EECE 571F: Advanced Topics in Deep Learning

Lecture 2: Invariance, Equivariance, and
Deep Learning Models for Sets/Sequences

Renjie Liao

University of British Columbia
Winter, Term 1, 2024

Outline

* Invariance & Equivariance Principle
« Translation equivariance in convolutions
« Permutation equivariance and invariance

 Models for Sets

» DeepSets: representation theorem of permutation-invariant set functions & architecture
* DeepSets: permutation-equivariant linear mapping & architecture

* Models for Sequences
* Transformers
Positional encoding vs. Rotary Positional Embeddings (RoPE)
Attention & Flash Attention
Pre-norm vs. post-norm
Vision Transformers (ViT) & Swin Transformers

Motivating Applications for Sets

 Population Statistics
e Point Cloud Classification

Table Airplane Earphone

Image Credit: https://github.com/AnTao97/PointCloudDatasets

https://github.com/AnTao97/PointCloudDatasets

Invariance & Equivariance

* |Invariance:

A mathematical object (or a class of mathematical objects) remains unchanged after operations or
transformations of a certain type are applied to the objects

Invariance & Equivariance

* |Invariance:

A mathematical object (or a class of mathematical objects) remains unchanged after operations or
transformations of a certain type are applied to the objects

Invariance & Equivariance

* |Invariance:

A mathematical object (or a class of mathematical objects) remains unchanged after operations or
transformations of a certain type are applied to the objects

« Equivariance:

Applying a transformation and then computing the function produces the same result as computing the
function and then applying the transformation

Outline

* Invariance & Equivariance Principle
« Translation equivariance in convolutions
« Permutation equivariance and invariance

 Models for Sets

» DeepSets: representation theorem of permutation-invariant set functions & architecture
* DeepSets: permutation-equivariant linear mapping & architecture

* Models for Sequences
* Transformers
Positional encoding vs. Rotary Positional Embeddings (RoPE)
Attention & Flash Attention
Pre-norm vs. post-norm
Vision Transformers (ViT) & Swin Transformers

Revisit Convolution

Matrix multiplication views of (discrete) convolution:
* Filter => Toeplitz matrix
« Data => Toeplitz matrix

Revisit Convolution

Matrix multiplication views of (discrete) convolution:
* Filter => Toeplitz matrix

» Data => Toeplitz matrix Consider a special Toeplitz matrix: circulant matrix (must be square!)

Convolution with padding

& L TTTTTTTTTTTTT1]

C(w)

< LI I T T T T T T T T TT T

Image Credit: https://towardsdatascience.com/deriving-convolution-from-first-principles-4ff124888028

https://towardsdatascience.com/deriving-convolution-from-first-principles-4ff124888028

Translation/Shift Operator

|

S

ST ST

Image Credit: https://towardsdatascience.com/deriving-convolution-from-first-principles-4ff124888028

https://towardsdatascience.com/deriving-convolution-from-first-principles-4ff124888028

Translation/Shift Operator

Shift operator is also a circulant matrix!

X y

P e = ey -

I3

S ST ST S I

Image Credit: https://towardsdatascience.com/deriving-convolution-from-first-principles-4ff124888028

https://towardsdatascience.com/deriving-convolution-from-first-principles-4ff124888028

Translation/Shift Equivariance

Matrix multiplication is non-commutative. But not for circulant matrices!

C(w) ST ST
shift operator shift operator

Image Credit: https://towardsdatascience.com/deriving-convolution-from-first-principles-4ff124888028

C(w)

12

https://towardsdatascience.com/deriving-convolution-from-first-principles-4ff124888028

Translation/Shift Equivariance

Matrix multiplication is non-commutative. But not for circulant matrices!

C(w) ST ST
shift operator shift operator

Convolution is translation equivariant, i.e., Conv(Shift(X)) = Shift(Conv(X))!

Image Credit: https://towardsdatascience.com/deriving-convolution-from-first-principles-4ff124888028

C(w)

13

https://towardsdatascience.com/deriving-convolution-from-first-principles-4ff124888028

Translation/Shift Invariance

Global pooling gives you shift-invariance!

224 x224x3 224x224x64

112x]112x 128

56
28 x28x 512

X Tx512

14 x 14 x 51

4096 1x1x1000

——~

@ convolution+RelLU

@ max pooling
¢ l’ fully connected+ReLU

g softmax

Image Credit: https://towardsdatascience.com/covolutional-neural-network-cb0883dd6529

14

https://towardsdatascience.com/covolutional-neural-network-cb0883dd6529

Translation/Shift Equivariance Invariance

Yann LeCun’s LeNet Demo:

%M LeNet 5 | peseanch

answer: 0

AR

|

TAr e R 2. 10

2 _N
i -
'y i ¥
3 "
Ui e
4] B
64: Bl 5
r) u
& =
S =
. -
o 4

LR By B

oy

Image Credit: http://yann.lecun.com/exdb/lenet/translation.html

15

http://yann.lecun.com/exdb/lenet/translation.html

Outline

* Invariance & Equivariance Principle
« Translation equivariance in convolutions
« Permutation equivariance and invariance

 Models for Sets

» DeepSets: representation theorem of permutation-invariant set functions & architecture
* DeepSets: permutation-equivariant linear mapping & architecture

* Models for Sequences
* Transformers
Positional encoding vs. Rotary Positional Embeddings (RoPE)
Attention & Flash Attention
Pre-norm vs. post-norm
Vision Transformers (ViT) & Swin Transformers

Permutation Invariance

Point Clouds
Probability of Classes

Permutation / Shuffle

Image Credit: https://github.com/AnTao97/PointCloudDatasets

X € RnXB
Y € RlXK
P c RnX’n

17

https://github.com/AnTao97/PointCloudDatasets

Permutation Invariance

Point Clouds
Probability of Classes

Permutation / Shuffle

NG S OCR) \)
|

o = O O O

OO OO =

Image Credit: https://github.com/AnTao97/PointCloudDatasets

O O =k OO

_ O O O O

X e R™
Y e RXE
P e R"™"

O OO = O
QU &~ W DN =

18

https://github.com/AnTao97/PointCloudDatasets

Geometric Interpretation of Permutation Matrix

Birkhoff Polytope
B, ={P e R"™"|Vi¥j P;; >0,¥i Y Py;=1Vj » Pj=1}

J
Doubly Stochastic Matrix

Geometric Interpretation of Permutation Matrix

Birkhoff Polytope
B, ={P e R"™"|Vi¥j P;; >0,¥i Y Py;=1Vj » Pj=1}

J
Doubly Stochastic Matrix

Birkhoff-von Neumann Theorem:
1. Birkhoff Polytope is the convex hull of permutation matrices

2. Permutation matrices = Vertices of Birkhoff Polytope Sn

Geometric Interpretation of Permutation Matrix

Birkhoff Polytope
B, ={P e R"™"|Vi¥j P;; >0,¥i Y Py;=1Vj » Pj=1}

J
Doubly Stochastic Matrix

Birkhoff-von Neumann Theorem:

1. Birkhoff Polytope is the convex hull of permutation matrices

2. Permutation matrices = Vertices of Birkhoff Polytope Sn

Image Credit: https://arxiv.org/pdf/1710.09508.pdf

21

https://arxiv.org/pdf/1710.09508.pdf

Permutation Invariance

Point Clouds
Probability of Classes

Permutation / Shuffle

Y = f(PX)

Image Credit: https://github.com/AnTao97/PointCloudDatasets

X € RnXB
Y € RlXK
P c R’nX’n

VP e S,

22

https://github.com/AnTao97/PointCloudDatasets

Permutation Equivariance

Image Credit: https://github.com/AnTao97/PointCloudDatasets

Point Clouds

Probability of Classes

Permutation / Shuffle

Point Representations

X € RnXB
Y € RlXK
P c R’nX’n

H e R™*¢

23

https://github.com/AnTao97/PointCloudDatasets

Permutation Equivariance

Image Credit: https://github.com/AnTao97/PointCloudDatasets

Point Clouds
Probability of Classes
Permutation / Shuffle

Point Representations

H = f(X)

X e R™
Y e RXE
P e R"™"

H € Rnxd

24

https://github.com/AnTao97/PointCloudDatasets

Permutation Equivariance

PO
tak s
t‘}.\' ~
T3
Tl
8 ¢
4«

SOV
ik D4

Syt
Seg 0"

%

o \' I.‘
<) ~ 4 O}
ol v A 0 <
Sats B - n
A S N £ I 2
> N a1 Lo
-
53 % *
ay 9
2 e 1{"-\»
& 5 ~ » v
@ -
S
i . [
-
O ® oy
4
’

Image Credit: https://github.com/AnTao97/PointCloudDatasets

Point Clouds X e RnXB

Probability of Classes Y € RIXK

Permutation / Shuffle P c R*»X"

Point Representations H c Rnxd
H = f(X)

PH = Pf(X) = f(PX)

25

https://github.com/AnTao97/PointCloudDatasets

Permutation Equivariance

PO
tak s
t‘}.\' ~
T3
Tl
8 ¢
4«

SOV
ik D4

Syt
Seg 0"

%

o \' I.‘
<) ~ 4 O}
ol v A 0 <
Sats B - n
A S N £ I 2
> N a1 Lo
-
53 % *
ay 9
2 e 1{"-\»
& 5 ~ » v
@ -
S
i . [
-
O ® oy
4
’

Image Credit: https://github.com/AnTao97/PointCloudDatasets

Point Clouds X e RnXB

Probability of Classes Y € RIXK

Permutation / Shuffle P c R*»X"

Point Representations H c Rnxd
H = f(X)

PH = Pf(X) = f(PX)

26

https://github.com/AnTao97/PointCloudDatasets

More on Invariance & Equivariance

« What about other transformations, e.g., scaling, 2D/3D rotations, Gauge transformation?

i - -_.l r -r
'“_f =8 | feNel 5 | peseanch

Lieks 7 R iDbE

Wy | a
ez
il

hiaw -

IR s R

ol
=S

i
L
e
M R
L
I

1 =F,

L

Image Credit: http://yann.lecun.com/exdb/lenet/scale.html

27

http://yann.lecun.com/exdb/lenet/scale.html

More on Invariance & Equivariance

« What about other transformations, e.g., scaling, 2D/3D rotations, Gauge transformation?

=N
ﬁ'ﬂ“ feNet 5 | peseancu

Lieks 7 R iDbE

||
Eadl
[
[
[

EIEﬂItﬁ

SR e mle
NEmE" =
|
t

Hoal i

iﬂﬂﬁ&ﬂﬁ$iﬂ

I

H
=
el
L
.
L

 Generalize to Group Invariance & Equivariance
Recommend Taco Cohen’s PhD Thesis: https://pure.uva.nl/ws/files/60770359/Thesis.pdf

Image Credit: http://yann.lecun.com/exdb/lenet/scale.html

28

https://pure.uva.nl/ws/files/60770359/Thesis.pdf
http://yann.lecun.com/exdb/lenet/scale.html

Outline

* Invariance & Equivariance Principle
« Translation equivariance in convolutions
« Permutation equivariance and invariance

 Models for Sets

» DeepSets: representation theorem of permutation-invariant set functions & architecture
* DeepSets: permutation-equivariant linear mapping & architecture

* Models for Sequences
* Transformers
Positional encoding vs. Rotary Positional Embeddings (RoPE)
Attention & Flash Attention
Pre-norm vs. post-norm
Vision Transformers (ViT) & Swin Transformers

Deep Learning for Sets

 Point-level Tasks
Input: a vector per point
Output: a label/vector per point

Predictions of individual points are independent, e.g., image classification

Deep Learning for Sets

 Point-level Tasks
Input: a vector per point
Output: a label/vector per point

Predictions of individual points are independent, e.g., image classification

 Set-level Tasks
Input: a set of vectors, each corresponds to a point
Output: a label/vector per set

Prediction of a set depends on all points, e.g., point cloud classification

Deep Learning for Sets

Key Challenges:

* Varying-sized input sets
« Permutation equivariant and invariant models

« Expressive models

Deep Learning for Sets

* Deep Sets [1]

Theorem 2 A function f(X) operating on a set X having elements from a countable universe, is a
valid set function, i.e., invariant to the permutation of instances in X, iff it can be decomposed in the

form p (3" . cx ¢(x)), for suitable transformations ¢ and p.

[1] Zaheer, Manzil, et al. "Deep sets." Advances in neural information processing systems 30 (2017).

Deep Learning for Sets

* Deep Sets [1]

Theorem 2 A function f(X) operating on a set X having elements from a countable universe, is a
valid set function, i.e., invariant to the permutation of instances in X, iff it can be decomposed in the

form p (3" . cx ¢(x)), for suitable transformations ¢ and p.
Sketch of Proof

Sufficiency: summation is permutation invariant!

[1] Zaheer, Manzil, et al. "Deep sets." Advances in neural information processing systems 30 (2017).

Deep Learning for Sets

* Deep Sets [1]

Theorem 2 A function f(X) operating on a set X having elements from a countable universe, is a
valid set function, i.e., invariant to the permutation of instances in X, iff it can be decomposed in the

form p (3" . cx ¢(x)), for suitable transformations ¢ and p.
Sketch of Proof

Sufficiency: summation is permutation invariant!

Necessity: any valid set function is essentially a function (absorbed in) that takes an injective representation of a set as
input. Then we just need to construct an injective set representation in the form of Z rex ¢(z) since any other

injective set representations can be obtained via some suitable transformation (absorbed in Q) from rex P(x) .

[1] Zaheer, Manzil, et al. "Deep sets." Advances in neural information processing systems 30 (2017).

Deep Learning for Sets

* Deep Sets [1]

Theorem 2 A function f(X) operating on a set X having elements from a countable universe, is a
valid set function, i.e., invariant to the permutation of instances in X, iff it can be decomposed in the

form p (3" . cx ¢(x)), for suitable transformations ¢ and p.
Sketch of Proof

Sufficiency: summation is permutation invariant!

Necessity: any valid set function is essentially a function (absorbed in) that takes an injective representation of a set as
input. Then we just need to construct an injective set representation in the form of Z rex ¢(z) since any other

injective set representations can be obtained via some suitable transformation (absorbed in Q) from rex P(x) .

1. Construct a mapping c: X —>N

[1] Zaheer, Manzil, et al. "Deep sets." Advances in neural information processing systems 30 (2017).

Deep Learning for Sets

* Deep Sets [1]

Theorem 2 A function f(X) operating on a set X having elements from a countable universe, is a
valid set function, i.e., invariant to the permutation of instances in X, iff it can be decomposed in the

form p (3" . cx ¢(x)), for suitable transformations ¢ and p.
Sketch of Proof

Sufficiency: summation is permutation invariant!

Necessity: any valid set function is essentially a function (absorbed in) that takes an injective representation of a set as
input. Then we just need to construct an injective set representation in the form of Z rex ¢(z) since any other
injective set representations can be obtained via some suitable transformation (absorbed in Q) from P(x) .

1. Construct a mapping c1¥l— N Countable Universe

reX

[1] Zaheer, Manzil, et al. "Deep sets." Advances in neural information processing systems 30 (2017).

Deep Learning for Sets

* Deep Sets [1]

Theorem 2 A function f(X) operating on a set X having elements from a countable universe, is a
valid set function, i.e., invariant to the permutation of instances in X, iff it can be decomposed in the

form p (3" . cx ¢(x)), for suitable transformations ¢ and p.
Sketch of Proof

Sufficiency: summation is permutation invariant!

Necessity: any valid set function is essentially a function (absorbed in) that takes an injective representation of a set as
input. Then we just need to construct an injective set representation in the form of Z rex ¢(z) since any other

injective set representations can be obtained via some suitable transformation (absorbed in Q) fromz rex P(x) .
1. Construct a mapping c: X —>N
2. Let o(x) = 4—c@)

[1] Zaheer, Manzil, et al. "Deep sets." Advances in neural information processing systems 30 (2017).

Deep Learning for Sets

* Deep Sets [1]

Theorem 2 A function f(X) operating on a set X having elements from a countable universe, is a
valid set function, i.e., invariant to the permutation of instances in X, iff it can be decomposed in the

form p (3" . cx ¢(x)), for suitable transformations ¢ and p.
Sketch of Proof

Sufficiency: summation is permutation invariant!

Necessity: any valid set function is essentially a function (absorbed in) that takes an injective representation of a set as
input. Then we just need to construct an injective set representation in the form of Z rex ¢(z) since any other

injective set representations can be obtained via some suitable transformation (absorbed in Q) fromz rex P(x) .
1. Construct a mapping c: X —>N
2. Let P(x) = g—c(@)
3. Injection X et o Z o(x
reX

[1] Zaheer, Manzil, et al. "Deep sets." Advances in neural information processing systems 30 (2017).

Deep Learning for Sets

* Deep Sets [1]

Theorem 2 A function f(X) operating on a set X having elements from a countable universe, is a
valid set function, i.e., invariant to the permutation of instances in X, iff it can be decomposed in the

form p (3" . cx ¢(x)), for suitable transformations ¢ and p.
Sketch of Proof

Sufficiency: summation is permutation invariant!

Necessity: any valid set function is essentially a function (absorbed in) that takes an injective representation of a set as
input. Then we just need to construct an injective set representation in the form of Z rex ¢(z) since any other

injective set representations can be obtained via some suitable transformation (absorbed in Q) fromz rex P(x) .
1. Construct a mapping c: X —>N
2. Let o(x) = 4—c@)

3. Injection X E% Z o(x) Power Set
reX

[1] Zaheer, Manzil, et al. "Deep sets." Advances in neural information processing systems 30 (2017).

Deep Learning for Sets

* Deep Sets [1]

Theorem 2 A function f(X) operating on a set X having elements from a countable universe, is a
valid set function, i.e., invariant to the permutation of instances in X, iff it can be decomposed in the

form p (3" . cx ¢(x)), for suitable transformations ¢ and p.
Sketch of Proof

Sufficiency: summation is permutation invariant!

Necessity: any valid set function is essentially a function (absorbed in) that takes an injective representation of a set as
input. Then we just need to construct an injective set representation in the form of Z x ¢(z) since any other

injective set representations can be obtained via some suitable transformation (absorbed in0) from rex P(x) .
[1. Construct a mapping c: X —N A o
However, this original
2. Let o(z) = 47 proof has some
technical issues!
3. Injection X € 2% Z (b(x

\ reX j

[1] Zaheer, Manzil, et al. "Deep sets." Advances in neural information processing systems 30 (2017).

41

Deep Learning for Sets

Necessity:
/1. Construct a mapping c: X —>N
2. Let o(z) = g—<()
3. Injection X €2% Z o(x)
_ reX

~

J

For better illustrate the problem, let us switch to base 2, i.e., gb(:c) =2~

e(x)

However, this original
proof has some
technical issues!

42

Deep Learning for Sets

~

J

Necessity:
/1. Construct a mapping c: X —>N
2. Let o) = 47
3. Injection X €2% Z gb(a:)
_ reX
For better illustrate the problem, let us switch to base 2, i.e., qb(cv) — 2_0(:6).

However, this original
proof has some
technical issues!

Therefore, the above “injection” essentially maps the binary string to a real number via the binary expansion.

43

Deep Learning for Sets

Necessity:
/1. Construct a mapping c: X >N) Er(())\:)\ls\kllzg Stgilsqeoriginal
2. Let o(z) = g—<() technical issues!
3. Injection X e 236 N Z gb(a})

_ xeX -/

For better illustrate the problem, let us switch to base 2, i.e., ¢<CU) — 2_0(33).

Therefore, the above “injection” essentially maps the binary string to a real number via the binary expansion.

For example, suppose X = {1, 2, ce } and the size is |%‘

bli] 1
Then the size-| X | binary string of set X7 = {1}isb; = 10... and its binary expansion is > o) =) i — g5 =09

reXq 1=1

44

Deep Learning for Sets

Necessity:
/1. Construct a mapping c: X >N) ;Ir%\gf\rﬁ;’ Stgilsqeoriginal
2. Let o(z) = g—<() technical issues!
3. Injection X e 236 N Z gb(a}
\ X)

For better illustrate the problem, let us switch to base 2, i.e., ¢<CU) — 2_0(33).

Therefore, the above “injection” essentially maps the binary string to a real number via the binary expansion.

For example, suppose X = {1, 2, ce } and the size is |%‘

Then the size-| X | binary string of set X7 = {1}isb; = 10... and its binary expansion is > ol

reXq

Then the binary string of set Xo = {2, 3, ... }is by = 011... and its binary expansion is > ol

reXo

1=1

oo

=1

0.5

Deep Learning for Sets

Necessity:
/1. Construct a mapping c: X —>N)
2. Let o(z) = g—<()
5. njection X e 5 Y g
_ reX -/

For better illustrate the problem, let us switch to base 2, i.e., ¢<CI3) — 2_0(:6).

However, this original
proof has some
technical issues!

Therefore, the above “injection” essentially maps the binary string to a real number via the binary expansion.

For example, suppose X = {1, 2, ce } and the size is |%‘

Then the size-| X | binary string of set X7 = {1}isb; = 10. ..

Then the binary string of set Xo = {2, 3,...

}is by = 011...

and its binary expansion is Z ¢z 2@

and its binary expansion is Z $(z

reXq 1=1

oo

rxeXo =1

Dyadic rationals do not have unique binary expansions!

0.5

Deep Learning for Sets

Other bases have the same issue, e.g., we have 1.0 = 0.999 ... for decimals.

Therefore, to obtain an injection, we need to resolve such non-unigue expansions.

Deep Learning for Sets

Other bases have the same issue, e.g., we have 1.0 = 0.999 ... for decimals.
Therefore, to obtain an injection, we need to resolve such non-unigue expansions.

Let us review the example before:)(1 — {1} b1 — 10... Finite many 1
Xo=1{2,3,...} by=011... Finite many 0

Deep Learning for Sets

Other bases have the same issue, e.g., we have 1.0 = 0.999 ... for decimals.

Therefore, to obtain an injection, we need to resolve such non-unigue expansions.

Let us review the example before: X = {1} by = 10... Finite many 1
Xo=1{2,3,...} by=011... Finitemany0

We can enumerate (countably infinite) strings with finite many 0, denoting the n-th such string as n,

Similarly, we can enumerate (countably infinite) strings with finite many 1, denoting the n-th such string as Pn

Deep Learning for Sets

Other bases have the same issue, e.g., we have 1.0 = 0.999 ... for decimals.

Therefore, to obtain an injection, we need to resolve such non-unigue expansions.

Let us review the example before: X = {1} by = 10... Finite many 1
Xo=1{2,3,...} by=011... Finitemany0

We can enumerate (countably infinite) strings with finite many 0, denoting the n-th such string as n,

Similarly, we can enumerate (countably infinite) strings with finite many 1, denoting the n-th such string as Pn

We then define ran, if b = q,, _ o

We avoid non-terminating

f(b) = ¢ pon+1, ifb=py, (infinite many 1) binary strings!
b, otherwise

\

50

Deep Learning for Sets

Other bases have the same issue, e.g., we have 1.0 = 0.999 ... for decimals.

Therefore, to obtain an injection, we need to resolve such non-unigue expansions.

Let us review the example before: X = {1} by = 10... Finite many 1
Xo=1{2,3,...} by=011... Finitemany0

We can enumerate (countably infinite) strings with finite many 0, denoting the n-th such string as n,

Similarly, we can enumerate (countably infinite) strings with finite many 1, denoting the n-th such string as Pn

We then define fp2m if b = q,, _ o
: We avoid non-terminating
f(b) = P2nt1, 1 D= py, (infinite many 1) binary strings!
b, otherwise
= 1
Now we have the injection X € 2% — Z o(x) = Z f(b) [2]5
reX 1=1

51

Deep Learning for Sets

* Deep Sets [1]

Invariant Architecture

":Opﬁonal

: conditioning

' based on meta-
'.:information

II__Ii W S0

Image Credit: [1] Zaheer, Manzil, et al. "Deep sets." Advances in neural information processing systems 30 (2017).

52

Outline

* Invariance & Equivariance Principle
« Translation equivariance in convolutions
« Permutation equivariance and invariance

 Models for Sets

» DeepSets: representation theorem of permutation-invariant set functions & architecture
* DeepSets: permutation-equivariant linear mapping & architecture

* Models for Sequences
* Transformers
Positional encoding vs. Rotary Positional Embeddings (RoPE)
Attention & Flash Attention
Pre-norm vs. post-norm
Vision Transformers (ViT) & Swin Transformers

Deep Learning for Sets

* Deep Sets [1] fo(x) = o(Ox) © € RM*M

Lemma 3 The function fo : RM — RM defined above is permutation equivariant iff all the off-
diagonal elements of © are tied together and all the diagonal elements are equal as well. That is,

O =M+~ (117) AMyeER 1=[1,...,1]T e RM I ¢ RM*Mis the identity matrix

[1] Zaheer, Manzil, et al. "Deep sets." Advances in neural information processing systems 30 (2017).

Deep Learning for Sets

* Deep Sets [1] fo(x) = o(Ox) © € RM*M

Lemma 3 The function fo : RM — RM defined above is permutation equivariant iff all the off-
diagonal elements of © are tied together and all the diagonal elements are equal as well. That is,

O =M+~ (117) AMyeER 1=[1,...,1]T e RM I ¢ RM*Mis the identity matrix
Sketch of Proof

Permutation Equivariance o (O7x) = mo(©x) (w. element-wise bijective nonlinearity) reduces to TOx = O7x

[1] Zaheer, Manzil, et al. "Deep sets." Advances in neural information processing systems 30 (2017).

Deep Learning for Sets

* Deep Sets [1] fo(x) = o(Ox) © € RM*M

Lemma 3 The function fo : RM — RM defined above is permutation equivariant iff all the off-
diagonal elements of © are tied together and all the diagonal elements are equal as well. That is,

O =M+~ (117) AMyeER 1=[1,...,1]T e RM I ¢ RM*Mis the identity matrix
Sketch of Proof

Permutation Equivariance o (O7x) = mo(©x) (w. element-wise bijective nonlinearity) reduces to TOx = O7x

Sufficiency: © is commutable with permutation matrix

[1] Zaheer, Manzil, et al. "Deep sets." Advances in neural information processing systems 30 (2017).

Deep Learning for Sets

* Deep Sets [1] fo(x) = o(Ox) © € RM*M

Lemma 3 The function fo : RM — RM defined above is permutation equivariant iff all the off-
diagonal elements of © are tied together and all the diagonal elements are equal as well. That is,

O =M+~ (117) AMyeER 1=[1,...,1]T e RM I ¢ RM*Mis the identity matrix
Sketch of Proof

Permutation Equivariance o (O7x) = mo(©x) (w. element-wise bijective nonlinearity) reduces to TOx = O7x

Sufficiency: © is commutable with permutation matrix

i : i) : - T —1
Necessity: consider a special permutation (i.e., transposition / swap) T = T = T

1. All diagonal elements are identical
Te© =Om, = T Om L =0 = (M, 0m k)i =011 = Ok =06y,

[1] Zaheer, Manzil, et al. "Deep sets." Advances in neural information processing systems 30 (2017).

Deep Learning for Sets

* Deep Sets [1] fo(x) = o(Ox) © € RM*M

Lemma 3 The function fo : RM — RM defined above is permutation equivariant iff all the off-
diagonal elements of © are tied together and all the diagonal elements are equal as well. That is,

O=AM+vy11") AvyeR 1=[1,...,1]TeRM™ T1ecRM*M
Sketch of Proof

is the identity matrix

Permutation Equivariance o (O7x) = mo(©x) (w. element-wise bijective nonlinearity) reduces to TOx = O7x

Sufficiency: © is commutable with permutation matrix

i : i) : - T —1
Necessity: consider a special permutation (i.e., transposition / swap) T = T = T

1. All diagonal elements are identical
Te1© =0T = T OmEr =0 = (M, Om) =011 = Orir =0y,

2. All off-diagonal elements are identical
Wj’,jﬂi,i’@ = @ﬂ-j’,jﬂ'i,i’ = 7le,j7Tz',z'i@(7’(’_7'/,_7'7'('7;,@'/)_1 =0 =
ﬂj/,jﬂi,i/@ﬂi/,iﬂj,j/ =0 = (ﬂ'j/,jﬂ'i,i/@ﬂi/,iﬂj,j/)i,j = @,,;,j = @r,;f,j/ = @i,j

[1] Zaheer, Manzil, et al. "Deep sets." Advances in neural information processing systems 30 (2017).

Deep Learning for Sets

* Deep Sets [1]

Equivariant Architecture f(x) =o(xA — 11"xT)

-* -~

":Opt'onal

: conditioning
t based on meta-

'.: information

'
'
'
'
]
'
'
]
.

[}

.
.
\
\
“
~
..........................

I

Image Credit: [1] Zaheer, Manzil, et al. "Deep sets." Advances in neural information processing systems 30 (2017).

59

Deep Learning for Sets

* Deep Sets [1]
Recipe for making the model deep:

Stack multiple equivariant layers (+ invariant layer at the end), e.g., PointNet [2]

i Optional

i conditioning

! based on meta-
'.:information

Image Credit: [1] Zaheer, Manzil, et al. "Deep sets." Advances in neural information processing systems 30 (2017).

60

Outline

* Invariance & Equivariance Principle
« Translation equivariance in convolutions
« Permutation equivariance and invariance

 Models for Sets

» DeepSets: representation theorem of permutation-invariant set functions & architecture
* DeepSets: permutation-equivariant linear mapping & architecture

* Models for Sequences
« Transformers
Positional encoding vs. Rotary Positional Embeddings (RoPE)
Attention & Flash Attention
Pre-norm vs. post-norm
Vision Transformers (ViT) & Swin Transformers

Deep Learning for Sequences

 Language Models

Pz D| z® . 2W) the students opened their

Image Credit: http://web.stanford.edu/class/cs224n/

books

/ / laptops

\\’ exams

minds

62

http://web.stanford.edu/class/cs224n/

Deep Learning for Sequences

« Language Models

Pz D| z® . 2W) the students opened their

 Machine Translation

_ THE
. yic
Je suis étudiant —*% TRANSFORMER

Image Credit: http://web.stanford.edu/class/cs224n/ https://jalammar.github.io/illustrated-transformer/

books

/‘ / laptops

\\‘ exams

minds

am a student

http://web.stanford.edu/class/cs224n/
https://jalammar.github.io/illustrated-transformer/

Deep Learning for Sequences

Key Challenges:

* Varying-sized input sequences

Deep Learning for Sequences

Key Challenges:

* Varying-sized input sequences
* Orders “may” be crucial for cognition

Aoccdrnig to a rscheearch at Cmabrigde Uinervtisy, it deosn't mttaer in waht oredr the Itteers in a
wrod are, the olny iprmoetnt tihng is taht the frist and Isat Itteer be at the rghit pclae. The rset can be
a toatl mses and you can sitll raed it wouthit porbelm. Tihs is bcuseae the huamn mnid deos not raed
ervey lteter by istlef, but the wrod as a wlohe.

Image Credit: https://www.mrc-cbu.cam.ac.uk/people/matt.davis/cmabridge

65

https://www.mrc-cbu.cam.ac.uk/people/matt.davis/cmabridge/

Deep Learning for Sequences

Key Challenges:

* Varying-sized input sequences
* Orders “may” be crucial for cognition

Aoccdrnig to a rscheearch at Cmabrigde Uinervtisy, it deosn't mttaer in waht oredr the Itteers in a
wrod are, the olny iprmoetnt tihng is taht the frist and Isat Itteer be at the rghit pclae. The rset can be
a toatl mses and you can sitll raed it wouthit porbelm. Tihs is bcuseae the huamn mnid deos not raed
ervey lteter by istlef, but the wrod as a wlohe.

« Complex statistical dependencies (e.g. long-range ones)

As aliens entered our planet

Image Credit: https://www.mrc-cbu.cam.ac.uk/people/matt.davis/cmabridge/ https://towardsdatascience.com/illustrated-guide-to-transformers-step-by-step-explanation-f74876522bc0

https://www.mrc-cbu.cam.ac.uk/people/matt.davis/cmabridge/
https://towardsdatascience.com/illustrated-guide-to-transformers-step-by-step-explanation-f74876522bc0

Deep Learning for Sequences

Key Challenges:

* Varying-sized input sequences
* Orders “may” be crucial for cognition

Aoccdrnig to a rscheearch at Cmabrigde Uinervtisy, it deosn't mttaer in waht oredr the Itteers in a
wrod are, the olny iprmoetnt tihng is taht the frist and Isat Itteer be at the rghit pclae. The rset can be
a toatl mses and you can sitll raed it wouthit porbelm. Tihs is bcuseae the huamn mnid deos not raed

ervey lteter by istlef, but the wrod as a wlohe.

« Complex statistical dependencies (e.g. long-range ones)

LSTM [1]
GRU [2]

As aliens entered our planet SeQZSeq [3]
Transformer [4]

Image Credit: https://www.mrc-cbu.cam.ac.uk/people/matt.davis/cmabridge/ https://towardsdatascience.com/illustrated-guide-to-transformers-step-by-step-explanation-f74876522bc0
[1] Hochreiter, S. "Long Short-term Memory." Neural Computation MIT-Press (1997). [2] Cho, Kyunghyun. "Learning phrase representations using RNN encoder-decoder for statistical machine
translation." arXiv preprint arXiv:1406.1078 (2014). [3] Sutskever, |. "Sequence to Sequence Learning with Neural Networks." arXiv preprint arXiv:1409.3215 (2014). [4] Vaswani, A5'Attention is

all you need." Advances in Neural Information Processing Systems (2017).

https://www.mrc-cbu.cam.ac.uk/people/matt.davis/cmabridge/
https://towardsdatascience.com/illustrated-guide-to-transformers-step-by-step-explanation-f74876522bc0

Transformers

OQUTPUT | | am a student]
(r 3
ENCODER = DECODER
. S
4 4
g ™)
ENCODER DECODER
. v,
4 4
f 3
ENCODER DECODER
" w
4 4
f 3
ENCODER DECODER
N J
4 4
's ™)
ENCODER DECODER
" w
4 4
{ 3
ENCODER DECODER
' w
_ A

INPUT | Je suis etudiant

Image Credit: https://jalammar.github.io/illustrated-transformer/

68

https://jalammar.github.io/illustrated-transformer/

Transformers

OQUTPUT | | am a student]
(r 3
ENCODER = DECODER
. S
4 4
g ™)
ENCODER DECODER
. v,
4 4
f 3
ENCODER DECODER
" w
4 4
f 3
ENCODER DECODER
N J
4 4
's ™)
ENCODER DECODER
" w
4 4
{ 3
ENCODER DECODER
' w
_ A

INPUT | Je suis etudiant

Image Credit: https://jalammar.github.io/illustrated-transformer/

ENCODER

I
1

(

Feed Forward

i

(

Self-Attention

t

DECODER t

Feed Forward

4

)

Encoder-Decoder Attention

4

)

Self-Attention

t

69

https://jalammar.github.io/illustrated-transformer/

Transformers

Qutput
Probabilities

Softmax

Linear

Add & Norm

Feed
Forward

T

i

\

4 N\ Add & Norm
f—>| Add & Norm l -
Multi-Head
Feed Attention Nx
Forward g3 g3 J)
r 3
—
Nx
f—>| Add & Norm l
Masked
Multi-Head Multi-Head
Attention Attention
* r 3 } * r 3 }
— J _ —)
Positional ®_€9 ED‘@ Positional
Encoding Encoding

Input
Embedding

f

Inputs

Qutput
Embedding

f

Outputs
(shifted right)

t

t

Feed Forward

Feed Forward

4

i

Encoder-Decoder Attention

4

Self-Attention

Self-Attention

t

t

Image Credit: Vaswani, A. "Attention is all you need." Advances in Neural Information Processing Systems (2017). https://jalammar.github.io/illustrated-transformer/

70

https://jalammar.github.io/illustrated-transformer/

Transformers

Qutput
Probabilities

Softmax

Linear

Add & Norm

Feed
Forward 1

\

T

Feed Forward

A
T —
: I
4) | Add & Norm |<ﬁ .
f—>| Add & Norm l Feed Forward Encoder-Decoder Attention
Multi-Head =
Feed Attention Nx
Forward g) A g Self-Attention Self-Attention
A
| t T
Nx

f—>| Add & Norm l
Masked

Multi-Head Multi-Head
Attention Attention
* A ’ * r 3 }
\————— J _ ——
Positional _9 E N Positional
Encoding Encoding
Input Qutput
Embedding Embedding
Inputs Outputs

(shifted right)

Image Credit: Vaswani, A. "Attention is all you need." Advances in Neural Information Processing Systems (2017). https://jalammar.github.io/illustrated-transformer/

https://jalammar.github.io/illustrated-transformer/

Transformers

Qutput
Probabilities

Softmax

Linear

Add & Norm

Feed
Forward 1

\

T

Feed Forward

A
T —
I 3
4) | Add & Norm |<ﬁ .
f—>| Add & Norm l Feed Forward Encoder-Decoder Attention
Multi-Head =
Feed Attention Nx
Forward g) A g Self-Attention Self-Attention
A
Nx

f—>| Add & Norm l
Masked

Multi-Head Multi-Head
Attention Attention
* A ’ * r 3 }
\————— J _ ——
Positional _9 E N Positional
Encoding Encoding
Input Qutput
Embedding Embedding
Inputs Outputs

(shifted right)

Image Credit: Vaswani, A. "Attention is all you need." Advances in Neural Information Processing Systems (2017). https://jalammar.github.io/illustrated-transformer/

https://jalammar.github.io/illustrated-transformer/

Transformers

Qutput
Probabilities

Softmax

Linear

Add & Norm

Feed
Forward 1

\

T

Feed Forward

A
T —
: I
4) | Add & Norm |<ﬁ .
f—>| Add & Norm l Feed Forward Encoder-Decoder Attention
Multi-Head I ‘ =
Feed Attention Nx
Forward g) A g Self-Attention (Self-Attention

F 3
— N t 1t
Add & Norm
f—>| Add & Norm l
Masked

I

Multi-Head Multi-Head
Attention Attention
it it
N — J —————/
Positional _9 E N Positional
Encoding Encoding
Input Qutput
Embedding Embedding
Inputs Outputs

(shifted right)

73
Image Credit: Vaswani, A. "Attention is all you need." Advances in Neural Information Processing Systems (2017). https://jalammar.github.io/illustrated-transformer/

https://jalammar.github.io/illustrated-transformer/

Transformers

Qutput
Probabilities

Softmax

Linear

Add & Norm

T

Feed
Forward

\

-
f—>| Add & Norm l

~\

Feed
Forward

Add & Norm

Multi-Head
Attention

u ;

2 2 3

A
—

f—>| Add & Norm l

Multi-Head
Attention

4t

J

Positional _9
Encoding

Input
Embedding

f

Inputs

.

Add & Norm

Masked
Multi-Head
Attention

it

I

——
J

$®

Qutput

Embedding

f

Outputs
(shifted right)

Positional
Encoding

t

t

Feed Forward

[)

Feed Forward

Encoder-Decoder Attention

i

Self-Attention

Self-Attention

t

t

74

Image Credit: Vaswani, A. "Attention is all you need." Advances in Neural Information Processing Systems (2017). https://jalammar.github.io/illustrated-transformer/

https://jalammar.github.io/illustrated-transformer/

Transformers

Qutput
Probabilities

Softmax
F 3

Linear

" ™)
Add & Norm
Feed
Forward T
1 Feed Forward
t
(,_>| Add & Norm j\l Add & Norm (Feed Forward J Encoder-Decoder Attention
Multi-Head Y .
Feed Attention Nx >
Forward } } } (Self-Attention J (Self-Attention J
r 3
- t t
Nx Add & Norm
f—>| Add & Norm l
Masked
Multi-Head Multi-Head
Attention Attention
L L
— J . —)
Positional _9 E' Positional
Encoding Encoding
Input Qutput
Embedding Embedding
Inputs Outputs

(shifted right)

75
Image Credit: Vaswani, A. "Attention is all you need." Advances in Neural Information Processing Systems (2017). https://jalammar.github.io/illustrated-transformer/

https://jalammar.github.io/illustrated-transformer/

Input Encoding

Qutput
Probabilities

Softmax

Linear

\

Add & Norm

Feed
Forward

T

i

4 N\ Add & Norm
f—>| Add & Norm l -
Multi-Head
Feed Attention Nx
Forward g3 g3 J)
r 3
Nx Add & Norm
r—>| Add & Norm l
Masked
Multi-Head Multi-Head
Attention Attention
* r 3 } * r 3 }
— J . —)
(Positiona,l _9 \ 6' Positional
Encoding Encoding
Input Qutput
Embedding Embedding
Inputs Outputs
\) (shifted right)

Image Credit: Vaswani, A. "Attention is all you need." Advances in Neural Information Processing Systems (2017). https://jalammar.github.io/illustrated-transformer/

https://jalammar.github.io/illustrated-transformer/

Input Embedding

Output
Probabilities

e “
Add & Norm
Feed
Forward
r 3
I
- ~ (Add & Norm J+— Embedding
r—>| Add & Norm l =
Multi-Head
Feed Attention Nx
Forward J) ¥ g ? ‘; f f
F 3 | | |
—] [| I :
Nx Add & Norm : : : 1
Add & Norm Masked H h
aske
Multi-Head Multi-Head I OW a re you
Attention Attention
At 2 At
— J \. —)
Positional E' Positional
Encoding Encoding
Input Output
Embedding Embedding
Inputs Outputs

(shifted right)

Image Credit: Vaswani, A. "Attention is all you need." Advances in Neural Information Processing Systems (2017). https://towardsdatascience.com/illustrated-guide-to-transformergstep-by-step-
explanation-f74876522bc0

https://towardsdatascience.com/illustrated-guide-to-transformers-step-by-step-explanation-f74876522bc0
https://towardsdatascience.com/illustrated-guide-to-transformers-step-by-step-explanation-f74876522bc0

Outline

* Invariance & Equivariance Principle
« Translation equivariance in convolutions
« Permutation equivariance and invariance

 Models for Sets

» DeepSets: representation theorem of permutation-invariant set functions & architecture
* DeepSets: permutation-equivariant linear mapping & architecture

* Models for Sequences
* Transformers
Positional encoding vs. Rotary Positional Embeddings (RoPE)
Attention & Flash Attention
Pre-norm vs. post-norm
Vision Transformers (ViT) & Swin Transformers

Positional Encoding

Output
Probabilities
e “
Add & Norm
Feed
Forward
r 3
I
- ~ ((Add & Norm Je— Embeddlng
r—>| Add & Norm l =
Multi-Head
Feed Attention Nx
Forward FEE N T f f
F 3 | |
—] [I :
Nx Add & Norm : : 1
Add & N .
(aif Yomm) Masked Hi how are you
Multi-Head Multi-Head
Attention Attention
L L
\\— J _ —J)
Positional 69_@ Positional _
Encoding Encoding PE(pos,2i) — sin (pos/loooozl/dmodel)
o .
mbedding mbedding _ 21/ dmodel
7 PE (o5 2i+1) = cos(pos/100007/ “medel)
Inputs Outputs

(shifted right)

Image Credit: Vaswani, A. "Attention is all you need." Advances in Neural Information Processing Systems (2017). https://towardsdatascience.com/illustrated-guide-to-transformergStep-by-step-
explanation-f74876522bc0

https://towardsdatascience.com/illustrated-guide-to-transformers-step-by-step-explanation-f74876522bc0
https://towardsdatascience.com/illustrated-guide-to-transformers-step-by-step-explanation-f74876522bc0

Positional Encoding

0 ¥ " 100 120

60 20
|

PE(pOS,Zi) = Sin(pos/lOOOOZi/dmodez)

0

s '
s N

8 ||||

: 'I.:'IJIIIIJ "] I

PE(pos,Zi+1) - COS(pOS/]_OOOOzi/dmodel)

80
Image Credit: https://lilianweng.github.io/lil-log/2020/04/07/the-transformer-family.html

https://lilianweng.github.io/lil-log/2020/04/07/the-transformer-family.html

Absolute vs. Relative Positional Encoding

Encode relative position information could help better model the dependency among tokens.

How to encode relative positions?

» We can inject the relative position into the bias of attention.
* We can use Rotary Position Embedding (RoPE) [1], which is more effective empirically.

To understand RoOPE, let us recap how to rotate a 2D vector:

T cosmf —sinmb| |x;

ro| |sinmf cosmb | |xzo

A\ 4
N

RQ,m

Rotation matrix is orthogonal and preserves the norm!

[1] Su, Jianlin, et al. "RoFormer: Enhanced Transformer with Rotary Position Embedding." arXiv preprint arXiv:2104.09864 (2021).

Rotary Positional Embedding

ROPE first divide d-dimension vector space in d/2 subspaces and then rotate them based one the position:

[cosmf; —sinmb; 0 0 0 0
sinmf; cosmb; 0 0 0 0
EA 0 0 cosmbs — sinmbs 0 0 1
o - 0 0 sinmf, cosmbs 0 0 ;
Cljzl . _Zlfd
0 0 0 0 cosmbyo —sinmby o
0 0 0 0 o+ sinmbge cosmbga |
RS

Here © = {#; = 1000020C=1/d j c[1,2,...,d/2]}

In practice, we can apply 2D rotations to pairs (21, 371—|—d/2)7 (w2, 372+d/2)> cee (CCd/Qa Tq)

Rotary Positional Embedding

ROPE first divide d-dimension vector space in d/2 subspaces and then rotate them based one the position:

B
—
—
e
-
N
—
N
- H ‘
t
B B R B B B B =R 8B B B

S— | g (X', x'2)
X1 X3 _
|
|
\ m - — / ;
d=2 s e W 3
mmmmmmmm A e N
\ \\ m— ’,ﬁ"/
’. E LN]
Enhanced | | l] |'“| [[1] EJ .ﬁﬁ M
Transformer | | | | |+« | | | | 2 l_I-L.L.I'"l_I_I-I-l
with [T -~ CT 10 3 - (W T RERT Y W
Rotary [| | | Je-e[[[} | 4 [S R O
position | | | | |- [| | | L] oo]
O o T 5 : [RO o o
LN)) ,‘:\(. (ty’ K

Image Credit: Su, Jianlin, et al. "RoFormer: Enhanced Transformer with Rotary Position Embedding." arXiv preprint arXiv:2104.09864 (2021).

Rotary Positional Embedding

What do we gain in RoPE?

* Inner product depends on the relative position
Let us look at the case of 2D:

{

T
o

'

Y1
Yo

l)-

cosmf —sinmb| |z cosnfl —sinnd
sinmf cosmb To| ' |sinnf cosnb
Ro.m Ro.»
(21| [cosm@ —sinmb ! cosnfl —sinnd
z2| |sinmf cosmb sinnf cosnd
(1] [cosmb cosnd + sin m6 sin né
| z2| |—sin mé cos nf + cos mb sin nb
(21| [cos(m —n)f sin(m —n)d]| [y
22| |sin(n—m)f cos(m —mn)f| |2
21| [cos(m —n)f —sin(m —n)o oo
x2| |[sin(m —n)0 cos(m —n)b 0 1
Rg,‘:n_n R@,O

sin m# sin n@ + cos mo cos nb

|l

U1

)

U1
Y2

— cos mb sin nf + sin mo cos nQ] [y1]

Y2

Rotary Positional Embedding

What do we gain in RoPE?

* Inner product depends on the relative position This holds for d-dimension as we

Let us look at the case of 2D: construct a block-diagonal matrix
) , : : with 2D rotation matrices!
zy| |yil\ _ /|cosml —sinmb| |x1| |[cosnf —sinnb| |y
zh| 7 lysl/ \|sinm@ cosmb | |xzo|’ |sinnf cosnf | |ys
R Ry,
- AT F : T :
RES cosmf —sinmb cosnf —sinnf| |11
~ |w2]| [sinmf cosmb sinnf cosnf | |y
B (21 | "' [cosmb cosn +sinmfsinnf — cosmésinnf + sinm#b cosnb| |11
~ |w2]| |—sinmfcosnf + cosmfsinnd sinmfsinnd + cosmbcosnd | |yo
IREZS ! (cos(m —n)f sin(m —n)@]| [y
- |w2] [sin(n —m)f cos(m —n)0| |y
B 11 | i (cos(m —n)f —sin(m — n)o 1 o nl _ /R 71 R Y1
~ |x2]| |sin(m—n)0 cos(m —n)d 0 1| |ya| — \ O™ |ag| 00 |y

—

RG,m—n R9,0 35

Rotary Positional Embedding

What do we gain in RoPE?
» Long-term decay of inner product w.r.t. relative positions

relative upper bound

20
18:—
16 -
14}
12}

10

I~ 50 100 150 200 250

Image Credit: Su, Jianlin, et al. "RoFormer: Enhanced Transformer with Rotary Position Embedding." arXiv preprint arXiv:2104.09864 (2021).

relative distance

86

Outline

* Invariance & Equivariance Principle
« Translation equivariance in convolutions
« Permutation equivariance and invariance

 Models for Sets

» DeepSets: representation theorem of permutation-invariant set functions & architecture
* DeepSets: permutation-equivariant linear mapping & architecture

* Models for Sequences
* Transformers
Positional encoding vs. Rotary Positional Embeddings (RoPE)
Attention & Flash Attention
Pre-norm vs. post-norm
Vision Transformers (ViT) & Swin Transformers

Encoder

Output
Probabilities

e N
Add & Norm
Feed
Forward
r 3
() I
- \ (Add & Norm J+— .
(r—>| Add & Norm l : Embeddlng
Multi-Head
Feed Attention Nx
Forward L g g3 g) A A A A
1 | I
_ : | ! :
Nx Add & Norm I | i |
r—>| Add & Norm l I 1 [[
Masked u
Multi-Head Multi-Head H| hOW are you
Attention Attention
r 3 r 3
N S=E R =
Positional _9 E_ Positional
Encoding Encoding
Input Qutput
Embedding Embedding
Inputs Outputs

explanation-f74876522bc0

(shifted right)

Image Credit: Vaswani, A. "Attention is all you need." Advances in Neural Information Processing Systems (2017). https://towardsdatascience.com/illustrated-guide-to-transformerg&tep-by-step-

https://towardsdatascience.com/illustrated-guide-to-transformers-step-by-step-explanation-f74876522bc0
https://towardsdatascience.com/illustrated-guide-to-transformers-step-by-step-explanation-f74876522bc0

Multi-Head Attention

Qutput
Probabilities

l Softmax l

J

l Linear l

e a
Add & Norm
Feed
Forward
F 3
—
4 N\ | Add & Norm |<ﬁ
f—>| Add & Norm l -
Multi-Head
Feed Attention
Forward g3 ¥ g)
F 3
N —
X Add & Norm
Add & N |
ﬁ»[i o Masked
Multi-Head Multi-Head
Attention Attention
* F 3 } * F 3 }
— J _ —)

Positional

Encoding ®_€9

Image Credit: Vaswani, A. "Attention is all you need." Advances in Neural Information Processing Systems (2017). https://theaisummer.com/transformer/

Input
Embedding

f

Inputs

Qutput
Embedding

f

Outputs
(shifted right)

€ N Positional
Encoding

X = {XI)XEaXS:Xfl} x

QKT

Attention(Q, K, V) = softmax
ention(Q, K, V') = sol ud(\/lf_;.-

W

89

https://theaisummer.com/transformer/

Multi-Head Attention

Output
Probabilities

query key value

HHHH HHHH HBIBB

(, ™\ (- - \ -
Add & Norm Linear | | Linear Linear
Feed
Forward
r 3
I
4 N\ l Add & Norm |<ﬂ
r—>| Add & Norm l =
Multi-Head
Feed Attention Nx
Forward g g3 g)
F 3
Nx Add & Norm
Add & Norm
r Masked
Multi-Head Multi-Head
Attention Attention
* r 3 } * r 3 }
\\'— J \. —J)
Positional _9 E_ Positional
Encoding Encoding
Input Output
Embedding Embedding
Inputs Outputs

(shifted right)

Image Credit: Vaswani, A. "Attention is all you need." Advances in Neural Information Processing Systems (2017). https://towardsdatascience.com/illustrated-guide-to-transformerStep-by-step-
explanation-f74876522bc0

https://towardsdatascience.com/illustrated-guide-to-transformers-step-by-step-explanation-f74876522bc0
https://towardsdatascience.com/illustrated-guide-to-transformers-step-by-step-explanation-f74876522bc0

Multi-Head Attention

Output
Probabilities

query key value

g ™\ (- - . -)
Add & Norm Linear _ Linear Linear

EBFH BBFB BBIBB

Feed
Forward
r 3
I
' ™\ l Add & Norm |<ﬂ
r—>| Add & Norm l =
Multi-Head
Feed Attention Nx
Forward A g3 J3
F 3
.
N s Add & Norm Hi how are
Add & No
r — Masked
Multi-Head Multi-Head
Attention Attention
* r 3 } * r 3 }
\\'— J \. —J)
Positional _9 E_ Positional
Encoding Encoding
Input Qutput
Embedding Embedding
Inputs Outputs

(shifted right)

Image Credit: Vaswani, A. "Attention is all you need." Advances in Neural Information Processing Systems (2017). https://towardsdatascience.com/illustrated-guide-to-transformerSistep-by-step-
explanation-f74876522bc0

https://towardsdatascience.com/illustrated-guide-to-transformers-step-by-step-explanation-f74876522bc0
https://towardsdatascience.com/illustrated-guide-to-transformers-step-by-step-explanation-f74876522bc0

Multi-Head Attention

Output
Probabilities

Hi how are you

EEDE

e “
Feed
Forward 10031 f 91|54
r 3
I
r—>| Add & Norm l =
Multi-Head
Feed Attention Nx
Forward A g3 J3
F 3
N
X Add & Norm
Add & Norm l
' Masked Scaled Scores
Multi-Head Multi-Head
Attention Attention
L L
\\'— J \. —J)
Positional _9 E_ Positional
Encoding Encoding
Input Qutput
Embedding Embedding
Inputs Outputs

(shifted right)

Image Credit: Vaswani, A. "Attention is all you need." Advances in Neural Information Processing Systems (2017). https://towardsdatascience.com/illustrated-guide-to-transformerSxtep-by-step-
explanation-f74876522bc0

https://towardsdatascience.com/illustrated-guide-to-transformers-step-by-step-explanation-f74876522bc0
https://towardsdatascience.com/illustrated-guide-to-transformers-step-by-step-explanation-f74876522bc0

Multi-Head Attention

Output
Probabilities
Scaled Scores
e “
Add & Norm
Feed
Forward
r 3
I
4 N\ l Add & Norm |<ﬂ
r—>| Add & Norm l =
Multi-Head
Feed Attention Nx Hi how are you
Forward g g3 J)
F 3
Nx Add & N Hi
orm
Add & Norm l
= Nasked how | 0.1 0.2 Jo.1
Multi-Head Multi-Head _ . . .
Assoution Attention Softmax () =
\\'— J \. —J)

Positional Positional
9 >0 bt pou

Input Qutput
Embedding Embedding
T T softmax(x);
Inputs Outputs

(shifted right)

Image Credit: Vaswani, A. "Attention is all you need." Advances in Neural Information Processing Systems (2017). https://towardsdatascience.com/illustrated-guide-to-transformerStep-by-step-
explanation-f74876522bc0

https://towardsdatascience.com/illustrated-guide-to-transformers-step-by-step-explanation-f74876522bc0
https://towardsdatascience.com/illustrated-guide-to-transformers-step-by-step-explanation-f74876522bc0

Multi-Head Attention

Output
Probabilities

Scaled Scores

e “
Add & Norm

Feed
Forward
F 3

—

4 N\ l Add & Norm |<ﬂ
r—>| Add & Norm l =
Multi-Head

Feed Attention Nx Hi
Forward J) g))

Why square root?

how are you

— Hi § 0.7 §0.1 § 0.1 §0.1
. o701 Jor for
MNorml

r

Multi-Head

B o [ofooefer
Multi-Head . . .

Attention Attention Softmax() =

=== we[orfor[oe o

\\'— Yy, _ —J)

Positional Positional

Pl (- D\ T you

Input Qutput
Embedding Embedding
Inputs Outputs

(shifted right)

softmax(z);

Image Credit: Vaswani, A. "Attention is all you need." Advances in Neural Information Processing Systems (2017). https://towardsdatascience.com/illustrated-guide-to-transformerS4tep-by-step-

explanation-f74876522bc0

https://towardsdatascience.com/illustrated-guide-to-transformers-step-by-step-explanation-f74876522bc0
https://towardsdatascience.com/illustrated-guide-to-transformers-step-by-step-explanation-f74876522bc0

Multi-Head Attention

Output

Hi how are you
Probabilities

Y [1 1
vou |01 Jos foz for
Softmax(f) =

e “
Feed
r 3
I
-) l Add & Norm |<ﬂ _
Add & N softmax(x).
—| & Norm J YRR softmax(x);
Feed Attention Nx
Forward A g3 J3
F 3
N —
X Add & Norm
Add & Norm l . .
= Masked attention weights output
Multi-Head Multi-Head
Attention Attention
* r 3 } * r 3 }
\\'— J \. —J)
Positional _9 E_ Positional
Encoding Encoding X —
Input Output
Embedding Embedding
Inputs Outputs

Image Credit: Vaswani, A. "Attention is all you need." Advances in Neural Information Processing Systems (2017). https://towardsdatascience.com/illustrated-guide-to-transformerSstep-by-step-

explanation-f74876522bc0

(shifted right)

https://towardsdatascience.com/illustrated-guide-to-transformers-step-by-step-explanation-f74876522bc0
https://towardsdatascience.com/illustrated-guide-to-transformers-step-by-step-explanation-f74876522bc0

Multi-Head Attention

Output
Probabilities

e N
Add & Norm
Feed
Forward
r 3
I
4 N\ l Add & Norm |<ﬂ
r—>| Add & Norm l =
Multi-Head
Feed Attention Nx
Forward g g3 g)
F 3
Nx Add & Norm
Add & Norm
r Masked
Multi-Head Multi-Head
Attention Attention
* r 3 } * r 3 }
\\'— J \. —J)
Positional _9 E_ Positional
Encoding Encoding
Input Qutput
Embedding Embedding
Inputs Outputs

(shifted right)

Image Credit: Vaswani, A. "Attention is all you need." Advances in Neural Information Processing Systems (2017). https://towardsdatascience.com/illustrated-guide-to-transformerS&tep-by-step-
explanation-f74876522bc0

https://towardsdatascience.com/illustrated-guide-to-transformers-step-by-step-explanation-f74876522bc0
https://towardsdatascience.com/illustrated-guide-to-transformers-step-by-step-explanation-f74876522bc0

Layer Norm [1] & Residual Connection

Output
Probabilities

I

e a |
Add & Norm ReL
eLu
Feed T
Forward .
r 3 .
—J
4 N\ l Add & Norm |<ﬂ I
Add & Norm Multi.Hond
ulti-Hea
TFeod it Nx LayerNorm(BBEH+EHEE)
Forward g g3 g)
F 3
N —
X Add & Norm
r—>| Add & N l
; —_— Masked
Multi-Head Multi-Head
Attention Attention
* r 3 } * r 3 }
\\'— J \. —J)
Positional _9 E_ Positional
Encoding Encoding
Input Output . Ti 1 — Ws;
Embedding Embedding Tk M
)
f f Vo7 te
Inputs Outputs ~
(shifted right) v; = v&; + B = LN, 5(z;)

[1] Ba, Jimmy Lei. "Layer normalization." arXiv preprint arXiv:1607.06450 (2016). Image Credit: Vaswani, A. "Attention is all you need." Advances in Neural Information Processing Systems (2017).
https://towardsdatascience.com/illustrated-guide-to-transformers-step-by-step-explanation-f74876522bc0

https://towardsdatascience.com/illustrated-guide-to-transformers-step-by-step-explanation-f74876522bc0

Decoder

Output
Probabilities

~

e “
Add & Norm

Feed
Forward
F 3

I
l Add & Norm |<ﬂ

'd O\
r—>| Add & Norm l =
Multi-Head
Feed Attention Nx
Forward g g3 g)
F 3
Nx Add & Norm
r—>| Add & Norm l
Masked
Multi-Head Multi-Head
Attention Attention
L L
N /S =)
Positional _9 E_ Positional
Encoding Encoding
Input Qutput
Embedding Embedding
Inputs Outputs

Image Credit: Vaswani, A. "Attention is all you need." Advances in Neural Information Processing Systems (2017). https://towardsdatascience.com/illustrated-guide-to-transformerS&tep-by-step-

explanation-f74876522bc0

(shifted right)

Transformers

Decoder

111

<start>

For certain applications like language
models, decoder should be autoregressive!

https://towardsdatascience.com/illustrated-guide-to-transformers-step-by-step-explanation-f74876522bc0
https://towardsdatascience.com/illustrated-guide-to-transformers-step-by-step-explanation-f74876522bc0

Masked Multi-Head Attention

Qutput
Probabilities

Linear

~N

e “
Add & Norm

Feed
Forward
F 3

Multi-Head
Attention

2 2 3

Add & Norm

Masked
Multi-Head
Attention

it

4 O\
r—>| Add & Norm l
Feed
Forward
F 3
N x
r—>| Add & Norm l
Multi-Head
Attention
L
— J
Positional _9
Encoding

Image Credit: Vaswani, A. "Attention is all you need." Advances in Neural Information Processing Systems (2017). https://towardsdatascience.com/illustrated-guide-to-transformer8Step-by-step-

explanation-f74876522bc0

Input
Embedding

f

Inputs

EE——

l Add & Norm |<ﬂ

——

0

Qutput
Embedding

f

Outputs
(shifted right)

Positional
Encoding

EEEE
pmEE

DEEE
DEEm

Prevent attending from future!

https://towardsdatascience.com/illustrated-guide-to-transformers-step-by-step-explanation-f74876522bc0
https://towardsdatascience.com/illustrated-guide-to-transformers-step-by-step-explanation-f74876522bc0

Masked Multi-Head Attention

Output
Probabilities

~

e “
Add & Norm

Feed
Forward
r 3
I
4 N\ l Add & Norm |<ﬂ
r—>| Add & Norm l =
Multi-Head
Feed Attention Nx
Forward g g3 g)
F 3
Nx Add & Norm
r—>| Add & Norm l
Masked
Multi-Head Multi-Head
Attention Attention
r 3 r 3
" =)
Positional _9 E_ Positional
Encoding Encoding
Input Qutput
Embedding Embedding
Inputs Outputs

Image Credit: Vaswani, A. "Attention is all you need." Advances in Neural Information Processing Systems (2017). https://towardsdatascience.com/illustrated-guide-to-transformer8step-by-step-

explanation-f74876522bc0

(shifted right)

Scaled Scores

mmmm
mmmm
mEmn
e [o]

EEEM
BEEm
DEED
DEEE

Look-Ahead Mask Masked Scores

mEmE
mmEE
mEmE
NEEE

https://towardsdatascience.com/illustrated-guide-to-transformers-step-by-step-explanation-f74876522bc0
https://towardsdatascience.com/illustrated-guide-to-transformers-step-by-step-explanation-f74876522bc0

Masked Multi-Head Attention

Output \
Probabilities

Scaled Scores Look-Ahead Mask Masked Scores
nEEn
£ R o 2 2 [s s 1
e “
£ o s R v o i 1 O o o
Feed
ponn
r 3
I
' ™\ l Add & Norm |<ﬂ
r—>| Add & Norm l =
Multi-Head
Feed Attention Nx .
Forward J3 g g <Start> I am flne
F 3
—
Nx Add & Norm <start>
r—>| Add & Norm l
Masked
Multi-Head Multi-Head
e Aeston o
L L
= == OmEm
Positional _9 E_ Positional m
Encoding Encoding
OEEE
Input Qutput
Embedding Embedding
Inputs Outputs

Image Credit: Vaswani, A. "Attention is all you need." Advances in Neural Information Processing Systems (2017). https://towardsdatascience.com/illustrated-guide-to-transformer8istep-by-step-

explanation-f74876522bc0

(shifted right)

https://towardsdatascience.com/illustrated-guide-to-transformers-step-by-step-explanation-f74876522bc0
https://towardsdatascience.com/illustrated-guide-to-transformers-step-by-step-explanation-f74876522bc0

Limitations

Qutput
Probabilities
« O(L"2) time/memory cost for self-attention
(R & Norm Jor
Feed Methods like Reformer [1] speed up attention to O(L log L) using
Forvard locality-sensitive hashing techniques
' ™\ l Add & Norm |<ﬂ
— R Ml Hoad N - How can we incorporate prior knowledge into attention
Forward I " rather than having a fully connected attention?
o —(Add & Norm) » Encourage sparse attention
Multi-Head Mul?is-}?ead
Attention Attention .
" — —— Inject known graph structures
_ J | J
bt OO0 -\ i SEREEE
Input Qutput
Embedding Embedding
f t
Inputs Outputs

(shifted right)

[1] Kitaev, Nikita, tukasz Kaiser, and Anselm Levskaya. "Reformer: The efficient transformer." arXiv preprint arXiv:2001.04451 (2020). Image Credit: Vaswani, A. "Attention is all youmeed."
Advances in Neural Information Processing Systems (2017).

Flash Attention [1]

Flash attention accelerates attention by using on-chip static random-access memory (SRAM, small
memory but fast) to reduce the 10 with high bandwidth memory (HBM, large memory but slow).

Standard Attention Implementation Flash Attention
Load
Q: K Load
ﬁ
. S =QK
Write S Load Kernel operations fused
€ Q.0.l.m together, reducing
P reads & writes
Load S >
Memory P = softmax(s e S = KT
(HBM) Compute (s) (HBM) Compute i Q. i
Write P m = rowmax of S
¢ P = exp(s - m)
L = rowsum of P
_ m = max(m , m)
Load P, V O =PV Write O; L.v, calculate O Ifrom L&m
a _
Write O
_

Initialize O, | and m matrices with zeroes. m and | are used to calculate

cumulative softmax. Divide Q, K, V into blocks (due to SRAM's memory limits)

and iterate over them, for iis row & j is column.
[1] Dao, Tri, et al. "Flashattention: Fast and memory-efficient exact attention with io-awareness." Advances in Neural Information Processing Systems 35 (2022): 16344-16359. Imagé Credit:
https://huggingface.co/docs/text-generation-inference/en/conceptual/flash _attention

https://huggingface.co/docs/text-generation-inference/en/conceptual/flash_attention

Outline

* Invariance & Equivariance Principle
« Translation equivariance in convolutions
« Permutation equivariance and invariance

 Models for Sets

» DeepSets: representation theorem of permutation-invariant set functions & architecture
* DeepSets: permutation-equivariant linear mapping & architecture

* Models for Sequences
* Transformers
Positional encoding vs. Rotary Positional Embeddings (RoPE)
Attention & Flash Attention
Pre-norm vs. post-norm
Vision Transformers (ViT) & Swin Transformers

Pre-Norm vs. Post-Norm

o X141 X1+1
Where to place the Layer Normalization? $ T
Layer Norm addition
A
addition FFN
T
FFN Layer Norm
Layer Norm addition
t TN
addition Multi-Head
T‘\ Attention
Multi-Head T
Attention Layer Norm
X X1
Post-Norm Pre-Norm

105
Image Credit: Xiong, Ruibin, et al. "On layer normalization in the transformer architecture." International Conference on Machine Learning. PMLR, 2020.

Pre-Norm vs. Post-Norm

L X141 X1+1
Where to place the Layer Normalization?) y
Layer Norm addition
A
» Gradient norm in the Post-Norm addition —
Transformer is large for parameters f
near the output and will be likely to FFN Layer Norm
decay as the layer gets closer to input / /’
Layer Norm addition
T A \
addition Multi-Head
1 \ Attention
Multi-Head T
Attention Layer Norm
X1 X1
Post-Norm Pre-Norm

Image Credit: Xiong, Ruibin, et al. "On layer normalization in the transformer architecture." International Conference on Machine Learning. PMLR, 2020.

106

Pre-Norm vs. Post-Norm

L X141 X1+1
Where to place the Layer Normalization? $ y
Layer Norm addition
» Gradient norm in the Post-Norm addition —
Transformer is large for parameters f
near the output and will be likely to FFN Layer Norm
decay as the layer gets closer to input / /’
Layer Norm addition
» Training the Pre-Norm Transformer dd_T_ AN
aadition
i Multi-Head
does not rely on the learning r_ate RN Attention
warm-up stage and can be trained o tond f
much faster than the Post-Norm Attention Layer Norm
X1 X1
Post-Norm Pre-Norm

107
Image Credit: Xiong, Ruibin, et al. "On layer normalization in the transformer architecture." International Conference on Machine Learning. PMLR, 2020.

Outline

* Invariance & Equivariance Principle
« Translation equivariance in convolutions
« Permutation equivariance and invariance

 Models for Sets

» DeepSets: representation theorem of permutation-invariant set functions & architecture
* DeepSets: permutation-equivariant linear mapping & architecture

* Models for Sequences
* Transformers
Positional encoding vs. Rotary Positional Embeddings (RoPE)
Attention & Flash Attention
Pre-norm vs. post-norm
Vision Transformers (ViT) & Swin Transformers

Extensions: Vision Transformers [1]

[1] Dosovitskiy, Alexey, et al. "An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale." International Conference on Learning Representations. 2020. Image Tiédit:
https://github.com/lucidrains/vit-pytorch

https://github.com/lucidrains/vit-pytorch

Extensions: Swin Transformers [1]

Standard MSA

Attention for each patch is computed against all patches,
resulting in quadratic complexity

[1] Liu, Ze, et al. "Swin transformer: Hierarchical vision transformer using shifted windows." Proceedings of the IEEE/CVF international conference on computer vision. 2021. ImageiCredit:
https://towardsdatascience.com/a-comprehensive-guide-to-swin-transformer-64965f89d14c

https://towardsdatascience.com/a-comprehensive-guide-to-swin-transformer-64965f89d14c

Extensions: Swin Transformers

Standard MSA Window-based MSA

Attention for each patch is computed against all patches, Attention for each patch is only computed within its own window (drawn in red).
resulting in quadratic complexity Window size is 2x2 in this example.

111
Image Credit: https://towardsdatascience.com/a-comprehensive-guide-to-swin-transformer-64965f89d14c

https://towardsdatascience.com/a-comprehensive-guide-to-swin-transformer-64965f89d14c

Extensions: Swin Transformers

Window-based MSA Shifted Window MSA

Attention for each patch is only computed within its own window (drawn In red).
Window size is 2x2 in this example. : . : u
" i Step 1: Shift window by a factor of M/2, where M = window size

112
Image Credit: https://towardsdatascience.com/a-comprehensive-guide-to-swin-transformer-64965f89d14c

https://towardsdatascience.com/a-comprehensive-guide-to-swin-transformer-64965f89d14c

Extensions: Swin Transformers

Shifted Window MSA

Step 1: Shift window by a factor of M/2, where M = window size

Layer | Layer I+1

A local window to
perform self-attention

A patch

Image Credit: https://towardsdatascience.com/a-comprehensive-guide-to-swin-transformer-64965f89d14c Liu, Ze, et al. "Swin transformer: Hierarchical vision transformer using shifted
windows." Proceedings of the IEEE/CVF international conference on computer vision. 2021.

https://towardsdatascience.com/a-comprehensive-guide-to-swin-transformer-64965f89d14c

Extensions: Swin Transformers

H W H W H W H W H W
TXTXLLS IXTXC §X?><20 EXI—GXLIC 3—2X3—2X80
e Stage 1 “\ ! Stage 2 a7 Stage 3 NS Stage 4 b
1 1 11
' o|) ': 4 N 11 4 ™\ : : s ~N\ :
ARNE E HE M :
HxWx3 e=1 IO) . L 5h i 11 | Eo . : : ED . 1
2l | 2 Swin L ! Swin | g Swin o | B Swin '
Images [P £ —> 5 > Transformer—:+) = P Transformer—:—:) = [P Transformer | = [Transformer [
Sl | 5 Block |11 |5 Block |11 |8 Block |11]5 Block |,
1 D 1! = | & - = 1
Q_‘ 1 E |: Q—i 11 Q—i 1 p—d 1
: ~J \ J \. J . J . J!
So X2 e X2 oo x6 SN X2 4
S - __.
” ~ ’ \\
2 e 1 | 1 D !
1 1 1
' | MLP V| v |mee :
, 4 A I
' | LN Lol LN :
1 7 . : A 1
' Me I 11PN !
: z e : : + < :
1 1 1
WEMSA| ||, [SWAMSA| |
1 1
1 T 1 : T 1
1
| IN S B B N |
: Y " .\ ZIA :
B T L N
114

Image Credit: Liu, Ze, et al. "Swin transformer: Hierarchical vision transformer using shifted windows." Proceedings of the IEEE/CVF international conference on computer vision. 2021.

Questions?

	Slide 1: EECE 571F: Advanced Topics in Deep Learning Lecture 2: Invariance, Equivariance, and Deep Learning Models for Sets/Sequences
	Slide 2: Outline
	Slide 3: Motivating Applications for Sets
	Slide 4: Invariance & Equivariance
	Slide 5: Invariance & Equivariance
	Slide 6: Invariance & Equivariance
	Slide 7: Outline
	Slide 8: Revisit Convolution
	Slide 9: Revisit Convolution
	Slide 10: Translation/Shift Operator
	Slide 11: Translation/Shift Operator
	Slide 12: Translation/Shift Equivariance
	Slide 13: Translation/Shift Equivariance
	Slide 14: Translation/Shift Invariance
	Slide 15: Translation/Shift Equivariance Invariance
	Slide 16: Outline
	Slide 17: Permutation Invariance
	Slide 18: Permutation Invariance
	Slide 19: Geometric Interpretation of Permutation Matrix
	Slide 20: Geometric Interpretation of Permutation Matrix
	Slide 21: Geometric Interpretation of Permutation Matrix
	Slide 22: Permutation Invariance
	Slide 23: Permutation Equivariance
	Slide 24: Permutation Equivariance
	Slide 25: Permutation Equivariance
	Slide 26: Permutation Equivariance
	Slide 27: More on Invariance & Equivariance
	Slide 28: More on Invariance & Equivariance
	Slide 29: Outline
	Slide 30: Deep Learning for Sets
	Slide 31: Deep Learning for Sets
	Slide 32: Deep Learning for Sets
	Slide 33: Deep Learning for Sets
	Slide 34: Deep Learning for Sets
	Slide 35: Deep Learning for Sets
	Slide 36: Deep Learning for Sets
	Slide 37: Deep Learning for Sets
	Slide 38: Deep Learning for Sets
	Slide 39: Deep Learning for Sets
	Slide 40: Deep Learning for Sets
	Slide 41: Deep Learning for Sets
	Slide 42: Deep Learning for Sets
	Slide 43: Deep Learning for Sets
	Slide 44: Deep Learning for Sets
	Slide 45: Deep Learning for Sets
	Slide 46: Deep Learning for Sets
	Slide 47: Deep Learning for Sets
	Slide 48: Deep Learning for Sets
	Slide 49: Deep Learning for Sets
	Slide 50: Deep Learning for Sets
	Slide 51: Deep Learning for Sets
	Slide 52: Deep Learning for Sets
	Slide 53: Outline
	Slide 54: Deep Learning for Sets
	Slide 55: Deep Learning for Sets
	Slide 56: Deep Learning for Sets
	Slide 57: Deep Learning for Sets
	Slide 58: Deep Learning for Sets
	Slide 59: Deep Learning for Sets
	Slide 60: Deep Learning for Sets
	Slide 61: Outline
	Slide 62: Deep Learning for Sequences
	Slide 63: Deep Learning for Sequences
	Slide 64: Deep Learning for Sequences
	Slide 65: Deep Learning for Sequences
	Slide 66: Deep Learning for Sequences
	Slide 67: Deep Learning for Sequences
	Slide 68: Transformers
	Slide 69: Transformers
	Slide 70: Transformers
	Slide 71: Transformers
	Slide 72: Transformers
	Slide 73: Transformers
	Slide 74: Transformers
	Slide 75: Transformers
	Slide 76: Input Encoding
	Slide 77: Input Embedding
	Slide 78: Outline
	Slide 79: Positional Encoding
	Slide 80: Positional Encoding
	Slide 81: Absolute vs. Relative Positional Encoding
	Slide 82: Rotary Positional Embedding
	Slide 83: Rotary Positional Embedding
	Slide 84: Rotary Positional Embedding
	Slide 85: Rotary Positional Embedding
	Slide 86: Rotary Positional Embedding
	Slide 87: Outline
	Slide 88: Encoder
	Slide 89: Multi-Head Attention
	Slide 90: Multi-Head Attention
	Slide 91: Multi-Head Attention
	Slide 92: Multi-Head Attention
	Slide 93: Multi-Head Attention
	Slide 94: Multi-Head Attention
	Slide 95: Multi-Head Attention
	Slide 96: Multi-Head Attention
	Slide 97: Layer Norm [1] & Residual Connection
	Slide 98: Decoder
	Slide 99: Masked Multi-Head Attention
	Slide 100: Masked Multi-Head Attention
	Slide 101: Masked Multi-Head Attention
	Slide 102: Limitations
	Slide 103: Flash Attention [1]
	Slide 104: Outline
	Slide 105: Pre-Norm vs. Post-Norm
	Slide 106: Pre-Norm vs. Post-Norm
	Slide 107: Pre-Norm vs. Post-Norm
	Slide 108: Outline
	Slide 109: Extensions: Vision Transformers [1]
	Slide 110: Extensions: Swin Transformers [1]
	Slide 111: Extensions: Swin Transformers
	Slide 112: Extensions: Swin Transformers
	Slide 113: Extensions: Swin Transformers
	Slide 114: Extensions: Swin Transformers
	Slide 115: Questions?

