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* Invariance & Equivariance Principle
« Translation equivariance in convolutions
« Permutation equivariance and invariance

 Models for Sets

» DeepSets: representation theorem of permutation-invariant set functions & architecture
* DeepSets: permutation-equivariant linear mapping & architecture

* Models for Sequences
* Transformers
Positional encoding vs. Rotary Positional Embeddings (RoPE)
Attention & Flash Attention
Pre-norm vs. post-norm
Vision Transformers (ViT) & Swin Transformers



Motivating Applications for Sets

 Population Statistics
e Point Cloud Classification

Table Airplane Earphone

Image Credit: https://github.com/AnTao97/PointCloudDatasets
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Invariance & Equivariance

* |Invariance:

A mathematical object (or a class of mathematical objects) remains unchanged after operations or
transformations of a certain type are applied to the objects

« Equivariance:

Applying a transformation and then computing the function produces the same result as computing the
function and then applying the transformation
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Revisit Convolution

Matrix multiplication views of (discrete) convolution:
* Filter => Toeplitz matrix

» Data => Toeplitz matrix Consider a special Toeplitz matrix: circulant matrix (must be square!)

Convolution with padding
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Image Credit: https://towardsdatascience.com/deriving-convolution-from-first-principles-4ff124888028
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Translation/Shift Operator
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Image Credit: https://towardsdatascience.com/deriving-convolution-from-first-principles-4ff124888028
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Translation/Shift Operator

Shift operator is also a circulant matrix!

X y

P e = ey -

I3
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Image Credit: https://towardsdatascience.com/deriving-convolution-from-first-principles-4ff124888028
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Translation/Shift Equivariance

Matrix multiplication is non-commutative. But not for circulant matrices!

C(w) ST ST
shift operator shift operator

Image Credit: https://towardsdatascience.com/deriving-convolution-from-first-principles-4ff124888028

C(w)
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Translation/Shift Equivariance

Matrix multiplication is non-commutative. But not for circulant matrices!

C(w) ST ST
shift operator shift operator

Convolution is translation equivariant, i.e., Conv(Shift(X)) = Shift(Conv(X))!

Image Credit: https://towardsdatascience.com/deriving-convolution-from-first-principles-4ff124888028

C(w)

13
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Translation/Shift Invariance

Global pooling gives you shift-invariance!

224 x224x3 224x224x64

112x]112x 128

56
28 x28x 512

X Tx512

14 x 14 x 51

4096 1x1x1000

——~

@ convolution+RelLU

@ max pooling
¢ l’ fully connected+ReLU

g softmax

Image Credit: https://towardsdatascience.com/covolutional-neural-network-cb0883dd6529
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Translation/Shift Equivariance Invariance

Yann LeCun’s LeNet Demo:
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Image Credit: http://yann.lecun.com/exdb/lenet/translation.html
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Permutation Invariance

Point Clouds
Probability of Classes

Permutation / Shuffle

Image Credit: https://github.com/AnTao97/PointCloudDatasets

X € RnXB
Y € RlXK
P c RnX’n
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Permutation Invariance

Point Clouds
Probability of Classes

Permutation / Shuffle
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Image Credit: https://github.com/AnTao97/PointCloudDatasets
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Geometric Interpretation of Permutation Matrix

Birkhoff Polytope
B, ={P e R"™"|Vi¥j P;; >0,¥i Y Py;=1Vj » Pj=1}

J
Doubly Stochastic Matrix

Birkhoff-von Neumann Theorem:

1. Birkhoff Polytope is the convex hull of permutation matrices

2. Permutation matrices = Vertices of Birkhoff Polytope Sn

Image Credit: https://arxiv.org/pdf/1710.09508.pdf
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Permutation Invariance

Point Clouds
Probability of Classes

Permutation / Shuffle

Y = f(PX)

Image Credit: https://github.com/AnTao97/PointCloudDatasets

X € RnXB
Y € RlXK
P c R’nX’n

VP e S,
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Permutation Equivariance

Image Credit: https://github.com/AnTao97/PointCloudDatasets

Point Clouds

Probability of Classes

Permutation / Shuffle

Point Representations

X € RnXB
Y € RlXK
P c R’nX’n

H e R™*¢
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Permutation Equivariance

Image Credit: https://github.com/AnTao97/PointCloudDatasets

Point Clouds
Probability of Classes
Permutation / Shuffle

Point Representations

H = f(X)

X e R™
Y e RXE
P e R"™"

H € Rnxd
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Permutation Equivariance
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Image Credit: https://github.com/AnTao97/PointCloudDatasets

Point Clouds X e RnXB

Probability of Classes Y € RIXK

Permutation / Shuffle P c R*»X"

Point Representations H c Rnxd
H = f(X)

PH = Pf(X) = f(PX)
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Permutation Equivariance
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Image Credit: https://github.com/AnTao97/PointCloudDatasets

Point Clouds X e RnXB

Probability of Classes Y € RIXK

Permutation / Shuffle P c R*»X"

Point Representations H c Rnxd
H = f(X)

PH = Pf(X) = f(PX)
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More on Invariance & Equivariance

« What about other transformations, e.g., scaling, 2D/3D rotations, Gauge transformation?
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Image Credit: http://yann.lecun.com/exdb/lenet/scale.html
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More on Invariance & Equivariance

« What about other transformations, e.g., scaling, 2D/3D rotations, Gauge transformation?
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 Generalize to Group Invariance & Equivariance
Recommend Taco Cohen’s PhD Thesis: https://pure.uva.nl/ws/files/60770359/Thesis.pdf

Image Credit: http://yann.lecun.com/exdb/lenet/scale.html
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Deep Learning for Sets

 Point-level Tasks
Input: a vector per point
Output: a label/vector per point

Predictions of individual points are independent, e.g., image classification



Deep Learning for Sets

 Point-level Tasks
Input: a vector per point
Output: a label/vector per point

Predictions of individual points are independent, e.g., image classification

 Set-level Tasks
Input: a set of vectors, each corresponds to a point
Output: a label/vector per set

Prediction of a set depends on all points, e.g., point cloud classification



Deep Learning for Sets

Key Challenges:

* Varying-sized input sets
« Permutation equivariant and invariant models

« Expressive models



Deep Learning for Sets

* Deep Sets [1]

Theorem 2 A function f(X) operating on a set X having elements from a countable universe, is a
valid set function, i.e., invariant to the permutation of instances in X, iff it can be decomposed in the

form p (3" . cx ¢(x)), for suitable transformations ¢ and p.

[1] Zaheer, Manzil, et al. "Deep sets." Advances in neural information processing systems 30 (2017).
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Deep Learning for Sets

* Deep Sets [1]

Theorem 2 A function f(X) operating on a set X having elements from a countable universe, is a
valid set function, i.e., invariant to the permutation of instances in X, iff it can be decomposed in the

form p (3" . cx ¢(x)), for suitable transformations ¢ and p.
Sketch of Proof

Sufficiency: summation is permutation invariant!

Necessity: any valid set function is essentially a function (absorbed in ) that takes an injective representation of a set as
input. Then we just need to construct an injective set representation in the form of Z rex ¢(z) since any other
injective set representations can be obtained via some suitable transformation (absorbed in Q) from P(x) .

1. Construct a mapping c1¥l— N Countable Universe

reX

[1] Zaheer, Manzil, et al. "Deep sets." Advances in neural information processing systems 30 (2017).



Deep Learning for Sets

* Deep Sets [1]

Theorem 2 A function f(X) operating on a set X having elements from a countable universe, is a
valid set function, i.e., invariant to the permutation of instances in X, iff it can be decomposed in the

form p (3" . cx ¢(x)), for suitable transformations ¢ and p.
Sketch of Proof

Sufficiency: summation is permutation invariant!

Necessity: any valid set function is essentially a function (absorbed in ) that takes an injective representation of a set as
input. Then we just need to construct an injective set representation in the form of Z rex ¢(z) since any other

injective set representations can be obtained via some suitable transformation (absorbed in Q) fromz rex P(x) .
1. Construct a mapping c: X —>N
2. Let o(x) = 4—c@)

[1] Zaheer, Manzil, et al. "Deep sets." Advances in neural information processing systems 30 (2017).
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* Deep Sets [1]

Theorem 2 A function f(X) operating on a set X having elements from a countable universe, is a
valid set function, i.e., invariant to the permutation of instances in X, iff it can be decomposed in the

form p (3" . cx ¢(x)), for suitable transformations ¢ and p.
Sketch of Proof

Sufficiency: summation is permutation invariant!

Necessity: any valid set function is essentially a function (absorbed in ) that takes an injective representation of a set as
input. Then we just need to construct an injective set representation in the form of Z rex ¢(z) since any other

injective set representations can be obtained via some suitable transformation (absorbed in Q) fromz rex P(x) .
1. Construct a mapping c: X —>N
2. Let P(x) = g—c(@)
3. Injection X et o Z o(x
reX

[1] Zaheer, Manzil, et al. "Deep sets." Advances in neural information processing systems 30 (2017).



Deep Learning for Sets

* Deep Sets [1]

Theorem 2 A function f(X) operating on a set X having elements from a countable universe, is a
valid set function, i.e., invariant to the permutation of instances in X, iff it can be decomposed in the

form p (3" . cx ¢(x)), for suitable transformations ¢ and p.
Sketch of Proof

Sufficiency: summation is permutation invariant!

Necessity: any valid set function is essentially a function (absorbed in ) that takes an injective representation of a set as
input. Then we just need to construct an injective set representation in the form of Z rex ¢(z) since any other

injective set representations can be obtained via some suitable transformation (absorbed in Q) fromz rex P(x) .
1. Construct a mapping c: X —>N
2. Let o(x) = 4—c@)

3. Injection X E% Z o(x) Power Set
reX

[1] Zaheer, Manzil, et al. "Deep sets." Advances in neural information processing systems 30 (2017).



Deep Learning for Sets

* Deep Sets [1]

Theorem 2 A function f(X) operating on a set X having elements from a countable universe, is a
valid set function, i.e., invariant to the permutation of instances in X, iff it can be decomposed in the

form p (3" . cx ¢(x)), for suitable transformations ¢ and p.
Sketch of Proof

Sufficiency: summation is permutation invariant!

Necessity: any valid set function is essentially a function (absorbed in ) that takes an injective representation of a set as
input. Then we just need to construct an injective set representation in the form of Z x ¢(z) since any other

injective set representations can be obtained via some suitable transformation (absorbed in0) from rex P(x) .
[1. Construct a mapping c: X —N A o
However, this original
2. Let o(z) = 47 proof has some
technical issues!
3. Injection X € 2% Z (b(x

\ reX j

[1] Zaheer, Manzil, et al. "Deep sets." Advances in neural information processing systems 30 (2017).
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Deep Learning for Sets

Necessity:
/1. Construct a mapping c: X —>N
2. Let o(z) = g—<()
3. Injection X €2% Z o(x)
\_ reX

~

J

For better illustrate the problem, let us switch to base 2, i.e., gb(:c) =2~

e(x)

However, this original
proof has some
technical issues!

42



Deep Learning for Sets

~

J

Necessity:
/1. Construct a mapping c: X —>N
2. Let o) = 47
3. Injection X €2% Z gb(a:)
\_ reX
For better illustrate the problem, let us switch to base 2, i.e., qb(cv) — 2_0(:6).

However, this original
proof has some
technical issues!

Therefore, the above “injection” essentially maps the binary string to a real number via the binary expansion.

43



Deep Learning for Sets

Necessity:
/1. Construct a mapping c: X >N ) Er(())\:)\ls\kllzg Stgilsqeoriginal
2. Let o(z) = g—<() technical issues!
3. Injection X e 236 N Z gb(a})

\_ xeX -/

For better illustrate the problem, let us switch to base 2, i.e., ¢<CU) — 2_0(33).

Therefore, the above “injection” essentially maps the binary string to a real number via the binary expansion.

For example, suppose X = {1, 2, ce } and the size is |%‘

bli] 1
Then the size-| X | binary string of set X7 = {1}isb; = 10... and its binary expansion is > o) =) i — g5 =09

reXq 1=1

44



Deep Learning for Sets

Necessity:
/1. Construct a mapping c: X >N ) ;Ir%\gf\rﬁ;’ Stgilsqeoriginal
2. Let o(z) = g—<() technical issues!
3. Injection X e 236 N Z gb(a}
\ X )

For better illustrate the problem, let us switch to base 2, i.e., ¢<CU) — 2_0(33).

Therefore, the above “injection” essentially maps the binary string to a real number via the binary expansion.

For example, suppose X = {1, 2, ce } and the size is |%‘

Then the size-| X | binary string of set X7 = {1}isb; = 10... and its binary expansion is > ol

reXq

Then the binary string of set Xo = {2, 3, ... }is by = 011... and its binary expansion is > ol

reXo

1=1

oo

=1

0.5



Deep Learning for Sets

Necessity:
/1. Construct a mapping c: X —>N )
2. Let o(z) = g—<()
5. njection X e 5 Y g
\_ reX -/

For better illustrate the problem, let us switch to base 2, i.e., ¢<CI3) — 2_0(:6).

However, this original
proof has some
technical issues!

Therefore, the above “injection” essentially maps the binary string to a real number via the binary expansion.

For example, suppose X = {1, 2, ce } and the size is |%‘

Then the size-| X | binary string of set X7 = {1}isb; = 10. ..

Then the binary string of set Xo = {2, 3,...

}is by = 011...

and its binary expansion is Z ¢z 2@

and its binary expansion is Z $(z

reXq 1=1

oo

rxeXo =1

Dyadic rationals do not have unique binary expansions!

0.5
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Other bases have the same issue, e.g., we have 1.0 = 0.999 ... for decimals.

Therefore, to obtain an injection, we need to resolve such non-unigue expansions.
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Similarly, we can enumerate (countably infinite) strings with finite many 1, denoting the n-th such string as Pn



Deep Learning for Sets

Other bases have the same issue, e.g., we have 1.0 = 0.999 ... for decimals.

Therefore, to obtain an injection, we need to resolve such non-unigue expansions.

Let us review the example before: X = {1} by = 10... Finite many 1
Xo=1{2,3,...} by=011...  Finitemany0

We can enumerate (countably infinite) strings with finite many 0, denoting the n-th such string as n,

Similarly, we can enumerate (countably infinite) strings with finite many 1, denoting the n-th such string as Pn

We then define ran, if b = q,, _ o

We avoid non-terminating

f(b) = ¢ pon+1, ifb=py, (infinite many 1) binary strings!
b, otherwise

\
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Deep Learning for Sets

Other bases have the same issue, e.g., we have 1.0 = 0.999 ... for decimals.

Therefore, to obtain an injection, we need to resolve such non-unigue expansions.

Let us review the example before: X = {1} by = 10... Finite many 1
Xo=1{2,3,...} by=011...  Finitemany0

We can enumerate (countably infinite) strings with finite many 0, denoting the n-th such string as n,

Similarly, we can enumerate (countably infinite) strings with finite many 1, denoting the n-th such string as Pn

We then define fp2m if b = q,, _ o
: We avoid non-terminating
f(b) = P2nt1, 1 D= py, (infinite many 1) binary strings!
b, otherwise
= 1
Now we have the injection X € 2% — Z o(x) = Z f(b) [2]5
reX 1=1
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Deep Learning for Sets

* Deep Sets [1]

Invariant Architecture

":Opﬁonal

: conditioning

' based on meta-
'.:information

II__Ii W S0

Image Credit: [1] Zaheer, Manzil, et al. "Deep sets." Advances in neural information processing systems 30 (2017).
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Deep Learning for Sets

* Deep Sets [1] fo(x) = o(Ox) © € RM*M

Lemma 3 The function fo : RM — RM defined above is permutation equivariant iff all the off-
diagonal elements of © are tied together and all the diagonal elements are equal as well. That is,

O =M+~ (117) AMyeER 1=[1,...,1]T e RM I ¢ RM*Mis the identity matrix

[1] Zaheer, Manzil, et al. "Deep sets." Advances in neural information processing systems 30 (2017).



Deep Learning for Sets

* Deep Sets [1] fo(x) = o(Ox) © € RM*M

Lemma 3 The function fo : RM — RM defined above is permutation equivariant iff all the off-
diagonal elements of © are tied together and all the diagonal elements are equal as well. That is,

O =M+~ (117) AMyeER 1=[1,...,1]T e RM I ¢ RM*Mis the identity matrix
Sketch of Proof
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Deep Learning for Sets

* Deep Sets [1] fo(x) = o(Ox) © € RM*M

Lemma 3 The function fo : RM — RM defined above is permutation equivariant iff all the off-
diagonal elements of © are tied together and all the diagonal elements are equal as well. That is,

O =M+~ (117) AMyeER 1=[1,...,1]T e RM I ¢ RM*Mis the identity matrix
Sketch of Proof

Permutation Equivariance o (O7x) = mo(©x) (w. element-wise bijective nonlinearity) reduces to TOx = O7x

Sufficiency: © is commutable with permutation matrix

i : i ) : - T —1
Necessity: consider a special permutation (i.e., transposition / swap) T = T = T

1. All diagonal elements are identical
Te© =Om, = T Om L =0 = (M, 0m k)i =011 = Ok =06y,

[1] Zaheer, Manzil, et al. "Deep sets." Advances in neural information processing systems 30 (2017).



Deep Learning for Sets

* Deep Sets [1] fo(x) = o(Ox) © € RM*M

Lemma 3 The function fo : RM — RM defined above is permutation equivariant iff all the off-
diagonal elements of © are tied together and all the diagonal elements are equal as well. That is,

O=AM+vy11") AvyeR 1=[1,...,1]TeRM™ T1ecRM*M
Sketch of Proof

is the identity matrix

Permutation Equivariance o (O7x) = mo(©x) (w. element-wise bijective nonlinearity) reduces to TOx = O7x

Sufficiency: © is commutable with permutation matrix

i : i ) : - T —1
Necessity: consider a special permutation (i.e., transposition / swap) T = T = T

1. All diagonal elements are identical
Te1© =0T = T OmEr =0 = (M, Om ) =011 = Orir =0y,

2. All off-diagonal elements are identical
Wj’,jﬂi,i’@ = @ﬂ-j’,jﬂ'i,i’ = 7le,j7Tz',z'i@(7’(’_7'/,_7'7'('7;,@'/)_1 =0 =
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[1] Zaheer, Manzil, et al. "Deep sets." Advances in neural information processing systems 30 (2017).



Deep Learning for Sets

* Deep Sets [1]

Equivariant Architecture f(x) =o(xA — 11"xT)
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Image Credit: [1] Zaheer, Manzil, et al. "Deep sets." Advances in neural information processing systems 30 (2017).
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Deep Learning for Sets

* Deep Sets [1]
Recipe for making the model deep:

Stack multiple equivariant layers (+ invariant layer at the end), e.g., PointNet [2]

i Optional

i conditioning

! based on meta-
'.:information

Image Credit: [1] Zaheer, Manzil, et al. "Deep sets." Advances in neural information processing systems 30 (2017).
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Deep Learning for Sequences

 Language Models
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Deep Learning for Sequences

« Language Models

Pz D| z® . 2W) the students opened their
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Image Credit: http://web.stanford.edu/class/cs224n/ https://jalammar.github.io/illustrated-transformer/

books

/‘ / laptops

\\‘ exams

minds

am a student


http://web.stanford.edu/class/cs224n/
https://jalammar.github.io/illustrated-transformer/

Deep Learning for Sequences

Key Challenges:

* Varying-sized input sequences



Deep Learning for Sequences

Key Challenges:

* Varying-sized input sequences
* Orders “may” be crucial for cognition

Aoccdrnig to a rscheearch at Cmabrigde Uinervtisy, it deosn't mttaer in waht oredr the Itteers in a
wrod are, the olny iprmoetnt tihng is taht the frist and Isat Itteer be at the rghit pclae. The rset can be
a toatl mses and you can sitll raed it wouthit porbelm. Tihs is bcuseae the huamn mnid deos not raed
ervey lteter by istlef, but the wrod as a wlohe.

Image Credit: https://www.mrc-cbu.cam.ac.uk/people/matt.davis/cmabridge
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Deep Learning for Sequences

Key Challenges:

* Varying-sized input sequences
* Orders “may” be crucial for cognition

Aoccdrnig to a rscheearch at Cmabrigde Uinervtisy, it deosn't mttaer in waht oredr the Itteers in a
wrod are, the olny iprmoetnt tihng is taht the frist and Isat Itteer be at the rghit pclae. The rset can be
a toatl mses and you can sitll raed it wouthit porbelm. Tihs is bcuseae the huamn mnid deos not raed
ervey lteter by istlef, but the wrod as a wlohe.

« Complex statistical dependencies (e.g. long-range ones)

As aliens entered our planet

Image Credit: https://www.mrc-cbu.cam.ac.uk/people/matt.davis/cmabridge/ https://towardsdatascience.com/illustrated-guide-to-transformers-step-by-step-explanation-f74876522bc0
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Deep Learning for Sequences

Key Challenges:

* Varying-sized input sequences
* Orders “may” be crucial for cognition

Aoccdrnig to a rscheearch at Cmabrigde Uinervtisy, it deosn't mttaer in waht oredr the Itteers in a
wrod are, the olny iprmoetnt tihng is taht the frist and Isat Itteer be at the rghit pclae. The rset can be
a toatl mses and you can sitll raed it wouthit porbelm. Tihs is bcuseae the huamn mnid deos not raed

ervey lteter by istlef, but the wrod as a wlohe.

« Complex statistical dependencies (e.g. long-range ones)

LSTM [1]
GRU [2]

As aliens entered our planet SeQZSeq [3]
Transformer [4]

Image Credit: https://www.mrc-cbu.cam.ac.uk/people/matt.davis/cmabridge/ https://towardsdatascience.com/illustrated-guide-to-transformers-step-by-step-explanation-f74876522bc0
[1] Hochreiter, S. "Long Short-term Memory." Neural Computation MIT-Press (1997). [2] Cho, Kyunghyun. "Learning phrase representations using RNN encoder-decoder for statistical machine
translation." arXiv preprint arXiv:1406.1078 (2014). [3] Sutskever, |. "Sequence to Sequence Learning with Neural Networks." arXiv preprint arXiv:1409.3215 (2014). [4] Vaswani, A5'Attention is

all you need." Advances in Neural Information Processing Systems (2017).
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Transformers
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Transformers
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Absolute vs. Relative Positional Encoding

Encode relative position information could help better model the dependency among tokens.

How to encode relative positions?

» We can inject the relative position into the bias of attention.
* We can use Rotary Position Embedding (RoPE) [1], which is more effective empirically.

To understand RoOPE, let us recap how to rotate a 2D vector:

T cosmf —sinmb| |x;

ro| |sinmf  cosmb | |xzo

A\ 4
N

RQ,m

Rotation matrix is orthogonal and preserves the norm!

[1] Su, Jianlin, et al. "RoFormer: Enhanced Transformer with Rotary Position Embedding." arXiv preprint arXiv:2104.09864 (2021).



Rotary Positional Embedding

ROPE first divide d-dimension vector space in d/2 subspaces and then rotate them based one the position:

[cosmf; —sinmb; 0 0 0 0
sinmf;  cosmb; 0 0 0 0
EA 0 0 cosmbs — sinmbs 0 0 1
o - 0 0 sinmf,  cosmbs 0 0 ;
_Cljzl_ . _Zlfd
0 0 0 0 cosmbyo  —sinmby o
0 0 0 0 o+ sinmbge cosmbga |
RS

Here  © = {#; = 1000020C=1/d j c[1,2,...,d/2]}

In practice, we can apply 2D rotations to pairs (21, 371—|—d/2)7 (w2, 372+d/2)> cee (CCd/Qa Tq)




Rotary Positional Embedding

ROPE first divide d-dimension vector space in d/2 subspaces and then rotate them based one the position:
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Image Credit: Su, Jianlin, et al. "RoFormer: Enhanced Transformer with Rotary Position Embedding." arXiv preprint arXiv:2104.09864 (2021).



Rotary Positional Embedding

What do we gain in RoPE?

* Inner product depends on the relative position
Let us look at the case of 2D:

{
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Rotary Positional Embedding

What do we gain in RoPE?

* Inner product depends on the relative position This holds for d-dimension as we

Let us look at the case of 2D: construct a block-diagonal matrix
) , : : with 2D rotation matrices!
zy| |yil\ _ /|cosml —sinmb| |x1| |[cosnf —sinnb| |y
zh| 7 lysl/  \|sinm@ cosmb | |xzo|’ |sinnf  cosnf | |ys
R Ry,
- AT F : T :
RES cosmf —sinmb cosnf —sinnf| |11
~ |w2]| [sinmf  cosmb sinnf  cosnf | |y
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IREZS ! (cos(m —n)f sin(m —n)@]| [y
- |w2] [sin(n —m)f cos(m —n)0| |y
B 11 | i (cos(m —n)f —sin(m — n)o 1 o nl _ /R 71 R Y1
~ |x2]| |sin(m—n)0 cos(m —n)d 0 1| |ya| — \ O™ |ag| 00 |y

—
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Rotary Positional Embedding

What do we gain in RoPE?
» Long-term decay of inner product w.r.t. relative positions

relative upper bound
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Image Credit: Su, Jianlin, et al. "RoFormer: Enhanced Transformer with Rotary Position Embedding." arXiv preprint arXiv:2104.09864 (2021).
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Flash Attention [1]

Flash attention accelerates attention by using on-chip static random-access memory (SRAM, small
memory but fast) to reduce the 10 with high bandwidth memory (HBM, large memory but slow).

Standard Attention Implementation Flash Attention
Load
Q: K Load
ﬁ
. S =QK
Write S Load Kernel operations fused
€ Q.0.l.m together, reducing
P reads & writes
Load S >
Memory P = softmax(s e S = KT
(HBM) Compute (s) (HBM) Compute i Q. i
Write P m = rowmax of S
¢ P = exp(s - m)
L = rowsum of P
_ m = max(m , m)
Load P, V O =PV Write O; L.v, calculate O Ifrom L&m
a _
Write O
_

Initialize O, | and m matrices with zeroes. m and | are used to calculate

cumulative softmax. Divide Q, K, V into blocks (due to SRAM's memory limits)

and iterate over them, for iis row & j is column.
[1] Dao, Tri, et al. "Flashattention: Fast and memory-efficient exact attention with io-awareness." Advances in Neural Information Processing Systems 35 (2022): 16344-16359. Imagé Credit:
https://huggingface.co/docs/text-generation-inference/en/conceptual/flash _attention
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Outline

* Invariance & Equivariance Principle
« Translation equivariance in convolutions
« Permutation equivariance and invariance

 Models for Sets

» DeepSets: representation theorem of permutation-invariant set functions & architecture
* DeepSets: permutation-equivariant linear mapping & architecture

* Models for Sequences
* Transformers
Positional encoding vs. Rotary Positional Embeddings (RoPE)
Attention & Flash Attention
Pre-norm vs. post-norm
Vision Transformers (ViT) & Swin Transformers



Pre-Norm vs. Post-Norm
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Image Credit: Xiong, Ruibin, et al. "On layer normalization in the transformer architecture." International Conference on Machine Learning. PMLR, 2020.



Pre-Norm vs. Post-Norm
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Image Credit: Xiong, Ruibin, et al. "On layer normalization in the transformer architecture." International Conference on Machine Learning. PMLR, 2020.
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Pre-Norm vs. Post-Norm

L X141 X1+1
Where to place the Layer Normalization? $ y
Layer Norm addition
» Gradient norm in the Post-Norm addition —
Transformer is large for parameters f
near the output and will be likely to FFN Layer Norm
decay as the layer gets closer to input / /’
Layer Norm addition
» Training the Pre-Norm Transformer dd_T_ AN
aadition
i Multi-Head
does not rely on the learning r_ate RN Attention
warm-up stage and can be trained o tond f
much faster than the Post-Norm Attention Layer Norm
X1 X1
Post-Norm Pre-Norm

107
Image Credit: Xiong, Ruibin, et al. "On layer normalization in the transformer architecture." International Conference on Machine Learning. PMLR, 2020.
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Extensions: Vision Transformers [1]

[1] Dosovitskiy, Alexey, et al. "An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale." International Conference on Learning Representations. 2020. Image Tiédit:
https://github.com/lucidrains/vit-pytorch
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Extensions: Swin Transformers [1]

Standard MSA

Attention for each patch is computed against all patches,
resulting in quadratic complexity

[1] Liu, Ze, et al. "Swin transformer: Hierarchical vision transformer using shifted windows." Proceedings of the IEEE/CVF international conference on computer vision. 2021. ImageiCredit:
https://towardsdatascience.com/a-comprehensive-guide-to-swin-transformer-64965f89d14c
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Extensions: Swin Transformers

Standard MSA Window-based MSA

Attention for each patch is computed against all patches, Attention for each patch is only computed within its own window (drawn in red).
resulting in quadratic complexity Window size is 2x2 in this example.

111
Image Credit: https://towardsdatascience.com/a-comprehensive-guide-to-swin-transformer-64965f89d14c
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Extensions: Swin Transformers

Window-based MSA Shifted Window MSA

Attention for each patch is only computed within its own window (drawn In red).
Window size is 2x2 in this example. : . : u
" i Step 1: Shift window by a factor of M/2, where M = window size

112
Image Credit: https://towardsdatascience.com/a-comprehensive-guide-to-swin-transformer-64965f89d14c
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Extensions: Swin Transformers

Shifted Window MSA

Step 1: Shift window by a factor of M/2, where M = window size

Layer | Layer I+1

A local window to
perform self-attention

A patch

Image Credit: https://towardsdatascience.com/a-comprehensive-guide-to-swin-transformer-64965f89d14c Liu, Ze, et al. "Swin transformer: Hierarchical vision transformer using shifted
windows." Proceedings of the IEEE/CVF international conference on computer vision. 2021.
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Extensions: Swin Transformers
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Image Credit: Liu, Ze, et al. "Swin transformer: Hierarchical vision transformer using shifted windows." Proceedings of the IEEE/CVF international conference on computer vision. 2021.
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