EECE 571F: Advanced Topics in Deep Learning

Lecture 1: Introduction to Deep Learning

Renjie Liao

University of British Columbia

Winter, Term 1, 2024

- Course website: <u>https://lrjconan.github.io/UBC-EECE571F-DL-Structures/</u>
- Cutting-edge topics in deep learning with structures (not an introduction!!!)
- Assumes basic knowledge about machine learning, deep learning
 > View relevant textbooks/courses on the website
- Assumes basic knowledge about linear algebra, calculus, probability
- Assumes proficiency in deep learning libraries: PyTorch, JAX, Tensorflow

Self-learning through online tutorials, e.g. <u>https://pytorch.org/tutorials/</u>

- Two sections: Mon. & Wed. 13:30 to 3:00pm, Room 4018, Orchard Commons (ORCH)
 Office hour: 1:30pm to 2:30pm, Tue., KAIS 3047 (Ohm)
- TA: Yuanpei Gao (yuanpeig@student.ubc.ca)

- Two sections: Mon. & Wed. 13:30 to 3:00pm, Room 4018, Orchard Commons (ORCH)
 Office hour: 1:30pm to 2:30pm, Tue., KAIS 3047 (Ohm)
- TA: Yuanpei Gao (yuanpeig@student.ubc.ca)
- All lectures will be delivered in person without recording unless notified otherwise
- Use Piazza for discussion & questions (actively answering others' questions get you bonuses) and Canvas for submitting reports

https://piazza.com/ubc.ca/winterterm12024/eece571f

- Expectation & Grading (More info on the website)
 - [15%] One paper reading report, due Sep. 27
 - [15%] Project proposal, due Oct. 11
 - [15%] Project presentations, around last two weeks
 - [15%] Peer-review report of project presentations, due Dec. 6
 - [40%] Project report and code, due Dec. 11
- You are encouraged to team up (up to 4 members) for projects

- How to get free GPUs for your course project?
 - 1. Google Colab: <u>https://research.google.com/colaboratory/</u>

Google Colab is a web-based iPython Notebook service that has access to a free Nvidia K80 GPU per Google account.

2. Google Compute Engine: <u>https://cloud.google.com/compute</u>

Google Compute Engine provides virtual machines with GPUs running in Google's data center. You get \$300 free credit when you sign up.

- Strategy of using GPUs
 - 1. Debug models on small datasets (subsets) using CPUs or low-end GPUs until they work
 - 2. Launch batch jobs on high-end GPUs to tune hyperparameters

Course Scope

• Brief Intro to Deep Learning

Course Scope

- Brief Intro to Deep Learning
- Geometric Deep Learning
 - Deep Learning Models for Sets and Sequences: Deep Sets & Transformers
 - Deep Learning Models for Graphs: Message Passing & Graph Convolution GNNs
 - Group Equivariant Deep Learning

Course Scope

- Brief Intro to Deep Learning
- Geometric Deep Learning
 - Deep Learning Models for Sets and Sequences: Deep Sets & Transformers
 - Deep Learning Models for Graphs: Message Passing & Graph Convolution GNNs
 - Group Equivariant Deep Learning
- Probabilistic Deep Learning
 - Auto-regressive models, Large Language Models (LLMs)
 - Variational Auto-Encoders (VAEs) and Generative Adversarial Networks (GANs)
 - Flow models
 - Diffusion/Score based models

Outline

- Brief Introduction & History & Application
- Basic Deep Learning Models
 - Multi-Layer Perceptron (MLP)
 - Convolutional Neural Network (CNN)
 - Recurrent Neural Network (RNN)
- Objective Function
- Learning Algorithm: Back-propagation
- Limitations

Outline

- Brief Introduction & History & Application
- Basic Deep Learning Models
 - Multi-Layer Perceptron (MLP)
 - Convolutional Neural Network (CNN)
 - Recurrent Neural Network (RNN)
- Objective Function
- Learning Algorithm: Back-propagation
- Limitations

What is Deep Learning?

• Definition from Wikipedia:

Deep learning (also known as deep structured learning) is part of a broader family of machine learning methods based on artificial neural networks with representation learning.

• Key Aspects:

Data: Large (supervised) datasets, e.g., ImageNet (14 million+ annotated images)

Model: Deep (i.e., many layers) neural networks, e.g., ResNet-152

Learning algorithm: Back-propagation (BP), i.e., stochastic gradient descent (SGD)

Brief History of Deep Learning (Connectionism)

- Artificial Neurons (McCulloch and Pitts 1943)
- Hebbian Rule: Cells that fire together wire together (Donald Hebb 1949)
- Perceptron (Frank Rosenblatt 1958)
- Discovery of orientation selectivity and columnar organization in the visual cortex (Hubel and Wiesel, 1959)
- Neocognitron (first Convolutional Neural Network, Fukushima 1979)
- Hopfield networks (Hopfield 1982)
- Boltzmann machines (Hinton, Sejnowski 1983)
- Backpropagation (Linnainmaa 1970, Werbos 1974, Rumelhart, Hinton, Williams 1986)
- First application of BP to Neocognitron-like CNNs (LeCun et al. 1989)
- Long-short term memory (Hochreiter, Schmidhuber 1997)

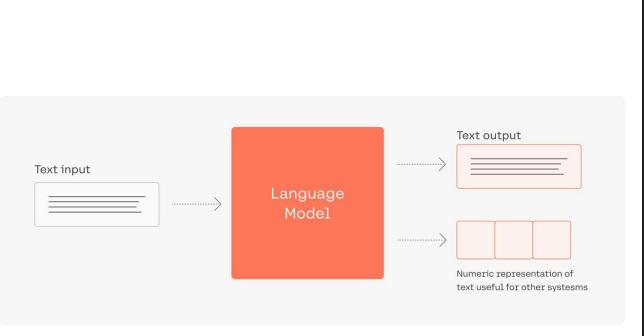
Brief History of Deep Learning (Connectionism)

• Deep belief networks (DBN) (Hinton et al., 2006)

.

- Breakthrough in speech recognition (Dahl et al. 2010)
- Breakthrough in computer vision: AlexNet (Krizhevsky et al. 2012), ResNet (He et al. 2016)
- Breakthrough in games: DQN (Minh, 2015), AlphaGO (2016)
- Breakthrough in natural language processing: Seq2seq (Sutskever et al. 2014), Transformers (Vaswani et al. 2017), GPT-3 (Brown et al. 2020)
- Breakthrough in protein structure prediction: AlphaFold (2020)

The future depends on some graduate student who is deeply suspicious of everything I have said.

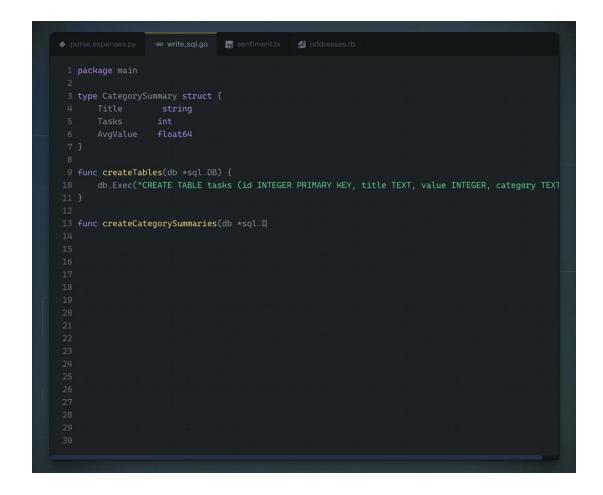


Large Language Models (LLMs)

ChatGPT × +	✓ - □ X
\leftarrow \rightarrow C $\hat{\mathbf{c}}$ chat.openai.com/chat	순 🛧 💙 🔜 🖉 🗰 🖬 🗯 🗊 😫 😫
G Reset Thread	This causes the component to re-render, and the updated <code>`count`</code> value is displayed in the <code>`p`</code> element.
 Light Mode OpenAl Discord 	I hope this helps! Let me know if you have any other questions.
년 Learn More [→ Log out	Can you add App.tsx that uses this component?
¢	Sure! Here's an example of an `App ` component that uses the `Counter ` component from the previous example:
	🗋 Copy code
	<pre>import React from 'react'; import Counter from './Counter'; function App() { return (</pre>
	In this example, the 'App' component simply renders the 'Counter' component. When the 'Counter' component is rendered, it will display a button and a paragraph that shows the current count. When the button is clicked, the 'Counter' component will update its state and re-render, showing an updated count in the paragraph.
	· · · · · · · · · · · · · · · · · · ·
Free Research Preview: ChatGPT	s optimized for dialogue. Our goal is to make AI systems more natural to interact with, and your feedback will help us improve our systems and make them

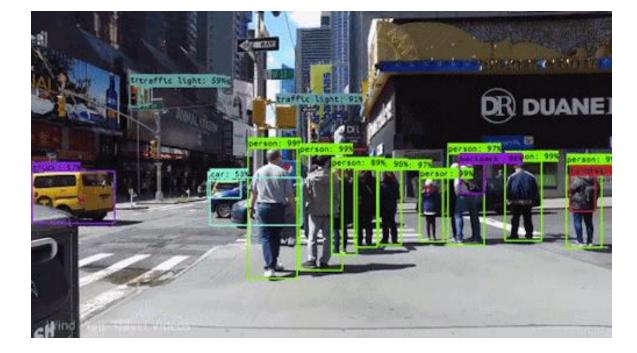
Text/Program Generation

Matt Shumer (matt@othersideai.com), 1 CC



Speech Recognition, Personal Assistants

Computer Vision/Graphics, e.g., Object detection, Rendering



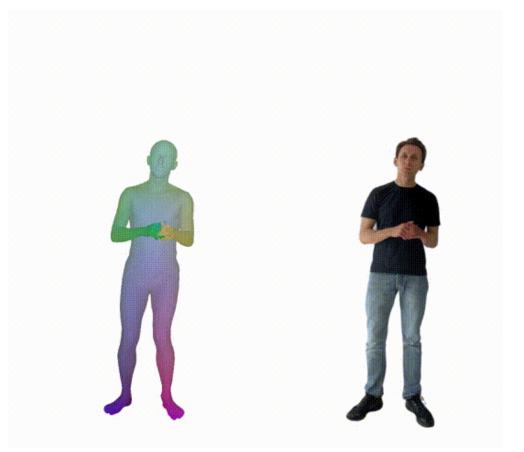
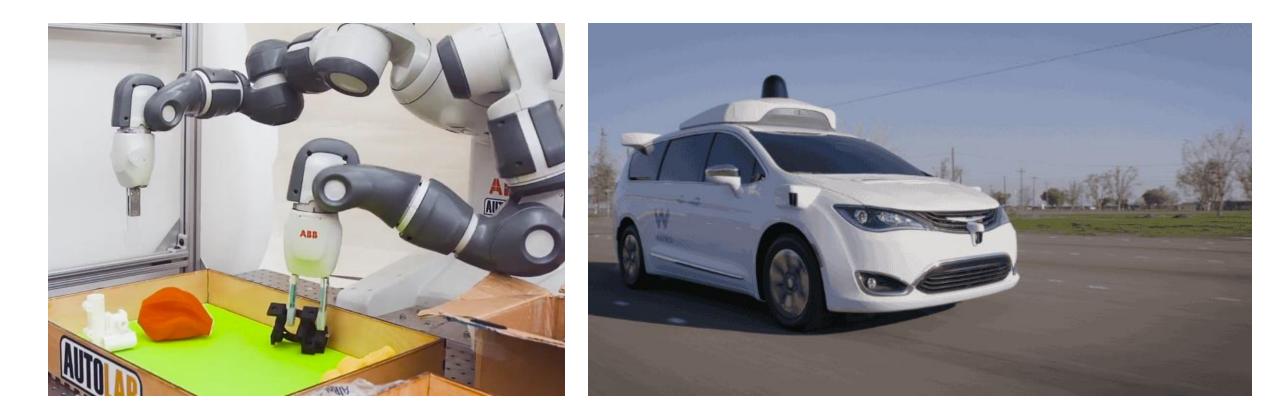


Image Credit: https://github.com/sergeyprokudin/smplpix

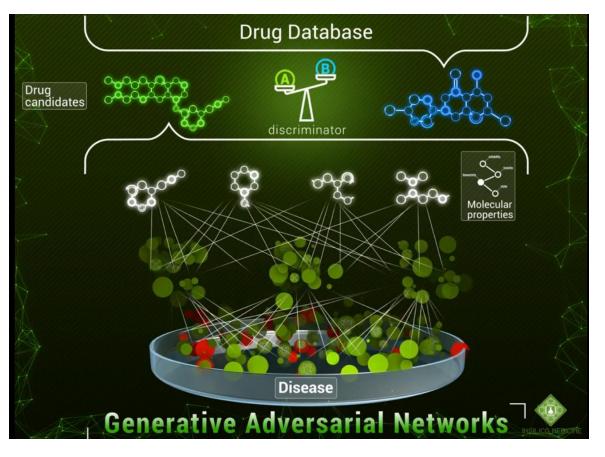
https://towardsdatascience.com/everything-you-ever-wanted-to-know-about-computer-vision-heres-a-look-why-it-s-so-awesome-e8a58dfb641e

Virtual/Augmented Reality

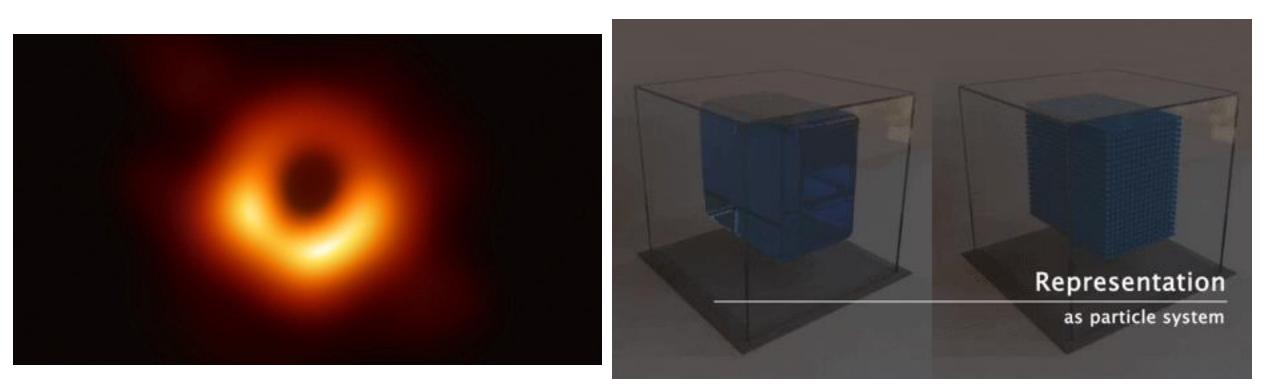
Robotics, Autonomous Driving



Protein structure prediction, Drug discovery



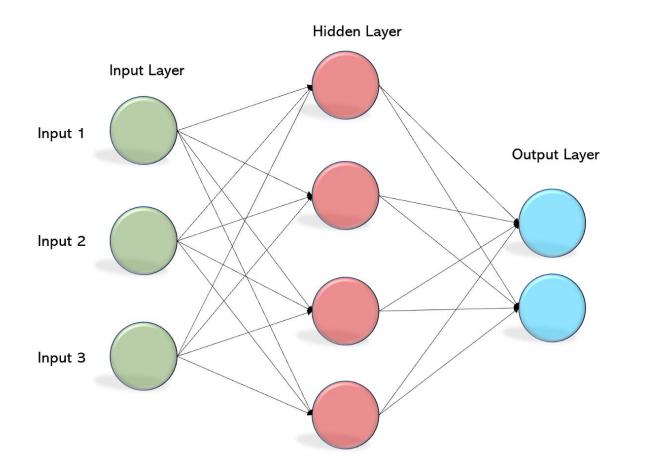
Black Holes, Physics Simulation

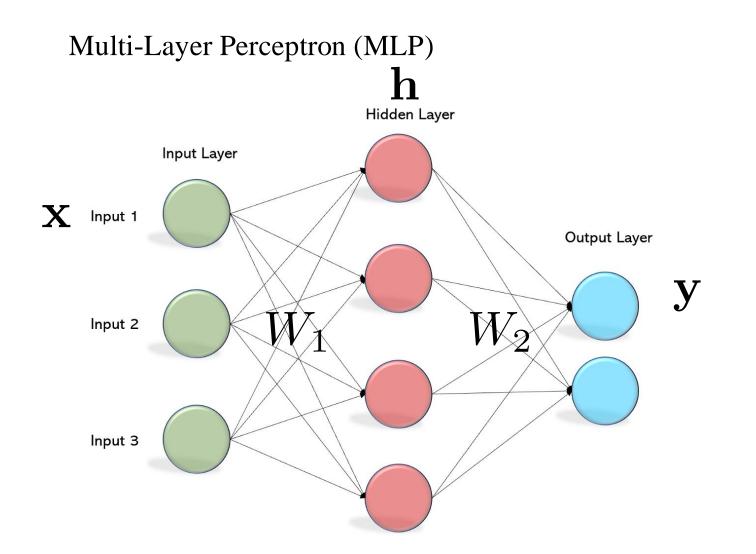


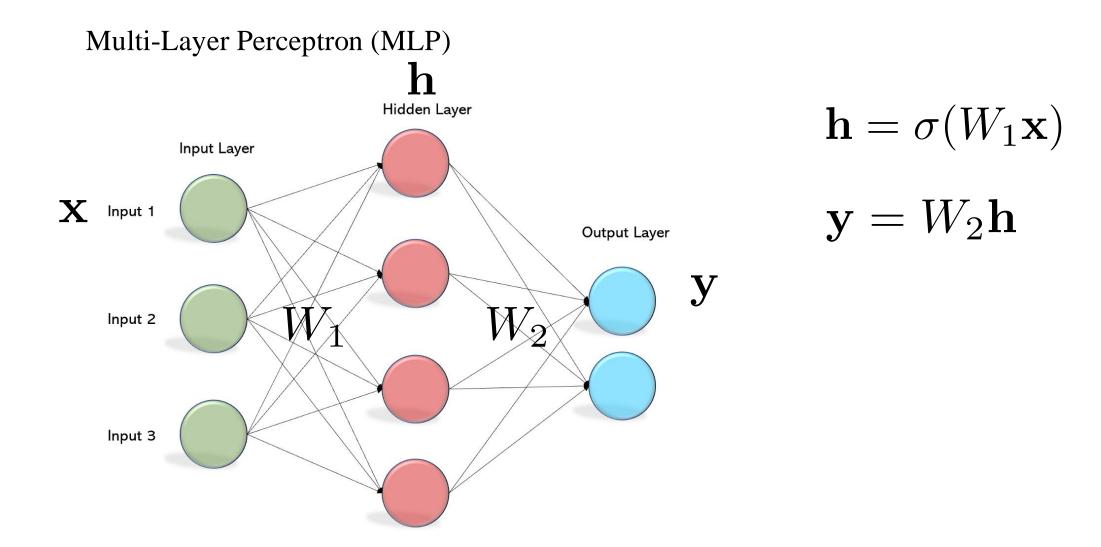
Outline

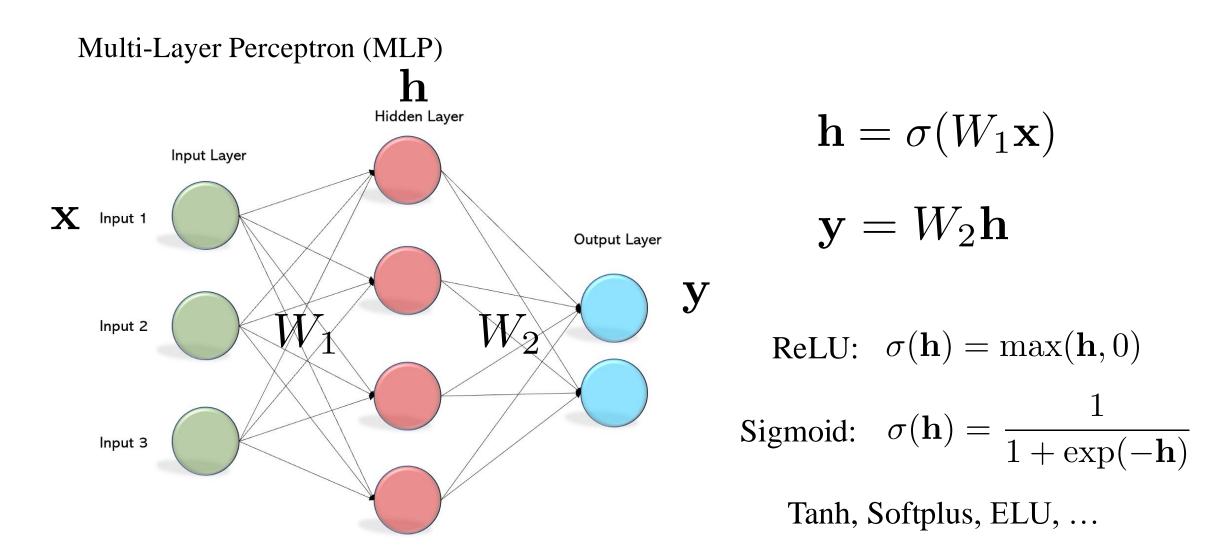
- Brief Introduction & History & Application
- Basic Deep Learning Models
 - Multi-Layer Perceptron (MLP)
 - Convolutional Neural Network (CNN)
 - Recurrent Neural Network (RNN)
- Objective Function
- Learning Algorithm: Back-propagation
- Limitations

Multi-Layer Perceptron (MLP)



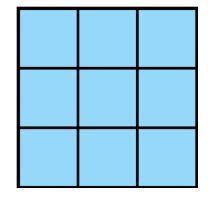






Convolutional Neural Network (CNN)

Convolution (Discrete)



Convolutional Filter

Convolutional Neural Network (CNN)

Convolution (Discrete)

$$\mathbf{y}_{i,j} = \sum_{m=1}^{K} \sum_{n=1}^{K} W_{m,n} \mathbf{x}_{i+m-\lceil K/2 \rceil, j+n-\lceil K/2 \rceil}$$

Convolutional Neural Network (CNN)

Convolution (Discrete)

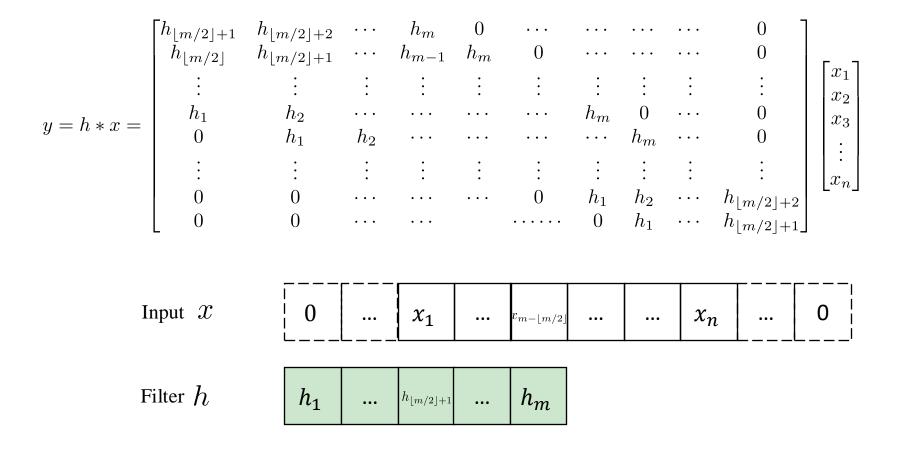
$$\mathbf{y}_{i,j} = \sum_{m=1}^{K} \sum_{n=1}^{K} W_{m,n} \mathbf{x}_{i+m-\lceil K/2 \rceil, j+n-\lceil K/2 \rceil}$$

Convolution ⇔ Matrix Multiplication

1D Convolution (Discrete) \Leftrightarrow Matrix Multiplication

1D Convolution (Discrete) 🗇 Matrix Multiplication

1D Convolution (Discrete) ⇔ Matrix Multiplication



1D Convolution (Discrete) 🗇 Matrix Multiplication

	$h_{ m/2 +1}$	$h_{ m/2 +2}$	• • •	h_m	0	• • •	• • •	• • •	• • •	0	
	$h_{\lfloor m/2 \rfloor}$	$h_{\lfloor m/2 \rfloor + 1}$	• • •	h_{m-1}	h_m	0	• • •	• • •	• • •	0	г ¬
	:	•	÷	÷	÷	•	÷	÷	÷	:	$egin{array}{c c} x_1 \ x_2 \end{array}$
a - b + a -	h_1	h_2	•••	•••	•••	•••	h_m	0	• • •	0	$\begin{bmatrix} x_2 \\ x_3 \end{bmatrix}$
y = h * x =	0	h_1	h_2	•••	•••	•••	• • •	h_m	•••	0	
		•	•	•	•	•	•	÷	•	•	$\begin{bmatrix} \vdots \\ x_n \end{bmatrix}$
	0	0	•••	• • •	•••	0	h_1		• • •	$h_{\lfloor m/2 \rfloor + 2}$	$\lfloor^{\omega}n floor$
	0	0	• • •	•••		• • • • • • •	0		• • •	$h_{\lfloor m/2 \rfloor + 1}$	
I	nput x	0		x ₁		$x_{m-\lfloor m/2 \rfloor}$			x_{η}	ı	0
F	ïlter h	h_1		$h_{\lfloor m/2 \rfloor + 1}$		h _m					

1D Convolution (Discrete) 🗇 Matrix Multiplication

	$h_{\mid m/2 \mid +1}$	$h_{ m/2 +2}$	•••	h_m	0	•••	•••	•••	•••	0	
	$h_{\lfloor m/2 \rfloor}$	$h_{ m/2 +1}$	• • •	h_{m-1}	h_m	0		• • •		0	г ¬
	÷	•	•	•	•	•	• •	• •	• •	:	$\begin{vmatrix} x_1 \\ x_2 \end{vmatrix}$
y = h * x =	h_1	h_2	•••	•••	•••	•••	h_m	0	•••	0	$\begin{array}{c} x_{3} \end{array}$
y = n * x =	0	h_1	h_2	•••	•••	•••	•••	h_m	•••	0	
	•	•	•	• •	•	•	•	•	:	•	$\begin{bmatrix} \vdots \\ x_n \end{bmatrix}$
	0	0	•••	• • •	•••	0	h_1		•••	$h_{\lfloor m/2 \rfloor + 2}$	$\lfloor^{xn} \rfloor$
	0	0	•••	•••		••••	0	h_1		$h_{\lfloor m/2 \rfloor + 1}$	
Ir	nput x	0		x ₁		$x_{m-\lfloor m/2 \rfloor}$			x_{η}		0
F	ilter h		h_1		$h_{\lfloor m/2 floor+}$	1	h_m				

1D Convolution (Discrete) ⇔ Matrix Multiplication

Filter => Toeplitz matrix (diagonal-constant)

It could be very sparse (e.g., when $n \gg m$)!

$\begin{bmatrix} 0 \\ \cdot \end{bmatrix} \begin{bmatrix} x_1 \end{bmatrix}$
$\begin{array}{c c} \vdots \\ 0 \end{array} \begin{array}{c} x_2 \\ x_2 \end{array}$
$\begin{array}{c c} 0 \\ 0 \\ 0 \\ \end{array}$
$\vdots \qquad \begin{bmatrix} \vdots \\ x_n \end{bmatrix}$
$m/2 \rfloor + 2$
$m/2 \rfloor + 1 \rfloor$
0

1D Convolution (Discrete) 🗇 Matrix Multiplication

1D Convolution (Discrete) 🗇 Matrix Multiplication

$$y^{\top} = (h * x)^{\top} = \begin{bmatrix} h_m & h_{m-1} & \cdots & h_3 & h_2 & h_1 \end{bmatrix} \begin{bmatrix} x_{m-\lfloor m/2 \rfloor} & x_{m-\lfloor m/2 \rfloor+1} & \cdots & x_m & x_{m+1} & \cdots & 0 & 0 \\ \vdots & \vdots & \cdots & x_{m-1} & x_m & \cdots & \vdots & \vdots \\ x_1 & x_2 & \cdots & \vdots & x_{m-1} & \cdots & x_n & 0 \\ 0 & x_1 & \cdots & \vdots & \vdots & \cdots & x_{n-1} & x_n \\ \vdots & 0 & \cdots & \vdots & \vdots & \cdots & \vdots & \vdots \\ 0 & 0 & \cdots & x_1 & x_2 & \cdots & x_{n-\lfloor m/2 \rfloor+1} & x_{n-\lfloor m/2 \rfloor} \end{bmatrix}$$

Input
$$x$$
 0
 ...
 x_1
 ...
 x_m
 ...
 0

 Filter h
 h_1
 ...
 $h_{\lfloor m/2 \rfloor + 1}$
 ...
 h_m

1D Convolution (Discrete) 🗇 Matrix Multiplication

$$y^{\top} = (h * x)^{\top} = \begin{bmatrix} h_m & h_{m-1} & \cdots & h_3 & h_2 & h_1 \end{bmatrix} \begin{pmatrix} x_{m-\lfloor m/2 \rfloor+1} & \cdots & x_m & x_{m+1} & \cdots & 0 & 0 \\ \vdots & \vdots & \cdots & x_{m-1} & x_m & \cdots & \vdots & \vdots \\ x_1 & x_2 & \cdots & \vdots & x_{m-1} & \cdots & x_n & 0 \\ 0 & x_1 & \cdots & \vdots & \vdots & \cdots & x_{n-1} & x_n \\ \vdots & 0 & \cdots & \vdots & \vdots & \cdots & \vdots & \vdots \\ 0 & 0 & \cdots & x_1 & x_2 & \cdots & x_{n-\lfloor m/2 \rfloor+1} & x_{n-\lfloor m/2 \rfloor} \end{bmatrix}$$

Input
$$x$$
 0 \dots x_1 \dots $x_{m-\lfloor m/2 \rfloor}$ \dots x_n \dots 0
Filter h h_1 \dots $h_{\lfloor m/2 \rfloor+1}$ \dots h_m

1D Convolution (Discrete) 🗇 Matrix Multiplication

$$y^{\top} = (h * x)^{\top} = \begin{bmatrix} h_m & h_{m-1} & \cdots & h_3 & h_2 & h_1 \end{bmatrix} \begin{bmatrix} x_{m-\lfloor m/2 \rfloor} & x_{m-\lfloor m/2 \rfloor+1} & \cdots & x_m & x_{m+1} & \cdots & 0 & 0 \\ \vdots & x_1 & x_2 & \cdots & \vdots & x_{m-1} & x_m & \cdots & \vdots & \vdots \\ x_1 & x_2 & \cdots & \vdots & x_{m-1} & \cdots & x_n & 0 \\ 0 & x_1 & \cdots & \vdots & \vdots & \cdots & x_{n-1} & x_n \\ \vdots & 0 & 0 & \cdots & x_1 & x_2 & \cdots & x_{n-\lfloor m/2 \rfloor+1} & x_{n-\lfloor m/2 \rfloor} \end{bmatrix}$$

Input
$$x$$
 $\begin{bmatrix} 0 & \dots & x_1 & \dots & x_{m-\lfloor m/2 \rfloor} & \dots & \dots & x_n & \dots & 0 \end{bmatrix}$
Filter h $h_1 & \dots & h_{\lfloor m/2 \rfloor+1} & \dots & h_m$

1D Convolution (Discrete) ⇔ Matrix Multiplication

Data => Toeplitz matrix (diagonal-constant)

It could be dense (e.g., when $n \gg m$)!

$$y^{\top} = (h * x)^{\top} = \begin{bmatrix} h_m & h_{m-1} & \cdots & h_3 & h_2 & h_1 \end{bmatrix} \begin{bmatrix} x_{m-\lfloor m/2 \rfloor} & x_{m-\lfloor m/2 \rfloor+1} & \cdots & x_m & x_{m+1} & \cdots & 0 & 0 \\ \vdots & x_1 & \vdots & x_2 & \cdots & \vdots & x_{m-1} & x_m & \cdots & \vdots & \vdots \\ x_1 & x_2 & \cdots & \vdots & x_{m-1} & \cdots & x_n & 0 \\ \vdots & x_1 & \cdots & \vdots & \vdots & \cdots & x_{n-1} & x_n \\ \vdots & 0 & \cdots & \vdots & \vdots & \cdots & \vdots & \vdots \\ 0 & 0 & \cdots & x_1 & x_2 & \cdots & x_{n-\lfloor m/2 \rfloor+1} & x_{n-\lfloor m/2 \rfloor} \end{bmatrix}$$

Input
$$x$$
 $\begin{bmatrix} 0 & \dots & x_1 & \dots & x_{m-\lfloor m/2 \rfloor} & \dots & \dots & x_n & \dots & 0 \end{bmatrix}$
Filter h $h_1 & \dots & h_{\lfloor m/2 \rfloor+1} & \dots & h_m$

1D Convolution (Discrete) ⇔ Matrix Multiplication

Data => Toeplitz matrix (diagonal-constant)

It could be dense (e.g., when $n \gg m$)!

$$y^{\top} = (h * x)^{\top} = \begin{bmatrix} h_m & h_{m-1} & \cdots & h_3 & h_2 & h_1 \end{bmatrix} \begin{bmatrix} x_{m-\lfloor m/2 \rfloor + 1} & \cdots & x_m & x_{m+1} & \cdots & 0 & 0 \\ \vdots & x_1 & \vdots & \vdots & x_{m-1} & x_m & \cdots & \vdots & \vdots \\ x_1 & x_2 & \cdots & \vdots & x_{m-1} & \cdots & x_n & 0 \\ 0 & x_1 & \cdots & \vdots & \vdots & \cdots & x_{n-1} & x_n \\ \vdots & 0 & 0 & \cdots & \vdots & \vdots & \cdots & \vdots & \vdots \\ 0 & 0 & \cdots & x_1 & x_2 & \cdots & x_{n-\lfloor m/2 \rfloor + 1} & x_{n-\lfloor m/2 \rfloor} \end{bmatrix}$$

Input
$$x$$
 0 \dots x_1 \dots $r_{m-\lfloor m/2 \rfloor}$ \dots x_n \dots 0 Filter h h_1 \dots $h_{\lfloor m/2 \rfloor+1}$ \dots h_m This version is typically implemented on GPUs!

1D Convolution (Discrete) ⇔ Matrix Multiplication

This equivalence holds for 2D and other higher-order convolutions!

Data => Toeplitz matrix (diagonal-constant)

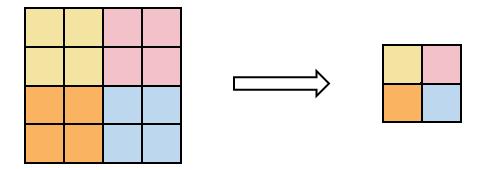
It could be dense (e.g., when $n \gg m$)!

$$y^{\top} = (h * x)^{\top} = \begin{bmatrix} h_m & h_{m-1} & \cdots & h_3 & h_2 & h_1 \end{bmatrix} \begin{bmatrix} x_{m-\lfloor m/2 \rfloor} & x_{m-\lfloor m/2 \rfloor+1} & \cdots & x_m & x_{m+1} & \cdots & 0 & 0 \\ \vdots & x_1 & x_2 & \cdots & \vdots & x_{m-1} & x_m & \cdots & \vdots & \vdots \\ x_1 & x_2 & \cdots & \vdots & x_{m-1} & \cdots & x_n & 0 \\ 0 & x_1 & \cdots & \vdots & \vdots & \cdots & x_{n-1} & x_n \\ \vdots & 0 & 0 & \cdots & x_1 & x_2 & \cdots & x_{n-\lfloor m/2 \rfloor+1} & x_{n-\lfloor m/2 \rfloor} \end{bmatrix}$$

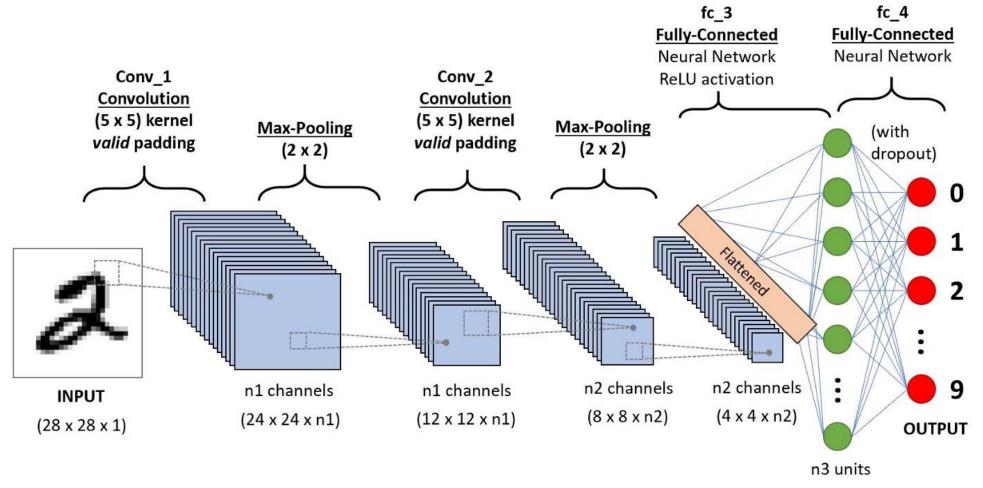
Input
$$x$$
 0 \dots x_1 \dots $r_{m-\lfloor m/2 \rfloor}$ \dots x_n \dots 0 Filter h h_1 \dots $h_{\lfloor m/2 \rfloor+1}$ \dots h_m This version is typically implemented on GPUs!

Convolutional Neural Network (CNN)

Pooling (e.g., 2X2)



Convolutional Neural Network (CNN)



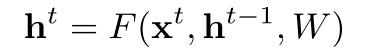
Recurrent Neural Network (RNN)

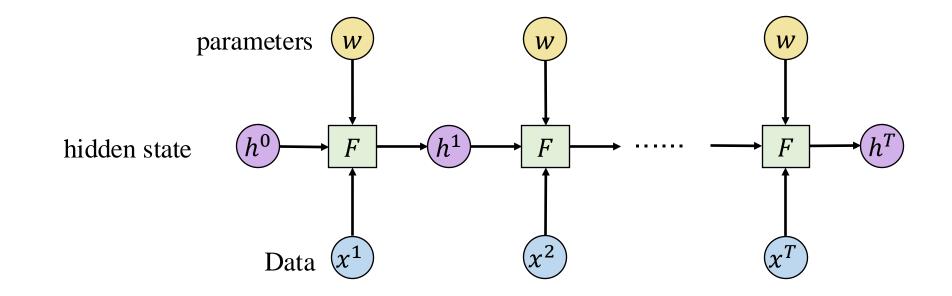
Same neural network gets reused many times!

$$\mathbf{h}^t = F(\mathbf{x}^t, \mathbf{h}^{t-1}, W)$$

Recurrent Neural Network (RNN)

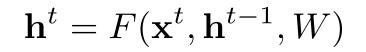
Same neural network gets reused many times!

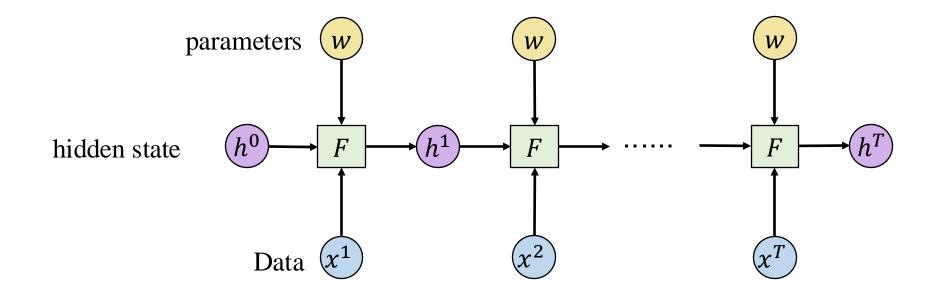




Recurrent Neural Network (RNN)

Same neural network gets reused many times!





F could be any neural network!

Outline

- Brief Introduction & History & Application
- Basic Deep Learning Models
 - Multi-Layer Perceptron (MLP)
 - Convolutional Neural Network (CNN)
 - Recurrent Neural Network (RNN)
- Objective Function
- Learning Algorithm: Back-propagation
- Limitations

• Supervised Learning

Given (data, label), we want to minimize empirical risk/loss

Loss = Function(label, model(data))

• Supervised Learning

Empirical Risk Minimization (ERM)!

Given (data, label), we want to minimize empirical risk/loss

Loss = Function(label, model(data))

• Supervised Learning

Empirical Risk Minimization (ERM)!

Given (data, label), we want to minimize empirical risk/loss

Loss = Function(label, model(data))

• Classification

Cross-Entropy Loss:

$$\ell(p,q) = -\sum_{i=1}^{K} p_i \log q_i$$

• Supervised Learning

Empirical Risk Minimization (ERM)!

Given (data, label), we want to minimize empirical risk/loss

Loss = Function(label, model(data))

- Classification
 - Cross-Entropy Loss:
- Regression

Mean-Squared Error (MSE):

$$\ell(p,q) = -\sum_{i=1}^{K} p_i \log q_i$$
$$\ell(\mathbf{x}, \mathbf{y}) = \frac{1}{K} \|\mathbf{x} - \mathbf{y}\|_2^2$$

Unsupervised/Self-supervised Learning

Only data is given

Unsupervised/Self-supervised Learning

Only data is given

- Likelihood (Autoregressive models)
- Reconstruction Loss (Auto-encoders)
- Contrastive Loss (noise contrastive estimation, self-supervised learning)
- Min-max Loss (Generative adversarial networks)

Unsupervised/Self-supervised Learning

Only data is given

.

- Likelihood (Autoregressive models)
- Reconstruction Loss (Auto-encoders)
- Contrastive Loss (noise contrastive estimation, self-supervised learning)
- Min-max Loss (Generative adversarial networks)

Designing a good objective function itself is a challenging research question!

- "Pure" Reinforcement Learning (cherry)
 - The machine predicts a scalar reward given once in a while.
 - A few bits for some samples

Supervised Learning (icing)

- The machine predicts a category or a few numbers for each input
- Predicting human-supplied data
- ▶ 10→10,000 bits per sample

Unsupervised/Predictive Learning (cake)

- The machine predicts any part of its input for any observed part.
- Predicts future frames in videos
- Millions of bits per sample

(Yes, I know, this picture is slightly offensive to RL folks. But I'll make it up)

Outline

- Brief Introduction & History & Application
- Basic Deep Learning Models
 - Multi-Layer Perceptron (MLP)
 - Convolutional Neural Network (CNN)
 - Recurrent Neural Network (RNN)
- Objective Function
- Learning Algorithm: Back-propagation
- Limitations

Learning algorithm is about **credit assignment**

Assign credits based on contribution \Leftrightarrow Adjust parameters based on loss

Learning algorithm is about **credit assignment**

Assign credits based on contribution \Leftrightarrow Adjust parameters based on loss

The most successful learning algorithm so far is gradient based learning!

Learning algorithm is about **credit assignment**

Assign credits based on contribution \Leftrightarrow Adjust parameters based on loss

The most successful learning algorithm so far is **gradient based learning**!

Representative method: stochastic gradient descent (SGD), Robbins and Monro, 1951

Learning algorithm is about **credit assignment**

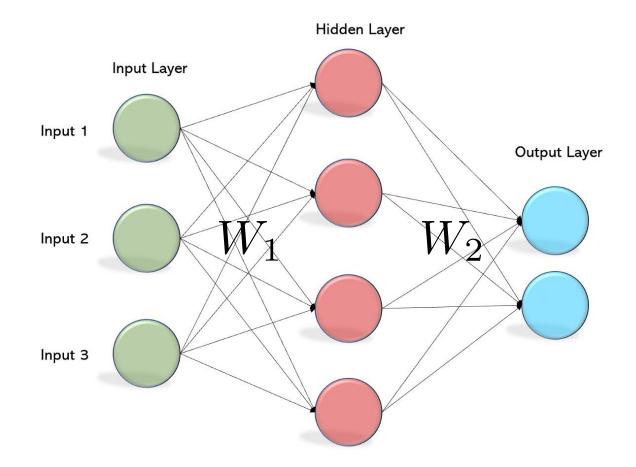
Assign credits based on contribution \Leftrightarrow Adjust parameters based on loss

The most successful learning algorithm so far is **gradient based learning**!

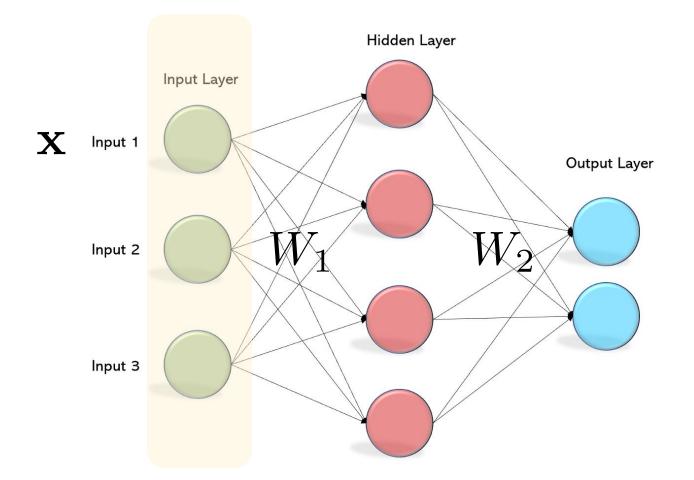
Representative method: stochastic gradient descent (SGD), Robbins and Monro, 1951

Back-propagation (BP) = SGD in the context of deep learning

Multi-Layer Perceptron (MLP)

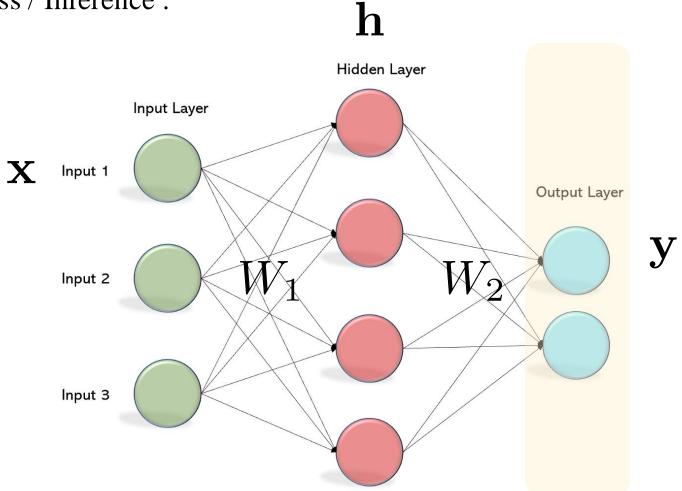


Forward Pass / Inference :

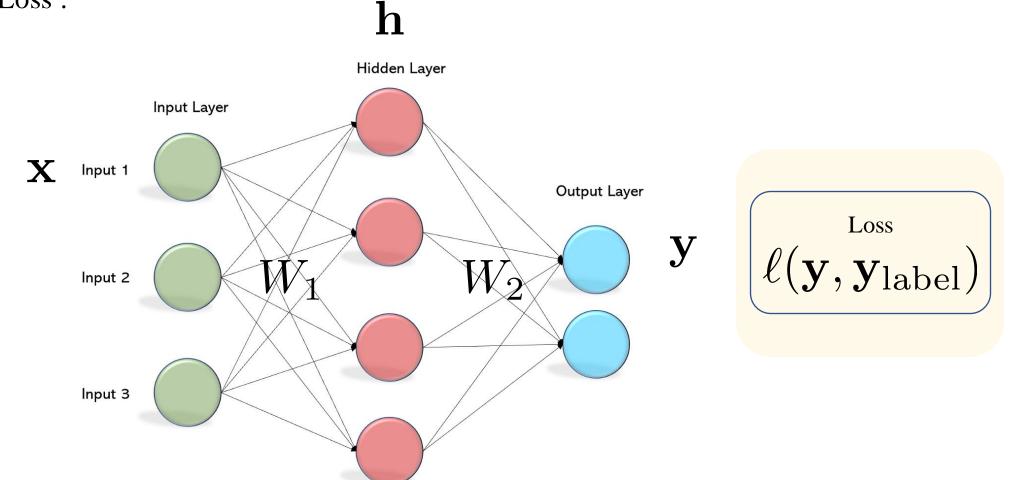


Forward Pass / Inference : h Hidden Layer Input Layer \mathbf{X} Input 1 Output Layer W_{2} V V Input 2 Input 3

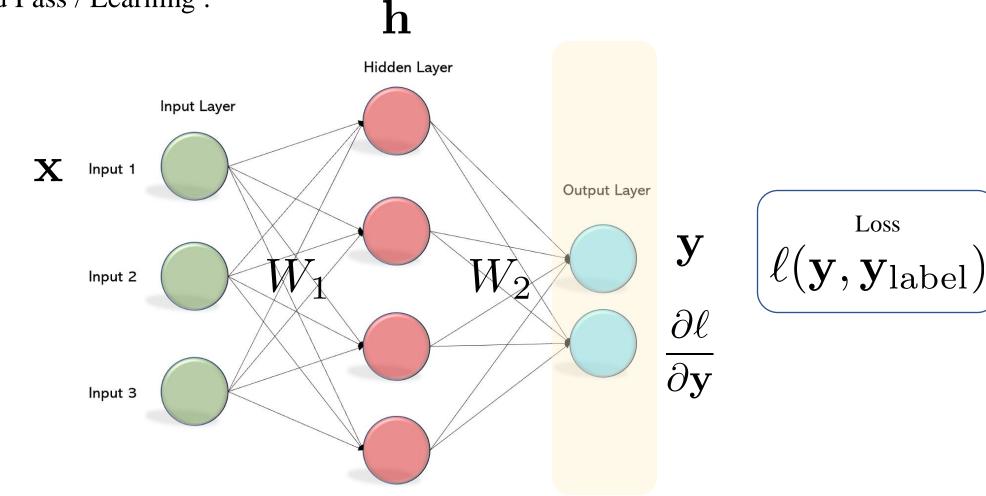
Forward Pass / Inference :

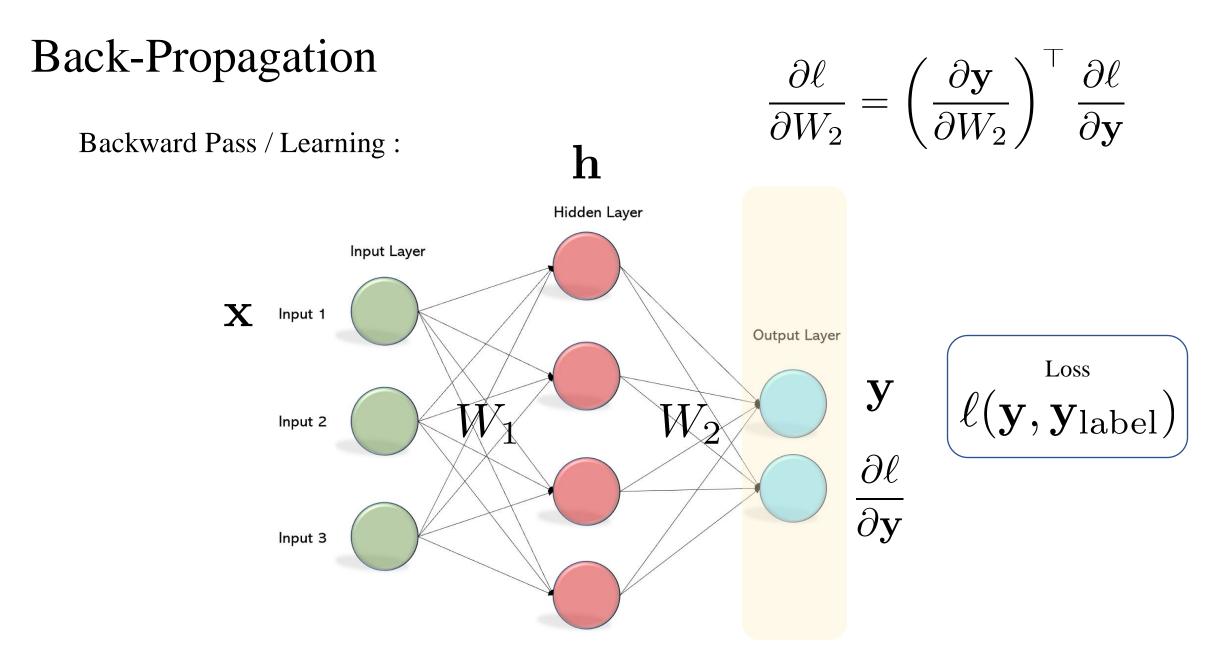


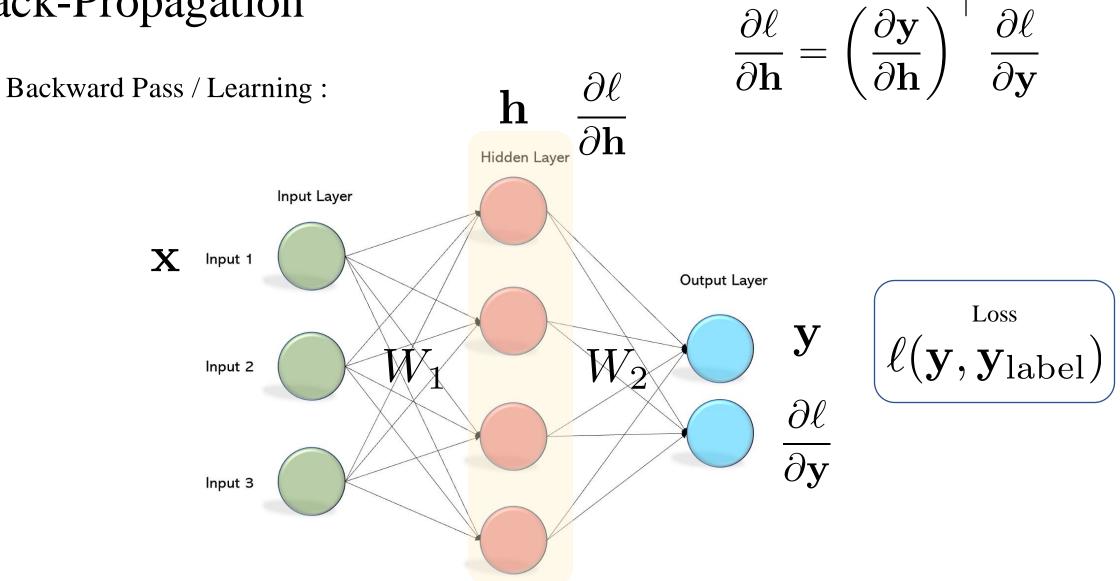
Compute Loss :

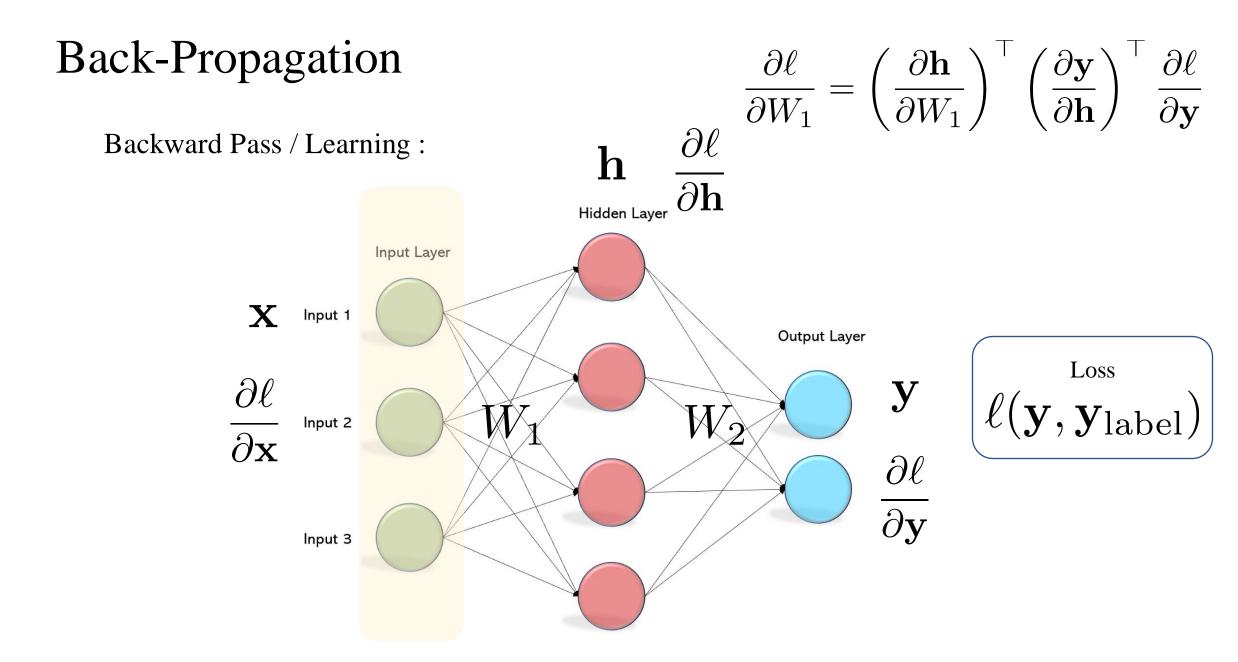


Backward Pass / Learning :









Outline

- Brief Introduction & History & Application
- Basic Deep Learning Models
 - Multi-Layer Perceptron (MLP)
 - Convolutional Neural Network (CNN)
 - Recurrent Neural Network (RNN)
- Objective Function
- Learning Algorithm: Back-propagation
- Limitations

Limitations

- MLPs/CNNs are restricted to data with fixed size
 - Each sample needs to have the same size

Limitations

- MLPs/CNNs are restricted to data with fixed size
 - Each sample needs to have the same size
- RNNs can deal with varying-size data
 - Only presented as sequences

Limitations

- MLPs/CNNs are restricted to data with fixed size
 - Each sample needs to have the same size
- RNNs can deal with varying-size data
 - Only presented as sequences
- Learned representations do not explicitly encode structures of data
 - Hard to interpret and manipulate

Questions?