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Outline

• Invariance & Equivariance Principle
• Translation equivariance in convolutions 

• Permutation equivariance and invariance

• Models for Sets
• DeepSets: representation theorem of permutation-invariant set functions & architecture

• DeepSets: permutation-equivariant linear mapping & architecture

• Models for Sequences
• Transformers

• Positional encoding vs. Rotary Positional Embeddings (RoPE)

• Attention & Flash Attention

• Pre-norm vs. post-norm

• Vision Transformers (ViT) & Swin Transformers
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Motivating Applications for Sets

• Population Statistics

• Point Cloud Classification

Table Airplane Earphone

Image Credit: https://github.com/AnTao97/PointCloudDatasets
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https://github.com/AnTao97/PointCloudDatasets


Invariance & Equivariance

• Invariance: 

 

 A mathematical object (or a class of mathematical objects) remains unchanged after operations or 
transformations of a certain type are applied to the objects 
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Invariance & Equivariance

• Invariance: 

 

 A mathematical object (or a class of mathematical objects) remains unchanged after operations or 
transformations of a certain type are applied to the objects 

 

 

• Equivariance:

 Applying a transformation and then computing the function produces the same result as computing the 
function and then applying the transformation
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Revisit Convolution

Matrix multiplication views of (discrete) convolution:

• Filter => Toeplitz matrix

• Data => Toeplitz matrix
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Revisit Convolution

Image Credit: https://towardsdatascience.com/deriving-convolution-from-first-principles-4ff124888028

Matrix multiplication views of (discrete) convolution:

• Filter => Toeplitz matrix

• Data => Toeplitz matrix Consider a special Toeplitz matrix: circulant matrix (must be square!)

Convolution with padding
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https://towardsdatascience.com/deriving-convolution-from-first-principles-4ff124888028


Translation/Shift Operator

Image Credit: https://towardsdatascience.com/deriving-convolution-from-first-principles-4ff124888028
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https://towardsdatascience.com/deriving-convolution-from-first-principles-4ff124888028


Translation/Shift Operator

Image Credit: https://towardsdatascience.com/deriving-convolution-from-first-principles-4ff124888028

Shift operator is also a circulant matrix!
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https://towardsdatascience.com/deriving-convolution-from-first-principles-4ff124888028


Translation/Shift Equivariance

Image Credit: https://towardsdatascience.com/deriving-convolution-from-first-principles-4ff124888028

Matrix multiplication is non-commutative. But not for circulant matrices!
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Translation/Shift Equivariance

Image Credit: https://towardsdatascience.com/deriving-convolution-from-first-principles-4ff124888028

Matrix multiplication is non-commutative. But not for circulant matrices!

Convolution is translation equivariant, i.e., Conv(Shift(X)) = Shift(Conv(X))!
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https://towardsdatascience.com/deriving-convolution-from-first-principles-4ff124888028


Translation/Shift Invariance

Image Credit: https://towardsdatascience.com/covolutional-neural-network-cb0883dd6529

Global pooling gives you shift-invariance!
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https://towardsdatascience.com/covolutional-neural-network-cb0883dd6529


Translation/Shift Equivariance Invariance

Image Credit: http://yann.lecun.com/exdb/lenet/translation.html

Yann LeCun’s LeNet Demo: 
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Permutation Invariance 

Point Clouds

Probability of Classes 

Permutation / Shuffle

Table

Image Credit: https://github.com/AnTao97/PointCloudDatasets
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https://github.com/AnTao97/PointCloudDatasets


Permutation Invariance 

Point Clouds

Probability of Classes 

Permutation / Shuffle

Table

Image Credit: https://github.com/AnTao97/PointCloudDatasets
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https://github.com/AnTao97/PointCloudDatasets


Geometric Interpretation of Permutation Matrix

Birkhoff Polytope

Doubly Stochastic Matrix
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Geometric Interpretation of Permutation Matrix

Doubly Stochastic Matrix

Birkhoff Polytope

Birkhoff–von Neumann Theorem: 

1. Birkhoff Polytope is the convex hull of permutation matrices

2. Permutation matrices = Vertices of Birkhoff Polytope 
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Geometric Interpretation of Permutation Matrix

Birkhoff Polytope

Birkhoff–von Neumann Theorem: 

1. Birkhoff Polytope is the convex hull of permutation matrices

2. Permutation matrices = Vertices of Birkhoff Polytope 

Image Credit: https://arxiv.org/pdf/1710.09508.pdf

Doubly Stochastic Matrix
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https://arxiv.org/pdf/1710.09508.pdf


Permutation Invariance 

Point Clouds

Probability of Classes 

Permutation / Shuffle

Table

Image Credit: https://github.com/AnTao97/PointCloudDatasets
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https://github.com/AnTao97/PointCloudDatasets


Permutation Equivariance

Table

Image Credit: https://github.com/AnTao97/PointCloudDatasets

Point Clouds

Probability of Classes 

Permutation / Shuffle

Point Representations
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Permutation Equivariance

Table

Image Credit: https://github.com/AnTao97/PointCloudDatasets

Point Clouds

Probability of Classes 

Permutation / Shuffle

Point Representations
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Permutation Equivariance

Table

Image Credit: https://github.com/AnTao97/PointCloudDatasets

Point Clouds

Probability of Classes 

Permutation / Shuffle

Point Representations
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Permutation Equivariance

Table

Image Credit: https://github.com/AnTao97/PointCloudDatasets

Point Clouds

Probability of Classes 

Permutation / Shuffle

Point Representations
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More on Invariance & Equivariance

• What about other transformations, e.g., scaling, 2D/3D rotations, Gauge transformation?

Image Credit: http://yann.lecun.com/exdb/lenet/scale.html
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http://yann.lecun.com/exdb/lenet/scale.html


More on Invariance & Equivariance

• What about other transformations, e.g., scaling, 2D/3D rotations, Gauge transformation?

• Generalize to Group Invariance & Equivariance

 Recommend Taco Cohen’s PhD Thesis: https://pure.uva.nl/ws/files/60770359/Thesis.pdf

Image Credit: http://yann.lecun.com/exdb/lenet/scale.html
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https://pure.uva.nl/ws/files/60770359/Thesis.pdf
http://yann.lecun.com/exdb/lenet/scale.html
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Deep Learning for Sets

• Point-level Tasks

Input: a vector per point

Output: a label/vector per point

Predictions of individual points are independent, e.g., image classification
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Deep Learning for Sets

• Point-level Tasks

Input: a vector per point

Output: a label/vector per point

Predictions of individual points are independent, e.g., image classification

• Set-level Tasks

Input: a set of vectors, each corresponds to a point

Output: a label/vector per set

Prediction of a set depends on all points, e.g., point cloud classification

31



Deep Learning for Sets

Key Challenges:

• Varying-sized input sets

• Permutation equivariant and invariant models

• Expressive models

32



Deep Learning for Sets

• Deep Sets [1]

[1] Zaheer, Manzil, et al. "Deep sets." Advances in neural information processing systems 30 (2017). 
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Deep Learning for Sets

• Deep Sets [1]

Sketch of Proof 

Sufficiency: summation is permutation invariant!

[1] Zaheer, Manzil, et al. "Deep sets." Advances in neural information processing systems 30 (2017). 
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• Deep Sets [1]

Sketch of Proof 

Sufficiency: summation is permutation invariant!

Necessity: any valid set function is essentially a function (absorbed in    ) that takes an injective representation of a set as 

input. Then we just need to construct an injective set representation in the form of                        since any other 

injective set representations can be obtained via some suitable transformation (absorbed in    ) from                     .  

[1] Zaheer, Manzil, et al. "Deep sets." Advances in neural information processing systems 30 (2017). 
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Deep Learning for Sets

• Deep Sets [1]

Sketch of Proof 

Sufficiency: summation is permutation invariant!

Necessity: any valid set function is essentially a function (absorbed in    ) that takes an injective representation of a set as 

input. Then we just need to construct an injective set representation in the form of                        since any other 

injective set representations can be obtained via some suitable transformation (absorbed in    ) from                     . 

  

1. Construct a mapping

[1] Zaheer, Manzil, et al. "Deep sets." Advances in neural information processing systems 30 (2017). 
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Deep Learning for Sets

• Deep Sets [1]

Countable Universe

Sketch of Proof 

Sufficiency: summation is permutation invariant!

Necessity: any valid set function is essentially a function (absorbed in    ) that takes an injective representation of a set as 

input. Then we just need to construct an injective set representation in the form of                        since any other 

injective set representations can be obtained via some suitable transformation (absorbed in    ) from                     . 

  

1. Construct a mapping

[1] Zaheer, Manzil, et al. "Deep sets." Advances in neural information processing systems 30 (2017). 
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Deep Learning for Sets

• Deep Sets [1]

Sketch of Proof 

Sufficiency: summation is permutation invariant!

Necessity: any valid set function is essentially a function (absorbed in    ) that takes an injective representation of a set as 

input. Then we just need to construct an injective set representation in the form of                        since any other 

injective set representations can be obtained via some suitable transformation (absorbed in    ) from                     . 

  

1. Construct a mapping

2. Let

[1] Zaheer, Manzil, et al. "Deep sets." Advances in neural information processing systems 30 (2017). 
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Deep Learning for Sets

• Deep Sets [1]

Sketch of Proof 

Sufficiency: summation is permutation invariant!

Necessity: any valid set function is essentially a function (absorbed in    ) that takes an injective representation of a set as 

input. Then we just need to construct an injective set representation in the form of                        since any other 

injective set representations can be obtained via some suitable transformation (absorbed in    ) from                     . 

  

1. Construct a mapping

2. Let

3. Injection  

[1] Zaheer, Manzil, et al. "Deep sets." Advances in neural information processing systems 30 (2017). 
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Deep Learning for Sets

• Deep Sets [1]

Power Set

Sketch of Proof 

Sufficiency: summation is permutation invariant!

Necessity: any valid set function is essentially a function (absorbed in    ) that takes an injective representation of a set as 

input. Then we just need to construct an injective set representation in the form of                        since any other 

injective set representations can be obtained via some suitable transformation (absorbed in    ) from                     . 

  

1. Construct a mapping

2. Let

3. Injection  

[1] Zaheer, Manzil, et al. "Deep sets." Advances in neural information processing systems 30 (2017). 
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Deep Learning for Sets

• Deep Sets [1]

However, this original 

proof has some 

technical issues!

Sketch of Proof 

Sufficiency: summation is permutation invariant!

Necessity: any valid set function is essentially a function (absorbed in    ) that takes an injective representation of a set as 

input. Then we just need to construct an injective set representation in the form of                        since any other 

injective set representations can be obtained via some suitable transformation (absorbed in    ) from                     . 

  

1. Construct a mapping

2. Let

3. Injection  

[1] Zaheer, Manzil, et al. "Deep sets." Advances in neural information processing systems 30 (2017). 
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Deep Learning for Sets

Necessity: 

  

1. Construct a mapping

2. Let

3. Injection  

For better illustrate the problem, let us switch to base 2, i.e.,                                   .

However, this original 

proof has some 

technical issues!
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Deep Learning for Sets

Necessity: 

  

1. Construct a mapping

2. Let

3. Injection  

For better illustrate the problem, let us switch to base 2, i.e.,                                   .

Therefore, the above “injection” essentially maps the binary string to a real number via the binary expansion.

However, this original 

proof has some 

technical issues!
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Deep Learning for Sets

Necessity:
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2. Let

3. Injection  

For better illustrate the problem, let us switch to base 2, i.e.,                                   .

Therefore, the above “injection” essentially maps the binary string to a real number via the binary expansion.

For example, suppose                                        and the size is 

Then the size-        binary string of set                         is                             and its binary expansion is 

However, this original 

proof has some 

technical issues!
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Deep Learning for Sets

Necessity: 

  

1. Construct a mapping

2. Let

3. Injection  

For better illustrate the problem, let us switch to base 2, i.e.,                                   .

Therefore, the above “injection” essentially maps the binary string to a real number via the binary expansion.

For example, suppose                                        and the size is 

Then the size-        binary string of set                         is                             and its binary expansion is 

Then the binary string of set                                        is                             and its binary expansion is 

However, this original 

proof has some 

technical issues!

Dyadic rationals do not have unique binary expansions! 46



Deep Learning for Sets

Other bases have the same issue, e.g., we have                                   for decimals.

Therefore, to obtain an injection, we need to resolve such non-unique expansions.
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Deep Learning for Sets

Other bases have the same issue, e.g., we have                                   for decimals.

Therefore, to obtain an injection, we need to resolve such non-unique expansions.

Let us review the example before: Finite many 1

Finite many 0
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Deep Learning for Sets

Other bases have the same issue, e.g., we have                                   for decimals.

Therefore, to obtain an injection, we need to resolve such non-unique expansions.

Let us review the example before: 

We can enumerate (countably infinite) strings with finite many 0, denoting the n-th such string as   

Similarly, we can enumerate (countably infinite) strings with finite many 1, denoting the n -th such string as 

Finite many 1

Finite many 0
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Deep Learning for Sets

Other bases have the same issue, e.g., we have                                   for decimals.

Therefore, to obtain an injection, we need to resolve such non-unique expansions.

Let us review the example before: 

We can enumerate (countably infinite) strings with finite many 0, denoting the n-th such string as   

Similarly, we can enumerate (countably infinite) strings with finite many 1, denoting the n -th such string as  

We then define

Finite many 1

Finite many 0

We avoid non-terminating 

(infinite many 1) binary strings!
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Deep Learning for Sets

Other bases have the same issue, e.g., we have                                   for decimals.

Therefore, to obtain an injection, we need to resolve such non-unique expansions.

Let us review the example before: 

We can enumerate (countably infinite) strings with finite many 0, denoting the n-th such string as   

Similarly, we can enumerate (countably infinite) strings with finite many 1, denoting the n -th such string as 

We then define

Now we have the injection 

Finite many 1

Finite many 0

We avoid non-terminating 

(infinite many 1) binary strings!
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Deep Learning for Sets

• Deep Sets [1]

Invariant Architecture

Image Credit: [1] Zaheer, Manzil, et al. "Deep sets." Advances in neural information processing systems 30 (2017). 
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Deep Learning for Sets

• Deep Sets [1]

[1] Zaheer, Manzil, et al. "Deep sets." Advances in neural information processing systems 30 (2017). 
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Deep Learning for Sets

• Deep Sets [1]

[1] Zaheer, Manzil, et al. "Deep sets." Advances in neural information processing systems 30 (2017). 

Sketch of Proof 

Permutation Equivariance                                         (w. element-wise bijective nonlinearity) reduces to 
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Deep Learning for Sets

• Deep Sets [1]

[1] Zaheer, Manzil, et al. "Deep sets." Advances in neural information processing systems 30 (2017). 

Sketch of Proof 

Permutation Equivariance                                         (w. element-wise bijective nonlinearity) reduces to 

Sufficiency:          is commutable with permutation matrix 
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Deep Learning for Sets

• Deep Sets [1]

[1] Zaheer, Manzil, et al. "Deep sets." Advances in neural information processing systems 30 (2017). 

Sketch of Proof 

Permutation Equivariance                                         (w. element-wise bijective nonlinearity) reduces to 

Sufficiency:          is commutable with permutation matrix 

Necessity: consider a special permutation (i.e., transposition / swap)

  

1. All diagonal elements are identical
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Deep Learning for Sets

• Deep Sets [1]

Sketch of Proof 

Permutation Equivariance                                         (w. element-wise bijective nonlinearity) reduces to 

Sufficiency:          is commutable with permutation matrix 

Necessity: consider a special permutation (i.e., transposition / swap)

  

1. All diagonal elements are identical

2. All off-diagonal elements are identical

[1] Zaheer, Manzil, et al. "Deep sets." Advances in neural information processing systems 30 (2017). 
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Deep Learning for Sets

• Deep Sets [1]

Equivariant Architecture

Image Credit: [1] Zaheer, Manzil, et al. "Deep sets." Advances in neural information processing systems 30 (2017). 
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Deep Learning for Sets

• Deep Sets [1]

Recipe for making the model deep:

 Stack multiple equivariant layers (+ invariant layer at the end), e.g., PointNet [2]

……

Image Credit: [1] Zaheer, Manzil, et al. "Deep sets." Advances in neural information processing systems 30 (2017). 
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Deep Learning for Sequences

• Language Models

Image Credit: http://web.stanford.edu/class/cs224n/
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Deep Learning for Sequences

• Language Models

• Machine Translation

Image Credit: http://web.stanford.edu/class/cs224n/ https://jalammar.github.io/illustrated-transformer/
63
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Deep Learning for Sequences

Key Challenges:

• Varying-sized input sequences
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Deep Learning for Sequences

Key Challenges:

• Varying-sized input sequences

• Orders “may” be crucial for cognition

Image Credit: https://www.mrc-cbu.cam.ac.uk/people/matt.davis/cmabridge

Aoccdrnig to a rscheearch at Cmabrigde Uinervtisy, it deosn't mttaer in waht oredr the ltteers in a 
wrod are, the olny iprmoetnt tihng is taht the frist and lsat ltteer be at the rghit pclae. The rset can be 
a toatl mses and you can sitll raed it wouthit porbelm. Tihs is bcuseae the huamn mnid deos not raed 
ervey lteter by istlef, but the wrod as a wlohe.
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Deep Learning for Sequences

Key Challenges:

• Varying-sized input sequences

• Orders “may” be crucial for cognition

• Complex statistical dependencies (e.g. long-range ones)

Aoccdrnig to a rscheearch at Cmabrigde Uinervtisy, it deosn't mttaer in waht oredr the ltteers in a 
wrod are, the olny iprmoetnt tihng is taht the frist and lsat ltteer be at the rghit pclae. The rset can be 
a toatl mses and you can sitll raed it wouthit porbelm. Tihs is bcuseae the huamn mnid deos not raed 
ervey lteter by istlef, but the wrod as a wlohe.

Image Credit: https://www.mrc-cbu.cam.ac.uk/people/matt.davis/cmabridge/ https://towardsdatascience.com/illustrated-guide-to-transformers-step-by-step-explanation-f74876522bc0
66
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Deep Learning for Sequences

Key Challenges:

• Varying-sized input sequences

• Orders “may” be crucial for cognition

• Complex statistical dependencies (e.g. long-range ones)

Image Credit: https://www.mrc-cbu.cam.ac.uk/people/matt.davis/cmabridge/ https://towardsdatascience.com/illustrated-guide-to-transformers-step-by-step-explanation-f74876522bc0
[1] Hochreiter, S. "Long Short-term Memory." Neural Computation MIT-Press (1997). [2] Cho, Kyunghyun. "Learning phrase representations using RNN encoder-decoder for statistical machine 
translation." arXiv preprint arXiv:1406.1078 (2014). [3] Sutskever, I. "Sequence to Sequence Learning with Neural Networks." arXiv preprint arXiv:1409.3215 (2014). [4] Vaswani, A. "Attention is 
all you need." Advances in Neural Information Processing Systems (2017).

Aoccdrnig to a rscheearch at Cmabrigde Uinervtisy, it deosn't mttaer in waht oredr the ltteers in a 
wrod are, the olny iprmoetnt tihng is taht the frist and lsat ltteer be at the rghit pclae. The rset can be 
a toatl mses and you can sitll raed it wouthit porbelm. Tihs is bcuseae the huamn mnid deos not raed 
ervey lteter by istlef, but the wrod as a wlohe.

LSTM [1]

GRU [2]

Seq2Seq [3]

Transformer [4]

67

https://www.mrc-cbu.cam.ac.uk/people/matt.davis/cmabridge/
https://towardsdatascience.com/illustrated-guide-to-transformers-step-by-step-explanation-f74876522bc0


Transformers

Image Credit: https://jalammar.github.io/illustrated-transformer/
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Transformers

Image Credit: https://jalammar.github.io/illustrated-transformer/
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Transformers

Image Credit: Vaswani, A. "Attention is all you need." Advances in Neural Information Processing Systems (2017). https://jalammar.github.io/illustrated-transformer/
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Transformers

Image Credit: Vaswani, A. "Attention is all you need." Advances in Neural Information Processing Systems (2017). https://jalammar.github.io/illustrated-transformer/
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Transformers

Image Credit: Vaswani, A. "Attention is all you need." Advances in Neural Information Processing Systems (2017). https://jalammar.github.io/illustrated-transformer/
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Transformers

Image Credit: Vaswani, A. "Attention is all you need." Advances in Neural Information Processing Systems (2017). https://jalammar.github.io/illustrated-transformer/
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Transformers

Image Credit: Vaswani, A. "Attention is all you need." Advances in Neural Information Processing Systems (2017). https://jalammar.github.io/illustrated-transformer/
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Transformers

Image Credit: Vaswani, A. "Attention is all you need." Advances in Neural Information Processing Systems (2017). https://jalammar.github.io/illustrated-transformer/
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Input Encoding

Image Credit: Vaswani, A. "Attention is all you need." Advances in Neural Information Processing Systems (2017). https://jalammar.github.io/illustrated-transformer/
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Input Embedding

Image Credit: Vaswani, A. "Attention is all you need." Advances in Neural Information Processing Systems (2017). https://towardsdatascience.com/illustrated-guide-to-transformers-step-by-step-
explanation-f74876522bc0
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Positional Encoding

Image Credit: Vaswani, A. "Attention is all you need." Advances in Neural Information Processing Systems (2017). https://towardsdatascience.com/illustrated-guide-to-transformers-step-by-step-
explanation-f74876522bc0
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Positional Encoding

Image Credit: https://lilianweng.github.io/lil-log/2020/04/07/the-transformer-family.html
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Absolute vs. Relative Positional Encoding

[1] Su, Jianlin, et al. "RoFormer: Enhanced Transformer with Rotary Position Embedding." arXiv preprint arXiv:2104.09864 (2021).

Encode relative position information could help better model the dependency among tokens.

How to encode relative positions? 

• We can inject the relative position into the bias of attention. 

• We can use Rotary Position Embedding (RoPE) [1], which is more effective empirically.

To understand RoPE, let us recap how to rotate a 2D vector:

Rotation matrix is orthogonal and preserves the norm!
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Rotary Positional Embedding

RoPE first divide d-dimension vector space in d/2 subspaces and then rotate them based one the position:

Here 

In practice, we can apply 2D rotations to pairs 
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Rotary Positional Embedding

Image Credit: Su, Jianlin, et al. "RoFormer: Enhanced Transformer with Rotary Position Embedding." arXiv preprint arXiv:2104.09864 (2021).

RoPE first divide d-dimension vector space in d/2 subspaces and then rotate them based one the position:
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Rotary Positional Embedding

What do we gain in RoPE?

• Inner product depends on the relative position

 Let us look at the case of 2D:
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Rotary Positional Embedding

What do we gain in RoPE?

• Inner product depends on the relative position

 Let us look at the case of 2D:
This holds for d-dimension as we 

construct a block-diagonal matrix 

with 2D rotation matrices!
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Rotary Positional Embedding

Image Credit: Su, Jianlin, et al. "RoFormer: Enhanced Transformer with Rotary Position Embedding." arXiv preprint arXiv:2104.09864 (2021).

What do we gain in RoPE?

• Long-term decay of inner product w.r.t. relative positions
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Encoder

Image Credit: Vaswani, A. "Attention is all you need." Advances in Neural Information Processing Systems (2017). https://towardsdatascience.com/illustrated-guide-to-transformers-step-by-step-
explanation-f74876522bc0
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Multi-Head Attention

Image Credit: Vaswani, A. "Attention is all you need." Advances in Neural Information Processing Systems (2017). https://theaisummer.com/transformer/
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Multi-Head Attention

Image Credit: Vaswani, A. "Attention is all you need." Advances in Neural Information Processing Systems (2017). https://towardsdatascience.com/illustrated-guide-to-transformers-step-by-step-
explanation-f74876522bc0
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Multi-Head Attention

Image Credit: Vaswani, A. "Attention is all you need." Advances in Neural Information Processing Systems (2017). https://towardsdatascience.com/illustrated-guide-to-transformers-step-by-step-
explanation-f74876522bc0
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Multi-Head Attention

Image Credit: Vaswani, A. "Attention is all you need." Advances in Neural Information Processing Systems (2017). https://towardsdatascience.com/illustrated-guide-to-transformers-step-by-step-
explanation-f74876522bc0

92

https://towardsdatascience.com/illustrated-guide-to-transformers-step-by-step-explanation-f74876522bc0
https://towardsdatascience.com/illustrated-guide-to-transformers-step-by-step-explanation-f74876522bc0


Multi-Head Attention

0

Image Credit: Vaswani, A. "Attention is all you need." Advances in Neural Information Processing Systems (2017). https://towardsdatascience.com/illustrated-guide-to-transformers-step-by-step-
explanation-f74876522bc0
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Multi-Head Attention

Why square root?

Image Credit: Vaswani, A. "Attention is all you need." Advances in Neural Information Processing Systems (2017). https://towardsdatascience.com/illustrated-guide-to-transformers-step-by-step-
explanation-f74876522bc0
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Multi-Head Attention

0

Image Credit: Vaswani, A. "Attention is all you need." Advances in Neural Information Processing Systems (2017). https://towardsdatascience.com/illustrated-guide-to-transformers-step-by-step-
explanation-f74876522bc0
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Multi-Head Attention

Image Credit: Vaswani, A. "Attention is all you need." Advances in Neural Information Processing Systems (2017). https://towardsdatascience.com/illustrated-guide-to-transformers-step-by-step-
explanation-f74876522bc0
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Layer Norm [1] & Residual Connection

[1] Ba, Jimmy Lei. "Layer normalization." arXiv preprint arXiv:1607.06450 (2016). Image Credit: Vaswani, A. "Attention is all you need." Advances in Neural Information Processing Systems (2017). 
https://towardsdatascience.com/illustrated-guide-to-transformers-step-by-step-explanation-f74876522bc0
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Decoder

For certain applications like language 

models, decoder should be autoregressive!

Image Credit: Vaswani, A. "Attention is all you need." Advances in Neural Information Processing Systems (2017). https://towardsdatascience.com/illustrated-guide-to-transformers-step-by-step-
explanation-f74876522bc0
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Masked Multi-Head Attention

Prevent attending from future!

Image Credit: Vaswani, A. "Attention is all you need." Advances in Neural Information Processing Systems (2017). https://towardsdatascience.com/illustrated-guide-to-transformers-step-by-step-
explanation-f74876522bc0
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Masked Multi-Head Attention

0

Image Credit: Vaswani, A. "Attention is all you need." Advances in Neural Information Processing Systems (2017). https://towardsdatascience.com/illustrated-guide-to-transformers-step-by-step-
explanation-f74876522bc0
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Masked Multi-Head Attention

0

Image Credit: Vaswani, A. "Attention is all you need." Advances in Neural Information Processing Systems (2017). https://towardsdatascience.com/illustrated-guide-to-transformers-step-by-step-
explanation-f74876522bc0
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Limitations

• O(L^2) time/memory cost for self-attention

Methods like Reformer [1] speed up attention to O(L log L) using 
locality-sensitive hashing techniques

• How can we incorporate prior knowledge into attention 
rather than having a fully connected attention? 

• Encourage sparse attention

• Inject known graph structures

• ……

[1] Kitaev, Nikita, Łukasz Kaiser, and Anselm Levskaya. "Reformer: The efficient transformer." arXiv preprint arXiv:2001.04451 (2020). Image Credit: Vaswani, A. "Attention is all you need." 
Advances in Neural Information Processing Systems (2017). 

102



Flash attention accelerates attention by using on-chip static random-access memory (SRAM, small 
memory but fast) to reduce the IO with high bandwidth memory (HBM, large memory but slow).

Flash Attention [1]

[1] Dao, Tri, et al. "Flashattention: Fast and memory-efficient exact attention with io-awareness." Advances in Neural Information Processing Systems 35 (2022): 16344-16359. Image Credit: 
https://huggingface.co/docs/text-generation-inference/en/conceptual/flash_attention
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Pre-Norm vs. Post-Norm

Image Credit: Xiong, Ruibin, et al. "On layer normalization in the transformer architecture." International Conference on Machine Learning. PMLR, 2020.

Post-Norm Pre-Norm

Where to place the Layer Normalization?
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Pre-Norm vs. Post-Norm

Post-Norm Pre-Norm

Where to place the Layer Normalization?

• Gradient norm in the Post-Norm 

Transformer is large for parameters 

near the output and will be likely to 

decay as the layer gets closer to input

Image Credit: Xiong, Ruibin, et al. "On layer normalization in the transformer architecture." International Conference on Machine Learning. PMLR, 2020.
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Pre-Norm vs. Post-Norm

Post-Norm Pre-Norm

Where to place the Layer Normalization?

• Gradient norm in the Post-Norm 

Transformer is large for parameters 

near the output and will be likely to 

decay as the layer gets closer to input 

• Training the Pre-Norm Transformer 

does not rely on the learning rate 

warm-up stage and can be trained 

much faster than the Post-Norm

Image Credit: Xiong, Ruibin, et al. "On layer normalization in the transformer architecture." International Conference on Machine Learning. PMLR, 2020.
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Extensions: Vision Transformers [1]

[1] Dosovitskiy, Alexey, et al. "An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale." International Conference on Learning Representations. 2020. Image Credit: 
https://github.com/lucidrains/vit-pytorch
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Extensions: Swin Transformers [1]

[1] Liu, Ze, et al. "Swin transformer: Hierarchical vision transformer using shifted windows." Proceedings of the IEEE/CVF international conference on computer vision. 2021. Image Credit: 
https://towardsdatascience.com/a-comprehensive-guide-to-swin-transformer-64965f89d14c
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Extensions: Swin Transformers

Image Credit: https://towardsdatascience.com/a-comprehensive-guide-to-swin-transformer-64965f89d14c
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Extensions: Swin Transformers

Image Credit: https://towardsdatascience.com/a-comprehensive-guide-to-swin-transformer-64965f89d14c
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Extensions: Swin Transformers

Image Credit: https://towardsdatascience.com/a-comprehensive-guide-to-swin-transformer-64965f89d14c Liu, Ze, et al. "Swin transformer: Hierarchical vision transformer using shifted 
windows." Proceedings of the IEEE/CVF international conference on computer vision. 2021.
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Extensions: Swin Transformers

Image Credit: Liu, Ze, et al. "Swin transformer: Hierarchical vision transformer using shifted windows." Proceedings of the IEEE/CVF international conference on computer vision. 2021.
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