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Course Information

Course website: https://Irjconan.github.io/UBC-EECE571F-DL-Structures/

Cutting-edge topics in deep learning with structures (not an introduction!!!)

Assumes basic knowledge about machine learning, deep learning

> View relevant textbooks/courses on the website

Assumes basic knowledge about linear algebra, calculus, probability

Assumes proficiency in deep learning libraries: PyTorch, JAX, Tensorflow

» Self-learning through online tutorials, e.g. https://pytorch.org/tutorials/



https://lrjconan.github.io/UBC-EECE571F-DL-Structures/
https://pytorch.org/tutorials/

Course Information

« Two sections: Mon. & Wed. 13:30 to 3:00pm,
Room 4018, Orchard Commons (ORCH)

Office hour: 1:30pm to 2:30pm, Tue., KAIS 3047 (Ohm)

« TA: Yuanpei Gao (yuanpeig@student.ubc.ca)
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Course Information

Two sections: Mon. & Wed. 13:30 to 3:00pm,
Room 4018, Orchard Commons (ORCH)

Office hour: 1:30pm to 2:30pm, Tue., KAIS 3047 (Ohm)

TA: Yuanpei Gao (yuanpeig@student.ubc.ca)

All lectures will be delivered in person without recording unless notified otherwise

Use Piazza for discussion & questions (actively answering others’ questions get you
bonuses) and Canvas for submitting reports

https://piazza.com/ubc.ca/winterterm12024/eece571f



mailto:yuanpeig@student.ubc.ca
https://piazza.com/ubc.ca/winterterm12023/eece571f

Course Information

« Expectation & Grading (More info on the website)
* [15%] One paper reading report, due Sep. 27
 [15%] Project proposal, due Oct. 11
 [15%] Project presentations, around last two weeks
 [15%] Peer-review report of project presentations, due Dec. 6

* [40%] Project report and code, due Dec. 11

* You are encouraged to team up (up to 4 members) for projects



Course Information

« How to get free GPUs for your course project?

1. Google Colab: https://research.google.com/colaboratory/

Google Colab is a web-based iPython Notebook service that has access to a free Nvidia K80
GPU per Google account.

2. Google Compute Engine: https://cloud.google.com/compute

Google Compute Engine provides virtual machines with GPUs running in Google’s data
center. You get $300 free credit when you sign up.

« Strategy of using GPUs
1. Debug models on small datasets (subsets) using CPUs or low-end GPUs until they work

2. Launch batch jobs on high-end GPUs to tune hyperparameters


https://research.google.com/colaboratory/
https://cloud.google.com/compute

Course Scope

* Brief Intro to Deep Learning



Course Scope

* Brief Intro to Deep Learning

« Geometric Deep Learning

» Deep Learning Models for Sets and Sequences: Deep Sets & Transformers
» Deep Learning Models for Graphs: Message Passing & Graph Convolution GNNs
» Group Equivariant Deep Learning



Course Scope

* Brief Intro to Deep Learning

« Geometric Deep Learning

» Deep Learning Models for Sets and Sequences: Deep Sets & Transformers
» Deep Learning Models for Graphs: Message Passing & Graph Convolution GNNs
» Group Equivariant Deep Learning

 Probabilistic Deep Learning

Auto-regressive models, Large Language Models (LLMs)

Variational Auto-Encoders (VAESs) and Generative Adversarial Networks (GANS)
Flow models

Diffusion/Score based models



Outline

Brief Introduction & History & Application

Basic Deep Learning Models
« Multi-Layer Perceptron (MLP)
 Convolutional Neural Network (CNN)
* Recurrent Neural Network (RNN)

Objective Function

Learning Algorithm: Back-propagation

Limitations
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What is Deep Learning?

 Definition from Wikipedia:

Deep learning (also known as deep structured learning) is part of a broader family of machine
learning methods based on artificial neural networks with representation learning.

* Key Aspects:
Data: Large (supervised) datasets, e.g., ImageNet (14 million+ annotated images)
Model: Deep (i.e., many layers) neural networks, e.g., ResNet-152

Learning algorithm: Back-propagation (BP), i.e., stochastic gradient descent (SGD)



Brief History of Deep Learning (Connectionism)

 Artificial Neurons (McCulloch and Pitts 1943)
« Hebbian Rule: Cells that fire together wire together (Donald Hebb 1949)
» Perceptron (Frank Rosenblatt 1958)

« Discovery of orientation selectivity and columnar organization in the visual cortex (Hubel
and Wiesel, 1959)

* Neocognitron (first Convolutional Neural Network, Fukushima 1979)

« Hopfield networks (Hopfield 1982)

« Boltzmann machines (Hinton, Sejnowski 1983)

« Backpropagation (Linnainmaa 1970, Werbos 1974, Rumelhart, Hinton, Williams 1986)
 First application of BP to Neocognitron-like CNNs (LeCun et al. 1989)

« Long-short term memory (Hochreiter, Schmidhuber 1997)



Brief History of Deep Learning (Connectionism)

« Deep belief networks (DBN) (Hinton et al., 2006)

« Breakthrough in speech recognition (Dahl et al. 2010)

« Breakthrough in computer vision: AlexNet (Krizhevsky et al. 2012), ResNet (He et al. 2016)
« Breakthrough in games: DOQN (Minh, 2015), AlphaGO (2016)

« Breakthrough in natural language processing: Seq2seq (Sutskever et al. 2014), Transformers
(Vaswani et al. 2017), GPT-3 (Brown et al. 2020)

« Breakthrough in protein structure prediction: AlphaFold (2020)

The future depends on some graduate student who is deeply suspicious
of everything | have said.

- Geoffrey Hinton



Applications of Deep Learning
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Applications of Deep Learning

Text/Program Generation

& Matt Shumer (matt@othersideai.com), 1 CC

c createTables E
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¢ createCategorySummaries

Image Credit: https://techcrunch.com/2020/11/12/othersideai-raises-2-6m-to-let-gpt-3-write-your-emails-for-you/ 16
https://techcrunch.com/2021/06/29/github-previews-new-ai-tool-that-makes-coding-suggestions/
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Applications of Deep Learning

Speech Recognition, Personal Assistants

#0000 ATAT @

What can | help
you with?

Image Credit: https://www.techrepublic.com/article/apples-siri-the-smart-persons-guide/ 17
https://www.pcmag.com/news/amazon-echo-vs-google-home-which-smart-speaker-is-best



https://www.techrepublic.com/article/apples-siri-the-smart-persons-guide/
https://www.pcmag.com/news/amazon-echo-vs-google-home-which-smart-speaker-is-best

Applications of Deep Learning

Computer Vision/Graphics, e.g., Object detection, Rendering

Image Credit: https://github.com/sergeyprokudin/smplpix
https://towardsdatascience.com/everything-you-ever-wanted-to-know-about-computer-vision-heres-a-look-why-it-s-so-awesome-e8a58dfb641e
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Applications of Deep Learning

Virtual/Augmented Reality

Image Credit: https://www.businessinsider.com/scott-galloway-metaverse-future-not-facebook-2021-8 19
https://www.forbes.com/sites/theyec/2019/02 /06/augmented-reality-in-business-how-ar-may-change-the-way-we-work/?sh=36011cd851e5
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Applications of Deep Learning

Robotics, Autonomous Driving

s

Image Credit: https://techcrunch.com/2017/05/26/this-robot-arms-ai-thinks-like-we-do-about-how-to-grab-something/ 20
https://techcrunch.com/2018/10/30/waymo-takes-the-wheel-self-driving-cars-go-fully-driverless-on-california-roads/
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Applications of Deep Learning

Protein structure prediction, Drug discovery
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Applications of Deep Learning

Black Holes, Physics Simulation

Representation

as particle system

Image Credit: https://medium.com/analytics-vidhya/when-neural-networks-saw-the-first-image-of-black-hole-3205e28b6578 22
https://meerasridhar23.medium.com/lets-10x-physics-simulations-38ad6fc5cae5
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Basic Deep Learning Models

Multi-Layer Perceptron (MLP)

Hidden Layer

Input Layer

Image Credit: https://becominghuman.ai/multi-layer-perceptron-mlp-models-on-real-world-banking-data-f6dd3d7e998f
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Basic Deep Learning Models

Multi-Layer Perceptron (MLP)
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Image Credit: https://becominghuman.ai/multi-layer-perceptron-mlp-models-on-real-world-banking-data-f6dd3d7e998f

Input 3
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Basic Deep Learning Models

Multi-Layer Perceptron (MLP)

h

Hidden Layer

Input Layer

Input 3

Image Credit: https://becominghuman.ai/multi-layer-perceptron-mlp-models-on-real-world-banking-data-f6dd3d7e998f

h = o(Wix)
Yy — Wgh
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Basic Deep Learning Models

Multi-Layer Perceptron (MLP)
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Basic Deep Learning Models

Convolutional Neural Network (CNN)

Convolution (Discrete)

Convolutional Filter

Image



Basic Deep Learning Models

Convolutional Neural Network (CNN)

Convolution (Discrete) Yij — > > Wm,nXi+m—(K/21,j+n—(K/2}




Basic Deep Learning Models

Convolutional Neural Network (CNN)

Convolution (Discrete) Yij — > > Wm,nXi+m—(K/21,j+n—(K/2}

Convolution < Matrix Multiplication




Matrix Multiplication View |

1D Convolution (Discrete) <> Matrix Multiplication Filter => Toeplitz matrix (diagonal-constant)



Matrix Multiplication View |

1D Convolution (Discrete) <> Matrix Multiplication Filter => Toeplitz matrix (diagonal-constant)
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Matrix Multiplication View |

1D Convolution (Discrete) <> Matrix Multiplication Filter => Toeplitz matrix (diagonal-constant)
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Matrix Multiplication View |

1D Convolution (Discrete) <> Matrix Multiplication Filter => Toeplitz matrix (diagonal-constant)
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Matrix Multiplication View |

1D Convolution (Discrete) <> Matrix Multiplication

Filter => Toeplitz matrix (diagonal-constant)
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Matrix Multiplication View |

1D Convolution (Discrete) <> Matrix Multiplication Filter => Toeplitz matrix (diagonal-constant)

It could be very sparse (e.g., when n >>m)!
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Matrix Multiplication View I|

1D Convolution (Discrete) <> Matrix Multiplication Data => Toeplitz matrix (diagonal-constant)



Matrix Multiplication View I|

1D Convolution (Discrete) <> Matrix Multiplication Data => Toeplitz matrix (diagonal-constant)
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Matrix Multiplication View I|

1D Convolution (Discrete) <> Matrix Multiplication

Data => Toeplitz matrix (diagonal-constant)
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Matrix Multiplication View I|

1D Convolution (Discrete) <> Matrix Multiplication
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Matrix Multiplication View I|

1D Convolution (Discrete) <> Matrix Multiplication

y' = (h*2)" = [hm hmo1 -+ hs he
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Input & : 0
e —
Filter h,

Data => Toeplitz matrix (diagonal-constant)

It could be dense (e.g., when n >>m)!
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Matrix Multiplication View I|

1D Convolution (Discrete) <> Matrix Multiplication Data => Toeplitz matrix (diagonal-constant)

It could be dense (e.g., when n >>m)!
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Matrix Multiplication View I|

1D Convolution (Discrete) <> Matrix Multiplication Data => Toeplitz matrix (diagonal-constant)
This equivalence holds for 2D and other higher-order convolutions! It could be dense (e.g., when n >> m)!
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Basic Deep Learning Models

Convolutional Neural Network (CNN)

Pooling (e.g., 2X2)




Basic Deep Learning Models

Convolutional Neural Network (CNN)
fc 3
FuIIy-Co;mected

Neural Network
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Convolution Convolution K—M

SOTIEOILION SONVOIMLION A s

(5 " 5) kern:nel Max-Pooling (5 X 5) ken:nel Max-Pooling (with
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Image Credit: https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53

n3 units
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Basic Deep Learning Models

Recurrent Neural Network (RNN)

F(x', h'"=t W)

Same neural network gets reused many times! h!



Basic Deep Learning Models

Recurrent Neural Network (RNN)

Same neural network gets reused many times!
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Basic Deep Learning Models

Recurrent Neural Network (RNN)

Same neural network gets reused many times!

parameters @ @

hidden state F 4’@— F

Data @ @

F could be any neural network!
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* Recurrent Neural Network (RNN)

Objective Function

Learning Algorithm: Back-propagation

Limitations



Objective (Loss) Function

 Supervised Learning
Given (data, label), we want to minimize empirical risk/loss

Loss = Function(label, model(data))



Objective (Loss) Function
 Supervised Learning Empirical Risk Minimization (ERM)!
Given (data, label), we want to minimize empirical risk/loss

Loss = Function(label, model(data))
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Objective (Loss) Function
 Supervised Learning Empirical Risk Minimization (ERM)!
Given (data, label), we want to minimize empirical risk/loss

Loss = Function(label, model(data))

» Classification

K
Cross-Entropy Loss: g(p’ q) — Z ; 10g q;
1=1
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Objective (Loss) Function
 Supervised Learning Empirical Risk Minimization (ERM)!
Given (data, label), we want to minimize empirical risk/loss

Loss = Function(label, model(data))

+ Classification
K
Cross-Entropy Loss: g(p’ q) — Z ; 10g q;
* Regression =1

1
Mean-Squared Error (MSE): €(X, y) — E HX — yH%



Objective (Loss) Function

Unsupervised/Self-supervised Learning

Only data Is given



Objective (Loss) Function

Unsupervised/Self-supervised Learning

Only data Is given

Likelihood (Autoregressive models)

Reconstruction Loss (Auto-encoders)

Contrastive Loss (noise contrastive estimation, self-supervised learning)

Min-max Loss (Generative adversarial networks)



Objective (Loss) Function

Unsupervised/Self-supervised Learning

Only data Is given

Likelihood (Autoregressive models)

Reconstruction Loss (Auto-encoders)

Contrastive Loss (noise contrastive estimation, self-supervised learning)

Min-max Loss (Generative adversarial networks)

Designing a good objective function itself is a challenging research guestion!
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Objective (Loss) Function

# "Pure” Reinforcement Learning (cherry)

» The machine predicts a scalar
reward given once in a while.

» A few bits for some samples

# Supervised Learning (icing)

» The machine predicts a category
or a few numbers for each input

» Predicting human-supplied data
» 10-10,000 bits per sample

# Unsupervised/Predictive Learning (cake)

» The machine predicts any part of
its input for any observed part.

» Predicts future frames in videos P
» Millions of bits per sample

# (Yes, I know, this picture is slightly offensive to RL folks. But I'll make it up)

Image Credit: Yann Lecun, NIPS 2016
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Outline

Brief Introduction & History & Application

Basic Deep Learning Models
« Multi-Layer Perceptron (MLP)
 Convolutional Neural Network (CNN)
* Recurrent Neural Network (RNN)

Objective Function

Learning Algorithm: Back-propagation

Limitations



Learning Algorithm

Learning algorithm is about credit assignment

Assign credits based on contribution <> Adjust parameters based on loss
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Learning Algorithm

Learning algorithm is about credit assignment

Assign credits based on contribution <> Adjust parameters based on loss

The most successful learning algorithm so far is gradient based learning!
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Learning Algorithm
Learning algorithm is about credit assignment

Assign credits based on contribution <> Adjust parameters based on loss

The most successful learning algorithm so far is gradient based learning!

Representative method: stochastic gradient descent (SGD), Robbins and Monro, 1951
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Learning Algorithm
Learning algorithm is about credit assignment

Assign credits based on contribution <> Adjust parameters based on loss

The most successful learning algorithm so far is gradient based learning!
Representative method: stochastic gradient descent (SGD), Robbins and Monro, 1951

Back-propagation (BP) = SGD in the context of deep learning

62



Back-Propagation

Multi-Layer Perceptron (MLP)

Input Layer

Image Credit: https://becominghuman.ai/multi-layer-perceptron-mlp-models-on-real-world-banking-data-f6dd3d7e998f
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Back-Propagation

Forward Pass / Inference :

Hidden Layer

Input Layer

Image Credit: https://becominghuman.ai/multi-layer-perceptron-mlp-models-on-real-world-banking-data-f6dd3d7e998f
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Back-Propagation

Forward Pass / Inference : h

Hidden Layer

Input Layer >
Input 1
Output Layer

e ‘@

AN <> |

Image Credit: https://becominghuman.ai/multi-layer-perceptron-mlp-models-on-real-world-banking-data-f6dd3d7e998f
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Back-Propagation

Forward Pass / Inference : h

Hidden Layer

Input Layer

Image Credit: https://becominghuman.ai/multi-layer-perceptron-mlp-models-on-real-world-banking-data-f6dd3d7e998f
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Back-Propagation

Compute Loss : h

Hidden Layer

Input Layer

X Input 1 '

Output Layer
Loss

v Y Uy, Yiavel)
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Back-Propagation

Backward Pass / Learning : h

Hidden Layer

Input Layer

L.oss

g(Ya YIabel)
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Back-Propagation =, ( Oy )T )

Backward Pass / Learning : h

Hidden Layer

Input Layer

L.oss

g(Y? YIabel)
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Back-Propagation 9 ov\ | o
Backward Pass / Learning : h ov oh - ( )

Hidden Layer

Input Layer [ >
&

/) _Z\N

/ ) / - =

L.oss

Yy, YIabel)

Input 2

Input 3
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Back-Propagation ot ([ oh\' [dy\ o
8W1_<8W1) (a_h) dy

oh

Backward Pass / Learning : h 9J4

Hidden Layer

Input Layer

L.oss

é(Y? YIabel)
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Outline

Brief Introduction & History & Application

Basic Deep Learning Models
« Multi-Layer Perceptron (MLP)
 Convolutional Neural Network (CNN)
* Recurrent Neural Network (RNN)

Objective Function

Learning Algorithm: Back-propagation

Limitations
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Limitations

« MLPs/CNNSs are restricted to data with fixed size

« Each sample needs to have the same size
 RNNs can deal with varying-size data
* Only presented as sequences

 Learned representations do not explicitly encode structures of data

 Hard to interpret and manipulate



Questions?
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