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Course Information

• Course website: https://lrjconan.github.io/UBC-EECE571F-DL-Structures/

• Cutting-edge topics in deep learning with structures (not an introduction!!!)

• Assumes basic knowledge about machine learning, deep learning

➢View relevant textbooks/courses on the website

• Assumes basic knowledge about linear algebra, calculus, probability

• Assumes proficiency in deep learning libraries: PyTorch, JAX, Tensorflow

➢Self-learning through online tutorials, e.g. https://pytorch.org/tutorials/
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Course Information

• Two sections: Mon. & Wed. 13:30 to 3:00pm, 

 Room 4018, Orchard Commons (ORCH)

 Office hour: 1:30pm to 2:30pm, Tue., KAIS 3047 (Ohm) 

• TA: Yuanpei Gao (yuanpeig@student.ubc.ca)
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Course Information

• Two sections: Mon. & Wed. 13:30 to 3:00pm, 

 Room 4018, Orchard Commons (ORCH)

 Office hour: 1:30pm to 2:30pm, Tue., KAIS 3047 (Ohm) 

• TA: Yuanpei Gao (yuanpeig@student.ubc.ca)

• All lectures will be delivered in person without recording unless notified otherwise

• Use Piazza for discussion & questions (actively answering others’ questions get you 
bonuses) and Canvas for submitting reports

https://piazza.com/ubc.ca/winterterm12024/eece571f
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Course Information

• Expectation & Grading (More info on the website)

• [15%] One paper reading report, due Sep. 27

• [15%] Project proposal, due Oct. 11

• [15%] Project presentations, around last two weeks 

• [15%] Peer-review report of project presentations, due Dec. 6

• [40%] Project report and code, due Dec. 11

• You are encouraged to team up (up to 4 members) for projects
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Course Information

• How to get free GPUs for your course project?

1. Google Colab: https://research.google.com/colaboratory/

Google Colab is a web-based iPython Notebook service that has access to a free Nvidia K80 
GPU per Google account.

2. Google Compute Engine: https://cloud.google.com/compute 
 

 Google Compute Engine provides virtual machines with GPUs running in Google’s data 
center. You get $300 free credit when you sign up.

• Strategy of using GPUs

1. Debug models on small datasets (subsets) using CPUs or low-end GPUs until they work

2. Launch batch jobs on high-end GPUs to tune hyperparameters
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Course Scope

• Brief Intro to Deep Learning
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Course Scope

• Brief Intro to Deep Learning

• Geometric Deep Learning

• Deep Learning Models for Sets and Sequences: Deep Sets & Transformers

• Deep Learning Models for Graphs: Message Passing & Graph Convolution GNNs

• Group Equivariant Deep Learning
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Course Scope

• Brief Intro to Deep Learning

• Geometric Deep Learning

• Deep Learning Models for Sets and Sequences: Deep Sets & Transformers

• Deep Learning Models for Graphs: Message Passing & Graph Convolution GNNs

• Group Equivariant Deep Learning

• Probabilistic Deep Learning

• Auto-regressive models, Large Language Models (LLMs)

• Variational Auto-Encoders (VAEs) and Generative Adversarial Networks (GANs)

• Flow models

• Diffusion/Score based models 
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Outline

• Brief Introduction & History & Application

• Basic Deep Learning Models

• Multi-Layer Perceptron (MLP)

• Convolutional Neural Network (CNN)

• Recurrent Neural Network (RNN)

• Objective Function

• Learning Algorithm: Back-propagation

• Limitations
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What is Deep Learning?

• Definition from Wikipedia:

Deep learning (also known as deep structured learning) is part of a broader family of machine 

learning methods based on artificial neural networks with representation learning.

• Key Aspects:

 Data: Large (supervised) datasets, e.g., ImageNet (14 million+ annotated images)

 Model: Deep (i.e., many layers) neural networks, e.g., ResNet-152

 Learning algorithm: Back-propagation (BP), i.e., stochastic gradient descent (SGD)
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Brief History of Deep Learning (Connectionism)

• Artificial Neurons (McCulloch and Pitts 1943) 

• Hebbian Rule: Cells that fire together wire together (Donald Hebb 1949)

• Perceptron (Frank Rosenblatt 1958)

• Discovery of orientation selectivity and columnar organization in the visual cortex (Hubel 

and Wiesel, 1959)

• Neocognitron (first Convolutional Neural Network, Fukushima 1979)

• Hopfield networks (Hopfield 1982) 

• Boltzmann machines (Hinton, Sejnowski 1983)

• Backpropagation (Linnainmaa 1970, Werbos 1974, Rumelhart, Hinton, Williams 1986)

• First application of BP to Neocognitron-like CNNs (LeCun et al. 1989)

• Long-short term memory (Hochreiter, Schmidhuber 1997)
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Brief History of Deep Learning (Connectionism)

• Deep belief networks (DBN) (Hinton et al., 2006)

• Breakthrough in speech recognition (Dahl et al. 2010)

• Breakthrough in computer vision: AlexNet (Krizhevsky et al. 2012), ResNet (He et al. 2016)

• Breakthrough in games: DQN (Minh, 2015), AlphaGO (2016)

• Breakthrough in natural language processing: Seq2seq (Sutskever et al. 2014), Transformers 

(Vaswani et al. 2017), GPT-3 (Brown et al. 2020)

• Breakthrough in protein structure prediction: AlphaFold (2020)

      ……

The future depends on some graduate student who is deeply suspicious 
of everything I have said.

        - Geoffrey Hinton

14



Applications of Deep Learning

Large Language Models (LLMs)

Image Credit: https://docs.cohere.com/docs/introduction-to-large-language-models
https://medium.com/geekculture/6-chatgpt-mind-blowing-extensions-to-use-it-anywhere-db6638640ec7
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Applications of Deep Learning

Text/Program Generation

Image Credit: https://techcrunch.com/2020/11/12/othersideai-raises-2-6m-to-let-gpt-3-write-your-emails-for-you/
https://techcrunch.com/2021/06/29/github-previews-new-ai-tool-that-makes-coding-suggestions/
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Applications of Deep Learning

Speech Recognition, Personal Assistants

Image Credit: https://www.techrepublic.com/article/apples-siri-the-smart-persons-guide/
https://www.pcmag.com/news/amazon-echo-vs-google-home-which-smart-speaker-is-best
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Applications of Deep Learning

Computer Vision/Graphics, e.g., Object detection, Rendering

Image Credit: https://github.com/sergeyprokudin/smplpix
https://towardsdatascience.com/everything-you-ever-wanted-to-know-about-computer-vision-heres-a-look-why-it-s-so-awesome-e8a58dfb641e
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Applications of Deep Learning

Virtual/Augmented Reality

Image Credit: https://www.businessinsider.com/scott-galloway-metaverse-future-not-facebook-2021-8
https://www.forbes.com/sites/theyec/2019/02/06/augmented-reality-in-business-how-ar-may-change-the-way-we-work/?sh=36011cd851e5
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Applications of Deep Learning

Robotics, Autonomous Driving

Image Credit: https://techcrunch.com/2017/05/26/this-robot-arms-ai-thinks-like-we-do-about-how-to-grab-something/
https://techcrunch.com/2018/10/30/waymo-takes-the-wheel-self-driving-cars-go-fully-driverless-on-california-roads/
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Applications of Deep Learning

Protein structure prediction, Drug discovery

Image Credit: https://www.nature.com/articles/d41586-020-03348-4
https://medium.com/neuromation-blog/creating-molecules-from-scratch-i-drug-discovery-with-generative-adversarial-networks-9d42cc496fc6
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Applications of Deep Learning

Black Holes, Physics Simulation 

Image Credit: https://medium.com/analytics-vidhya/when-neural-networks-saw-the-first-image-of-black-hole-3205e28b6578
https://meerasridhar23.medium.com/lets-10x-physics-simulations-38ad6fc5cae5
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Outline

• Brief Introduction & History & Application

• Basic Deep Learning Models

• Multi-Layer Perceptron (MLP)

• Convolutional Neural Network (CNN)

• Recurrent Neural Network (RNN)

• Objective Function

• Learning Algorithm: Back-propagation

• Limitations
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Basic Deep Learning Models

Multi-Layer Perceptron (MLP)

Image Credit: https://becominghuman.ai/multi-layer-perceptron-mlp-models-on-real-world-banking-data-f6dd3d7e998f
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Basic Deep Learning Models

Multi-Layer Perceptron (MLP)

Image Credit: https://becominghuman.ai/multi-layer-perceptron-mlp-models-on-real-world-banking-data-f6dd3d7e998f
25

https://becominghuman.ai/multi-layer-perceptron-mlp-models-on-real-world-banking-data-f6dd3d7e998f


Basic Deep Learning Models

Multi-Layer Perceptron (MLP)

Image Credit: https://becominghuman.ai/multi-layer-perceptron-mlp-models-on-real-world-banking-data-f6dd3d7e998f
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Basic Deep Learning Models

Multi-Layer Perceptron (MLP)

Image Credit: https://becominghuman.ai/multi-layer-perceptron-mlp-models-on-real-world-banking-data-f6dd3d7e998f

ReLU:

Sigmoid:

      Tanh, Softplus, ELU, …
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Basic Deep Learning Models

Convolutional Neural Network (CNN)

Convolution (Discrete)

Image

Convolutional Filter
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Basic Deep Learning Models

Convolutional Neural Network (CNN)

Convolution (Discrete)
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Basic Deep Learning Models

Convolutional Neural Network (CNN)

Convolution (Discrete)

      Convolution  Matrix Multiplication
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Matrix Multiplication View I

1D Convolution (Discrete)  Matrix Multiplication Filter => Toeplitz matrix (diagonal-constant)
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Matrix Multiplication View I

1D Convolution (Discrete)  Matrix Multiplication Filter => Toeplitz matrix (diagonal-constant)
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Matrix Multiplication View I

1D Convolution (Discrete)  Matrix Multiplication Filter => Toeplitz matrix (diagonal-constant)

Input

Filter ℎ1 … … ℎ𝑚

… 𝑥1 … … 𝑥𝑛0 …… 0
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Matrix Multiplication View I

1D Convolution (Discrete)  Matrix Multiplication Filter => Toeplitz matrix (diagonal-constant)

Input

Filter ℎ1 … … ℎ𝑚

… 𝑥1 … … 𝑥𝑛0 …… 0
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Matrix Multiplication View I

1D Convolution (Discrete)  Matrix Multiplication

Input

Filter

Filter => Toeplitz matrix (diagonal-constant)

ℎ1 … … ℎ𝑚

… 𝑥1 … … 𝑥𝑛0 …… 0
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Matrix Multiplication View I

1D Convolution (Discrete)  Matrix Multiplication

Input

Filter ℎ1 … … ℎ𝑚

… 𝑥1 … … 𝑥𝑛0 …… 0

Filter => Toeplitz matrix (diagonal-constant)

It could be very sparse (e.g., when n >> m)!
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Matrix Multiplication View II

1D Convolution (Discrete)  Matrix Multiplication Data => Toeplitz matrix (diagonal-constant)
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Matrix Multiplication View II

1D Convolution (Discrete)  Matrix Multiplication Data => Toeplitz matrix (diagonal-constant)

Input

Filter ℎ1 … … ℎ𝑚

… 𝑥1 … … 𝑥𝑛0 …… 0
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Matrix Multiplication View II

1D Convolution (Discrete)  Matrix Multiplication Data => Toeplitz matrix (diagonal-constant)

Input

Filter ℎ1 … … ℎ𝑚

… 𝑥1 … … 𝑥𝑛0 …… 0
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Matrix Multiplication View II

1D Convolution (Discrete)  Matrix Multiplication Data => Toeplitz matrix (diagonal-constant)

Input

Filter ℎ1 … … ℎ𝑚

… 𝑥1 … … 𝑥𝑛0 …… 0
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Matrix Multiplication View II

1D Convolution (Discrete)  Matrix Multiplication Data => Toeplitz matrix (diagonal-constant)

It could be dense (e.g., when n >> m)!

Input

Filter ℎ1 … … ℎ𝑚

… 𝑥1 … … 𝑥𝑛0 …… 0
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Matrix Multiplication View II

1D Convolution (Discrete)  Matrix Multiplication Data => Toeplitz matrix (diagonal-constant)

It could be dense (e.g., when n >> m)!

Input

Filter ℎ1 … … ℎ𝑚

… 𝑥1 … … 𝑥𝑛0 …… 0

This version is typically implemented on GPUs!
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Matrix Multiplication View II

1D Convolution (Discrete)  Matrix Multiplication Data => Toeplitz matrix (diagonal-constant)

It could be dense (e.g., when n >> m)!

Input

Filter ℎ1 … … ℎ𝑚

… 𝑥1 … … 𝑥𝑛0 …… 0

This version is typically implemented on GPUs!

This equivalence holds for 2D and other higher-order convolutions!
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Basic Deep Learning Models

Convolutional Neural Network (CNN)

Pooling (e.g., 2X2)

44



Basic Deep Learning Models

Convolutional Neural Network (CNN)

Image Credit: https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
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Basic Deep Learning Models

Recurrent Neural Network (RNN)

Same neural network gets reused many times!
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Basic Deep Learning Models

Recurrent Neural Network (RNN)

Same neural network gets reused many times!

parameters

hidden state

Data

ℎ0 ℎ1𝐹

𝑤

𝑥1

...... ℎ𝑇

𝑤

𝐹𝐹

𝑤

𝑥2 𝑥𝑇
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Basic Deep Learning Models

Recurrent Neural Network (RNN)

Same neural network gets reused many times!

parameters

hidden state

Data

ℎ0 ℎ1𝐹

𝑤

𝑥1

...... ℎ𝑇

𝑤

𝐹𝐹

𝑤

𝑥2 𝑥𝑇

F could be any neural network!
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Outline

• Brief Introduction & History & Application

• Basic Deep Learning Models

• Multi-Layer Perceptron (MLP)

• Convolutional Neural Network (CNN)

• Recurrent Neural Network (RNN)

• Objective Function

• Learning Algorithm: Back-propagation

• Limitations
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Objective (Loss) Function

• Supervised Learning

 Given (data, label), we want to minimize empirical risk/loss 

 Loss = Function(label, model(data))
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Objective (Loss) Function

• Supervised Learning

 Given (data, label), we want to minimize empirical risk/loss 

 Loss = Function(label, model(data))

Empirical Risk Minimization (ERM)!
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Objective (Loss) Function

• Supervised Learning

 Given (data, label), we want to minimize empirical risk/loss 

 Loss = Function(label, model(data))

• Classification

 

 Cross-Entropy Loss:

Empirical Risk Minimization (ERM)!
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Objective (Loss) Function

• Supervised Learning

 Given (data, label), we want to minimize empirical risk/loss 

 Loss = Function(label, model(data))

• Classification

 

 Cross-Entropy Loss:

• Regression

Mean-Squared Error (MSE):

Empirical Risk Minimization (ERM)!
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Objective (Loss) Function

Unsupervised/Self-supervised Learning

 Only data is given
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Objective (Loss) Function

Unsupervised/Self-supervised Learning

 Only data is given

• Likelihood (Autoregressive models)

• Reconstruction Loss (Auto-encoders)

• Contrastive Loss (noise contrastive estimation, self-supervised learning)

• Min-max Loss (Generative adversarial networks) 

……
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Objective (Loss) Function

Unsupervised/Self-supervised Learning

 Only data is given

• Likelihood (Autoregressive models)

• Reconstruction Loss (Auto-encoders)

• Contrastive Loss (noise contrastive estimation, self-supervised learning)

• Min-max Loss (Generative adversarial networks) 

……

Designing a good objective function itself is a challenging research question!
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Objective (Loss) Function

Image Credit: Yann Lecun, NIPS 2016
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Outline

• Brief Introduction & History & Application

• Basic Deep Learning Models

• Multi-Layer Perceptron (MLP)

• Convolutional Neural Network (CNN)

• Recurrent Neural Network (RNN)

• Objective Function

• Learning Algorithm: Back-propagation

• Limitations
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Learning Algorithm

Learning algorithm is about credit assignment

 Assign credits based on contribution  Adjust parameters based on loss
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Learning Algorithm

Learning algorithm is about credit assignment

 Assign credits based on contribution  Adjust parameters based on loss

 

The most successful learning algorithm so far is gradient based learning!
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Learning Algorithm

Learning algorithm is about credit assignment

 Assign credits based on contribution  Adjust parameters based on loss

 

The most successful learning algorithm so far is gradient based learning!

Representative method: stochastic gradient descent (SGD), Robbins and Monro, 1951 

61



Learning Algorithm

Learning algorithm is about credit assignment

 Assign credits based on contribution  Adjust parameters based on loss

 

The most successful learning algorithm so far is gradient based learning!

Representative method: stochastic gradient descent (SGD), Robbins and Monro, 1951 

Back-propagation (BP) = SGD in the context of deep learning
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Back-Propagation

Multi-Layer Perceptron (MLP)

Image Credit: https://becominghuman.ai/multi-layer-perceptron-mlp-models-on-real-world-banking-data-f6dd3d7e998f
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Back-Propagation

Forward Pass / Inference :

Image Credit: https://becominghuman.ai/multi-layer-perceptron-mlp-models-on-real-world-banking-data-f6dd3d7e998f
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Back-Propagation

Forward Pass / Inference :

Image Credit: https://becominghuman.ai/multi-layer-perceptron-mlp-models-on-real-world-banking-data-f6dd3d7e998f
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Back-Propagation

Forward Pass / Inference :

Image Credit: https://becominghuman.ai/multi-layer-perceptron-mlp-models-on-real-world-banking-data-f6dd3d7e998f
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Back-Propagation

Compute Loss :

Image Credit: https://becominghuman.ai/multi-layer-perceptron-mlp-models-on-real-world-banking-data-f6dd3d7e998f

Loss
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Back-Propagation

Backward Pass / Learning :

Image Credit: https://becominghuman.ai/multi-layer-perceptron-mlp-models-on-real-world-banking-data-f6dd3d7e998f

Loss

68

https://becominghuman.ai/multi-layer-perceptron-mlp-models-on-real-world-banking-data-f6dd3d7e998f


Back-Propagation

Backward Pass / Learning :

Image Credit: https://becominghuman.ai/multi-layer-perceptron-mlp-models-on-real-world-banking-data-f6dd3d7e998f

Loss
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Back-Propagation

Backward Pass / Learning :

Image Credit: https://becominghuman.ai/multi-layer-perceptron-mlp-models-on-real-world-banking-data-f6dd3d7e998f

Loss
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Back-Propagation

Backward Pass / Learning :

Image Credit: https://becominghuman.ai/multi-layer-perceptron-mlp-models-on-real-world-banking-data-f6dd3d7e998f

Loss
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Outline

• Brief Introduction & History & Application

• Basic Deep Learning Models

• Multi-Layer Perceptron (MLP)

• Convolutional Neural Network (CNN)
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Limitations

• MLPs/CNNs are restricted to data with fixed size

• Each sample needs to have the same size
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• RNNs can deal with varying-size data 

• Only presented as sequences
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Limitations

• MLPs/CNNs are restricted to data with fixed size

• Each sample needs to have the same size

• RNNs can deal with varying-size data 

• Only presented as sequences

• Learned representations do not explicitly encode structures of data

• Hard to interpret and manipulate 
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Questions?
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