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Motivating Applications of Graphs

• Molecules

Image Credit: https://www.wolfram.com/language/12/molecular-structure-and-computation/molecule-graphs.html.en?product=mathematica
https://www.wolfram.com/language/12/molecular-structure-and-computation/molecule-graphs.html.en?product=mathematica

• Multi-edges exist

• Nodes have types

• Edges have types

https://www.wolfram.com/language/12/molecular-structure-and-computation/molecule-graphs.html.en?product=mathematica
https://www.wolfram.com/language/12/molecular-structure-and-computation/molecule-graphs.html.en?product=mathematica


Motivating Applications of Graphs

• Social Networks

Image Credit: https://www.euroscientist.com/imagine-a-social-network-like-facebook-with-no-facebook/

Link Prediction

https://www.euroscientist.com/imagine-a-social-network-like-facebook-with-no-facebook/


Motivating Applications of Graphs

• Network-based Recommendations

Food Discovery

Image Credit: https://eng.uber.com/uber-eats-graph-learning/

https://eng.uber.com/uber-eats-graph-learning/


Motivating Applications of Graphs

• Citation Networks

Image Credit: https://www.tudelft.nl/en/library/research-analytics/case-12-citation-networks-2

https://www.tudelft.nl/en/library/research-analytics/case-12-citation-networks-2


Motivating Applications of Graphs

• Phylogenetic Tree

A phylogenetic tree based on rRNA genes 

showing the three life domains

Image Credit: https://en.wikipedia.org/wiki/Phylogenetic_tree

https://en.wikipedia.org/wiki/Phylogenetic_tree


Motivating Applications of Graphs

• Protein-Protein Interactions (PPIs)

Schizophrenia PPI

Image Credit: https://en.wikipedia.org/wiki/Protein%E2%80%93protein_interaction

https://en.wikipedia.org/wiki/Protein%E2%80%93protein_interaction


Motivating Applications of Graphs

• Epidemic Networks

Image Credit: https://www.science.org/doi/10.1126/sciadv.aau4212

https://www.science.org/doi/10.1126/sciadv.aau4212
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Deep Learning for Graphs

Graph Representations

 
• Connectivity

1. Adjacency List: G = (V, E)

V = {1,2,3,4}, E = {(1,2), (1,4), (4,3)}
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Deep Learning for Graphs

Graph Representations

 
• Connectivity

1. Adjacency List: G = (V, E)

2. Adjacency Matrix: A (sometimes we have weights)
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V = {1,2,3,4}, E = {(1,2), (1,4), (4,3)}
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Deep Learning for Graphs

Graph Representations

 
• Connectivity

1. Adjacency List: G = (V, E)

2. Adjacency Matrix: A (sometimes we have weights)

• Feature

1. Node Feature: X

2. Edge Feature

3. Graph Feature
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1 0 1 0

1 2 3 4
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V = {1,2,3,4}, E = {(1,2), (1,4), (4,3)}
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Deep Learning for Graphs

Graph Representations

 
• Connectivity

1. Adjacency List: G = (V, E)

2. Adjacency Matrix: A (sometimes we have weights)

• Feature

1. Node Feature: X

2. Edge Feature

3. Graph Feature

0 1 0 1

1 0 0 0

0 0 0 1

1 0 1 0

1 2 3 4

1

2

3

4

V = {1,2,3,4}, E = {(1,2), (1,4), (4,3)}

Graph Data = (A, X)
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Deep Learning for Graphs

Permutation 

    

    V = [1,2,3,4]  => V’ = [2,1,3,4]

    E = [(1,2), (1,4), (4,3)] => E’ = [(2,1), (2,4), (4,3)] 

V = [1,2,3,4], E = [(1,2), (1,4), (4,3)]
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Permute Rows Permute Columns
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Permutation 
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Permutation 

    

    V = [1,2,3,4]  => V’ = [2,1,3,4]
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Permutation 

    

    V = [1,2,3,4]  => V’ = [2,1,3,4]

    E = [(1,2), (1,4), (4,3)] => E’ = [(2,1), (2,4), (4,3)] 
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V’ = [2,1,3,4], E’ = [(2,1), (2,4), (4,3)]

Graph Isomorphism:

A bijection f between the vertex sets of G1 and G2 such that any two 

vertices u and v of G1 are adjacent iff f(u) and f(v) are adjacent in G2.
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Permutation 

    

    V = [1,2,3,4]  => V’ = [4,3,2,1]
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Graph Automorphism:

A permutation σ of the vertex set V, such that the pair of vertices (u,v) form 

an edge iff the pair (σ(u),σ(v)) also form an edge.

 



Deep Learning for Graphs

Permutation Invariance & Equivariance 

Graph Data (A, X),    Model

 

 Invariance:

 

 Equivariance:
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Deep Learning for Graphs

Key Challenges:
• Unordered Neighbors

• Varying Neighborhood Sizes

• Varying Graph Partitions
Pooling

Pooling
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Graph Neural Networks (GNNs) 

• Neural networks that can process general graph structured data

• First proposed in 2008 [1] and dates back to Recursive Neural Networks (mainly processing trees) in 90s [2]

• In fact, Boltzmann Machines [3] (fully connected graphs with binary units) in 80s can be viewed as GNNs

[1] Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M. and Monfardini, G., 2008. The graph neural network model. IEEE transactions on neural networks, 20(1), pp.61-80.
[2] Goller, C. and Kuchler, A., 1996, June. Learning task-dependent distributed representations by backpropagation through structure. In Proceedings of International Conference on Neural 
Networks (ICNN'96) (Vol. 1, pp. 347-352). IEEE.
[3] Ackley, D.H., Hinton, G.E. and Sejnowski, T.J., 1985. A learning algorithm for Boltzmann machines. Cognitive science, 9(1), pp.147-169.
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Deep Learning for Graphs

Graph Neural Networks (GNNs) 

• Neural networks that can process general graph structured data

• First proposed in 2008 [1] and dates back to Recursive Neural Networks (mainly processing trees) in 90s [2]

• In fact, Boltzmann Machines [3] (fully connected graphs with binary units) in 80s can be viewed as GNNs

• Most of GNNs (if not all) can be incorporated by the Message Passing paradigm

• GNNs have been independently studied in signal processing community under Graph Signal Processing

• The study of GNNs for geometric processing are also called Geometric Deep Learning

[1] Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M. and Monfardini, G., 2008. The graph neural network model. IEEE transactions on neural networks, 20(1), pp.61-80.
[2] Goller, C. and Kuchler, A., 1996, June. Learning task-dependent distributed representations by backpropagation through structure. In Proceedings of International Conference on Neural 
Networks (ICNN'96) (Vol. 1, pp. 347-352). IEEE.
[3] Ackley, D.H., Hinton, G.E. and Sejnowski, T.J., 1985. A learning algorithm for Boltzmann machines. Cognitive science, 9(1), pp.147-169.
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Graph Neural Networks (GNNs)

Input Encoding

1. Node Feature 
• If it is unavailable, use 1-of-K, random, index/size encoding of node index)

2. Edge Feature
• Feed it to message network

3. Graph Feature
• Treat it as a super node in your graph

• Feed graph feature to readout layer
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Passing
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Passing

Input Encoding Message Passing Layers/Steps



Graph Neural Networks (GNNs)

Message 

Passing
…Message 

Passing

Input Encoding Message Passing Layers/Steps

Steps: share message passing module (Recurrent Networks)

Layers: do not share message passing module (Feedforward Networks)



Graph Neural Networks (GNNs)

Message 

Passing
…

Node/Edge/Graph

Readout

Message 

Passing

Input Encoding Message Passing Layers/Steps

Predictions
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Message Passing in GNNs

(t+1)-th message passing step/layer 
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Aggregated Message

Node State 

Message Network

Message

Compute 

Messages

State Update Network

Updated Node State

Update 

Representation

(t+1)-th message passing step/layer 

Message Passing in GNNs

• Parallel Schedule!

• Other schedules [1] are possible and could 

improve performance in certain tasks!

[1] Liao, R., Brockschmidt, M., Tarlow, D., Gaunt, A.L., Urtasun, R. and Zemel, R., 2018. Graph partition neural networks for semi-supervised classification. arXiv preprint arXiv:1803.06272.
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Instantiations:

1. Compute Messages

2. Aggregate Messages

3. Update Node Representations

Message Passing in GNNs
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Implementations

1. Although graph could be very sparse, we should maximally exploit dense operators since 
they are efficient on GPUs!

2. Parallel message passing is very GPU friendly!

Tips:

• Use adjacency list representation

• Compute messages for all edges in parallel

• Compute aggregations for all nodes in parallel

• Compute updates for all nodes in parallel



Outline

• Motivating Applications

• Graph Neural Networks (GNNs)

• Graph representations

• Graph isomorphism & automorphism

• Challenges of graph data

• Graph Neural Networks (GNNs): history & basics

• Message passing framework of GNNs

• Instantiation of message passing

• Relationship with Transformers
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• Attention can be viewed as the weighted 

adjacency matrix of a fully connected graph!
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Relationships with Transformer

• Attention can be viewed as the weighted 

adjacency matrix of a fully connected graph!

• Transformers (esp. encoder) can be viewed as 

GNNs applied to fully connected graphs!

Image Credit: Vaswani, A., et al. Attention is all you need. NeurIPS 2017. https://towardsdatascience.com/illustrated-guide-to-transformers-step-by-step-explanation-f74876522bc0

https://towardsdatascience.com/illustrated-guide-to-transformers-step-by-step-explanation-f74876522bc0


Encode Graph Structures in Transformers

• Apply the adjacency matrix as a mask to the attention and renormalize it, like Graph 

Attention Networks (GAT) [1]

• Encode connectivities/distances as bias of the attention [2]

• Systematic investigation of various designs for graph Transformers [3]
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0 0 0 1

1 0 1 0

Hi  how  are  you

Hi 

how

are

you

[1] Veličković, Petar, et al. "Graph attention networks." ICLR. 2018. [2] Ying, Chengxuan, et al. "Do transformers really perform badly for graph representation?." NeurIPS. 2021. [3] Rampášek, 
Ladislav, et al. "Recipe for a general, powerful, scalable graph transformer." NeurIPS. 2022. 
Image Credit: https://towardsdatascience.com/illustrated-guide-to-transformers-step-by-step-explanation-f74876522bc0

https://towardsdatascience.com/illustrated-guide-to-transformers-step-by-step-explanation-f74876522bc0
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