(x) 00
1 (TE) e (EBo(@) Z - % exp (- Eo(x))
- po(x) 72
1 O0FEp(x) 1 107
po(x) Y ) o) = po(x) Z 06 Po()
A
_ OFEp(z) 10 [exp(—Ep(r))dx
00 Z 00

= _8%99(:6) —/ ( 8%99(:0)) po(x)da
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Learning Deep EBMs

Since we care about mgmx / Pdata () log po(x)dx

We have the gradient:

[ pina@) 2D i~ [ o) (28D [ (2B o)

=[Epdata<x> [— a%”ﬂ—ﬁ%m {— 8%(9(96)]]

Positive Gradient: sample from the data distribution

Negative Gradient: sample from the model distribution

We can still use Contrastive Divergence (CD) [6], with Langevin Monte Carlo sampling.
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Inference & Learning Deep EBMs

In summary, we need score function (derivatives of energy w.r.t. data) in sampling:

OF
Xi41 = X¢ + 1 ([_ ;}EX)]) + \/2n¢

We need score function and derivatives of energy w.r.t. parameters in learning:

OFy(x OLp(x
9t+1 = et + 6 (Epdata(x) [_ 896( )] 0 B Epe(X) [_ 899( )] 0 )
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Inference & Learning Deep EBMs

In summary, we need score function (derivatives of energy w.r.t. data) in sampling:

Xt41 =Xt + 1 ([—

6E9 (X)
ox

]> +\/%6

We need score function and derivatives of energy w.r.t. parameters in learning:

OF
Oiy1 =0+ (Epdata(x) [[— 50(}()

]L_

=],

They are available as long as the energy function is differentiable!



Image Generation of Deep EBMs

Results on CIFAR10 and LSUN datasets [19]




Image Completion of Deep EBMs

Results on LSUN and CelebA [19]:
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