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Motivating Applications of Graphs

 Molecules

* Multi-edges exist
* Nodes have types
» Edges have types

Image Credit: https://www.wolfram.com/language/12/molecular-structure-and-computation/molecule-graphs.html.en ?product=mathematica
https://www.wolfram.com/language/12/molecular-structure-and-computation/molecule-graphs.html.en ?product=mathematica



https://www.wolfram.com/language/12/molecular-structure-and-computation/molecule-graphs.html.en?product=mathematica
https://www.wolfram.com/language/12/molecular-structure-and-computation/molecule-graphs.html.en?product=mathematica

Motivating Applications of Graphs

Social Networks

Link Prediction

Image Credit: https://www.euroscientist.com/imagine-a-social-network-like-facebook-with-no-facebook/



https://www.euroscientist.com/imagine-a-social-network-like-facebook-with-no-facebook/

Motivating Applications of Graphs

* Network-based Recommendations

Food Discovery

Image Credit: https://eng.uber.com/uber-eats-graph-learning/



https://eng.uber.com/uber-eats-graph-learning/

Motivating Applications of Graphs

e Citation Networks
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Image Credit: https://www.tudelft.nl/en/library/research-analytics/case-12-citation-networks-2
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Motivating Applications of Graphs

* Phylogenetic Tree

Bacteria Archaea Eukarya
Green
Filamentous Slime
Spirochetes bacteria Entamoebae molds Animslljsn i
Gram Methanosarcina 9
_\ positives | yathanobacterium Halophiles
Proteobacteria Plants

. Methanococcus
Cyanobacteria Ciliates
Planctomyces Thermoproteus Flagellates

Pyrodicticum

Bacteroides Trichomonads
Cytophaga

Microsporidia

Thermotoga

Diplomonads
Aquifex

A phylogenetic tree based on rRNA genes
showing the three life domains

Image Credit: https://en.wikipedia.org/wiki/Phylogenetic_tree



https://en.wikipedia.org/wiki/Phylogenetic_tree

Motivating Applications of Graphs

 Protein-Protein Interactions (PPIs)
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Image Credit: https://en.wikipedia.org/wiki/Protein%E2 %80%93protein_interaction
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Motivating Applications of Graphs

« Epidemic Networks

Link epidemic importance

P(o=) + 0.0 ° 02 © 04 O 06

Image Credit: https://www.science.org/doi/10.1126/sciadv.aau4212
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Deep Learning for Graphs

Graph Representations e
« Connectivity ° 9
1. Adjacency List: G = (V, E) e

V={1234} E={(12), (14), (43)}
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Deep Learning for Graphs

Graph Representations e
« Connectivity ° 9
1. Adjacency List: G = (V, E) e

2. Adjacency Matrix: A (sometimes we have weights)
V={1234} E={(1,2), (1,4), (43}

e [Feature
1 2 3 4

1. Node Feature: X

2. Edge Feature

A W N B

3. Graph Feature

Graph Data = (A, X)
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Deep Learning for Graphs

Permutation 9 1 2 3 4

V =[1,2,34] => V' =12,1,3,4] (4 ©

1
2
E=[(1,2), (1,4), (4,3)] => E’=1[(2,1), (2,4), (4,3)] \\ 3
4

V=11,2,3,4], E=[(1,2), (1,4), (4,3)]



Deep Learning for Graphs

Permutation

V =1[1,2,3,4]
E=[(12), (1,4), (43)]

= V' =1[2,1,3,4]

=> E’=[(2,1), (2,4), (4,3)]
1 2 3 4

1

2

3

4

Original Adj Matrix

o 1 2 3 4

1
2
3
RO

V=11,2,3,4], E=[(1,2), (1,4), (4,3)]



Deep Learning for Graphs

Permutation

V =1[1,2,3,4]
E=[(12), (1,4), (43)]

Permute Rows
1 2 3 4

1
2
3
4

Permutation Matrix

o

1
2
3
4

1 2 3 4

V=11,2,3,4], E=[(1,2), (1,4), (4,3)]

=> V>’ =[2,1,3,4]
=> E’=1[(2,1), (2,4), (4,3)]
Permute Columns
1 2 3 4 1 2 3 4
1 1
2 2
3 3
4 4
Original Adj Matrix Transposed

Permutation Matrix




Deep Learning for Graphs

Permutation

V =1[1,2,3,4]
E=[(12), (1,4), (43)]

Permute Rows
1 2 3 4

1
2
3
4

Permutation Matrix

o

1 2 3 4

1
2
3
4

V=11,2,3,4], E=[(1,2), (1,4), (4,3)]

=> V>’ =[2,1,3,4]
=> E’=1[(2,1), (2,4), (4,3)]
Permute Columns
1 2 3 4 1 2 3 4
1 1
2 2
3 3
4 4
Original Adj Matrix Transposed

Permutation Matrix

1
2
3
4

1 2 3 4

Permuted Adj Matrix



Deep Learning for Graphs

Permutation 9 1 2 3 4
V - [1121314] => V, - [291’3’4]

1
2
E=[(1,2), (1,4), (4,3)] => E’=1[(2,1), (2,4), (4,3)] \\ 3
4

V=11,2,3,4], E=[(1,2), (1,4), (4,3)]

1 2 3 4

A wWwoN R

V’'=12,1,3,4],E’=[(2,1), (2,4), (4,3)]



Deep Learning for Graphs

Permutation

V =[1,2,3,4] => VvV’ =12,1,3,4]
E=[(1,2), (1,4), (4,3)] => E’=[(2,1), (2,4), (4,3)]

Graph Isomorphism:

A bijection f between the vertex sets of G1 and G2 such that any two

vertices u and v of G1 are adjacent iff f(u) and f(v) are adjacent in G2.

PAP'" = A,

O 1 2 3 4

1
2
3
RO

V=11,2,3,4], E=[(1,2), (1,4), (4,3)]

V’

1 2 3 4

A wWwoN R

[2,1,3,4], E’=[(2,1), (2,4), (4,3)]



Deep Learning for Graphs

Permutation 9 1 2 3 4

V =[1,2,34] => V' =[4,3,2,1] (4] ©

1
2
E=[(1,2), (1,4), (4,3)] => E’=1[(4,3), 4,1), (1,2)] \\ 3
4

V=11,2,3,4], E=[(1,2), (1,4), (4,3)]



Deep Learning for Graphs

Permutation

V =1[1,2,3,4]
E=[(12), (1,4), (43)]

= V' =[4,32,1]

=> E’=[(4,3), 4,1), (1,2)]
1 2 3 4

1

2

3

4

Original Adj Matrix

o 1 2 3 4

1
2
3
RO

V=11,2,3,4], E=[(1,2), (1,4), (4,3)]



Deep Learning for Graphs

Permutation

V =1[1,2,3,4]
E=[(12), (1,4), (43)]

Permute Rows
1 2 3 4

1
2
3
4

Permutation Matrix

o

1
2
3
4

1 2 3 4

V=11,2,3,4], E=[(1,2), (1,4), (4,3)]

=> V’=[4,3,2,1]
=> E’=1[(4,3), 4,1), (1,2)]
Permute Columns
1 2 3 4 1 2 3 4
1 1
2 2
3 3
4 4
Original Adj Matrix Transposed

Permutation Matrix




Deep Learning for Graphs

Permutation

V =1[1,2,3,4]
E=[(12), (1,4), (43)]

Permute Rows
1 2 3 4

1
2
3
4

Permutation Matrix

o

1 2 3 4

1
2
3
4

V=11,2,3,4], E=[(1,2), (1,4), (4,3)]

=> V’=[4,3,2,1]
=> E’=1[(4,3), 4,1), (1,2)]
Permute Columns
1 2 3 4 1 2 3 4
1 1
2 2
3 3
4 4
Original Adj Matrix Transposed

Permutation Matrix

1
2
3
4

1 2 3 4

Permuted Adj Matrix



Deep Learning for Graphs

Permutation 9 1 2 3 4
V - [1121314] => V, - [493’2’1]

1
2
E=[(1,2), (1,4), (4,3)] => E’=1[(4,3), 4,1), (1,2)] \\ 3
4

V=11,2,3,4], E=[(1,2), (1,4), (4,3)]

1 2 3 4

1
o O
0 4

V’'=14,3,2,1], E’=[(4,3), (4,1), (1,2)]



Deep Learning for Graphs

Permutation

V =1[1,2,3,4] => V’'=14,3,2,1]
E=[12),(14), (4.3)] => E*=1[(4.3), 4.1), (1,2)]

Graph Automorphism:

A permutation ¢ of the vertex set V, such that the pair of vertices (u,v) form
an edge iff the pair (o(u),o(v)) also form an edge.

PAP' = A

1

e 2
3

o

O 1 2 3 4

V=11,2,3,4], E=[(1,2), (1,4), (4,3)]

1 2 3 4

1
o O
0 4

V’'=14,3,2,1], E’=[(4,3), (4,1), (1,2)]



Deep Learning for Graphs

Permutation Invariance & Equivariance

Graph Data (A, X), Model f(A, X)

Invariance: f(PAPT, PX)=f(A,X)

Equivariance: f(PAPT, PX) — Pf(A,X)
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Deep Learning for Graphs

Key Challenges:
* Unordered Neighbors
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Key Challenges:
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Deep Learning for Graphs
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» Varying Neighborhood Sizes
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Deep Learning for Graphs

Key Challenges:
* Unordered Neighbors
 Varying Neighborhood Sizes
. : . —
Varying Graph Partitions Pooling




Deep Learning for Graphs

Key Challenges:
* Unordered Neighbors
 Varying Neighborhood Sizes
» Varying Graph Partitions Poollng

) @
Pooling
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Deep Learning for Graphs

Graph Neural Networks (GNNSs)

* Neural networks that can process general graph structured data



Deep Learning for Graphs

Graph Neural Networks (GNNSs)

* Neural networks that can process general graph structured data

 First proposed in 2008 [1] and dates back to Recursive Neural Networks (mainly processing trees) in 90s [2]

* In fact, Boltzmann Machines [3] (fully connected graphs with binary units) in 80s can be viewed as GNNSs

[1] Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M. and Monfardini, G., 2008. The graph neural network model. IEEE transactions on neural networks, 20(1), pp.61-80.
[2] Goller, C. and Kuchler, A., 1996, June. Learning task-dependent distributed representations by backpropagation through structure. In Proceedings of International Conference on Neural
Networks (ICNN'96) (Vol. 1, pp. 347-352). IEEE.

[3] Ackley, D.H., Hinton, G.E. and Sejnowski, T.J., 1985. A learning algorithm for Boltzmann machines. Cognitive science, 9(1), pp.147-169.



Deep Learning for Graphs

Graph Neural Networks (GNNSs)

* Neural networks that can process general graph structured data

 First proposed in 2008 [1] and dates back to Recursive Neural Networks (mainly processing trees) in 90s [2]

* In fact, Boltzmann Machines [3] (fully connected graphs with binary units) in 80s can be viewed as GNNSs

« Most of GNNs (if not all) can be incorporated by the Message Passing paradigm

[1] Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M. and Monfardini, G., 2008. The graph neural network model. IEEE transactions on neural networks, 20(1), pp.61-80.
[2] Goller, C. and Kuchler, A., 1996, June. Learning task-dependent distributed representations by backpropagation through structure. In Proceedings of International Conference on Neural
Networks (ICNN'96) (Vol. 1, pp. 347-352). IEEE.

[3] Ackley, D.H., Hinton, G.E. and Sejnowski, T.J., 1985. A learning algorithm for Boltzmann machines. Cognitive science, 9(1), pp.147-169.



Deep Learning for Graphs

Graph Neural Networks (GNNSs)

* Neural networks that can process general graph structured data

 First proposed in 2008 [1] and dates back to Recursive Neural Networks (mainly processing trees) in 90s [2]

* In fact, Boltzmann Machines [3] (fully connected graphs with binary units) in 80s can be viewed as GNNSs
« Most of GNNs (if not all) can be incorporated by the Message Passing paradigm

» GNNs have been independently studied in signal processing community under Graph Signal Processing

[1] Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M. and Monfardini, G., 2008. The graph neural network model. IEEE transactions on neural networks, 20(1), pp.61-80.
[2] Goller, C. and Kuchler, A., 1996, June. Learning task-dependent distributed representations by backpropagation through structure. In Proceedings of International Conference on Neural
Networks (ICNN'96) (Vol. 1, pp. 347-352). IEEE.

[3] Ackley, D.H., Hinton, G.E. and Sejnowski, T.J., 1985. A learning algorithm for Boltzmann machines. Cognitive science, 9(1), pp.147-169.



Deep Learning for Graphs

Graph Neural Networks (GNNSs)

* Neural networks that can process general graph structured data

 First proposed in 2008 [1] and dates back to Recursive Neural Networks (mainly processing trees) in 90s [2]

* In fact, Boltzmann Machines [3] (fully connected graphs with binary units) in 80s can be viewed as GNNSs
» Most of GNNs (if not all) can be incorporated by the Message Passing paradigm
» GNNs have been independently studied in signal processing community under Graph Signal Processing

» The study of GNNs for geometric processing are also called Geometric Deep Learning

[1] Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M. and Monfardini, G., 2008. The graph neural network model. IEEE transactions on neural networks, 20(1), pp.61-80.

[2] Goller, C. and Kuchler, A., 1996, June. Learning task-dependent distributed representations by backpropagation through structure. In Proceedings of International Conference on Neural
Networks (ICNN'96) (Vol. 1, pp. 347-352). IEEE.

[3] Ackley, D.H., Hinton, G.E. and Sejnowski, T.J., 1985. A learning algorithm for Boltzmann machines. Cognitive science, 9(1), pp.147-169.



Graph Neural Networks (GNNSs)
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Graph Neural Networks (GNNSs)
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Graph Neural Networks (GNNSs)

o0 1. Node Feature
« Ifitis unavailable, use 1-of-K, random, index/size encoding of node index)
[e]e)o)|
@ - 2. Edge Feature
@ « Feed it to message network
(U
3. Graph Feature

« Treat it as a super node in your graph
» Feed graph feature to readout layer

Input Encoding



Graph Neural Networks (GNNSs)

Message
Passing

Input Encoding Message Passing Layers/Steps

Message
Passing
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Graph Neural Networks (GNNSs)

Input Encoding

Message

Passing Passing

Message Passing Layers/Steps

Steps: share message passing module (Recurrent Networks)
Layers: do not share message passing module (Feedforward Networks)

Message ] B @)




Graph Neural Networks (GNNSs)

Message
Passing

Input Encoding Message Passing Layers/Steps

Message
Passing

|

.= @9 ()

Readout

[ Node/Edge/Graph ]

Predictions
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Message Passing In GNNs

Node State

(t+1)-th message passing step/layer




Message Passing In GNNs

h! b} ([GO0Y  Node State

% Message Network

(t+1)-th message passing step/layer

ﬁg
=



m.

Message Passing In GNNs

h! h

i = fmsg(hj, h7)

l Node State

Message Network
l Compute

Messages

(OCGG) Message

(t+1)-th message passing step/layer




m.

Message Passing In GNNs

h! h

i = fmsg(hj, h7)

Node State

Message Network

Compute
Messages

Message

Aggregated Message

(t+1)-th message passing step/layer




Message Passing In GNNs

e t+1)-th message passing step/layer
h Node State (t+1)-th message passing step/lay
Message Network
Compute
Messages
m!; = finsg(h}, ) O Message

m; = fage ({mj;l7 € Ni})| (OO0 Aggregated Message




Message Passing In GNNs

e t+1)-th message passing step/layer
h Node State (t+1)-th message passing step/lay
Message Network
Compute
Messages
m!; = finsg(h}, ) O Message

m; = fage ({mj;l7 € Ni})| (OO0 Aggregated Message (o0




Message Passing In GNNs

(t+1)-th message passing step/layer

h! h! Node State

Messages
t t t
m; = fusg(h’, hy) Message

Aggregated Message (oo

State Update Network %

ﬁl;5 = fagg ({mzzb = M})

% Message Network
l Compute

felele]

[e/o/0}

4




Message Passing In GNNs

ht

mj; = fimsg(hj, hy)

ﬁl;5 = fagg ({mzzb = M})

(

ht

79

~1
m;

)

g BE g ol

Node State

Message Network

Compute
Messages

Message

Aggregated Message

State Update Network

Update
Representation

Updated Node State

(t+1)-th message passing step/layer

&



Message Passing In GNNs

(t+1)-th message passing step/layer

h! b} (00) Node State
Message Network
Compute
Messages
m'; = fuusg(h, h) Message
m; = fage ({m;|j € Ni}) Aggregated Message (e/e]®)

State Update Network
Update
Representation

Updated Node State

g el f o

h;H_l - fupdate(hga ﬁ’lf)




Message Passing In GNNs

(t+1)-th message passing step/layer

h! b} (00) Node State
Message Network
Compute
Messages
m'; = fuusg(h, h) Message
m; = fage ({m;|j € Ni}) Aggregated Message (e/e]®)

State Update Network

Update
Representation

g el f o

hH_l = fupdate(hga Ii’lf) Updated Node State

e Parallel Schedulel!




Message Passing In GNNs

e t+1)-th message passing step/layer
b b BBEP  Node State (1) ¢ passing step/lay
Message Network
Compute
Messages
m’; = fneg (0], ) OO0 Vessage
0 = fuge ((ml]j €Ni})| @D Agoregated Message (000
% State Update Network
Update
Representation
h; ™ = fupdate(hf, M) OO0 Updated Node State
» Parallel Schedule!

» Other schedules [1] are possible and could
improve performance in certain tasks!

[1] Liao, R., Brockschmidt, M., Tarlow, D., Gaunt, A.L., Urtasun, R. and Zemel, R., 2018. Graph partition neural networks for semi-supervised classification. arXiv preprint arXiv:1803.06272.
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« Motivating Applications

« Graph Neural Networks (GNNSs)

» Graph representations

» Graph isomorphism & automorphism

» Challenges of graph data

» Graph Neural Networks (GNNS): history & basics
» Message passing framework of GNNs
 Instantiation of message passing

 Relationship with Transformers



Message Passing In GNNs

Instantiations:

1. Compute Messages

mj; = finsg(hj, )

2. Aggregate Messages
m; = Jfage ({mzz’] S M})

3.  Update Node Representations

hg—l_l — fupdate(hgv mt)

1



Message Passing In GNNs

Instantiations:
1. Compute Messages fumsg(h, hi) = MLP([h}, hi]) [1]

mj; = finsg(hj, )

[1] Gilmer, Justin, et al. "Neural message passing for quantum chemistry." ICML. 2017.



Message Passing In GNNs

Instantiations:
1. Compute Messages fmsg(hﬁ-, hi) = MLP([hﬁ., h!]) [1]
mg'i = fmsg(h§7 h;) fmsg(hﬁ'v h;) = h; [2]

[1] Gilmer, Justin, et al. "Neural message passing for quantum chemistry." ICML. 2017. [2] Morris, Christopher, et al. " Weisfeiler and leman go neural: Higher-order graph neural networks." AAAI.
2019.



Message Passing In GNNs

Instantiations:
1. Compute Messages fmsg(hﬁ-, hi) = MLP([hﬁ., h!]) [1]
mg'i = fmsg(h§7 h;) fmsg(hﬁ'v h;) = h; [2]

fmSg<h§'7 hgv ej’i) — MLP([h§'7 hgv eji]) [1]

[1] Gilmer, Justin, et al. "Neural message passing for quantum chemistry." ICML. 2017. [2] Morris, Christopher, et al. " Weisfeiler and leman go neural: Higher-order graph neural networks." AAAI.
2019.



Message Passing In GNNs

Instantiations:
1. Compute Messages fmsg(hﬁ-, hi) = MLP([hﬁ., h!]) [1]
mﬁ-i = fmsg(h§7 h;) fmsg(hﬁ'v h}) = h; [2]

s (1, 1 fey) = MLP ([, bt e5:]) [1]
Edge Feature

[1] Gilmer, Justin, et al. "Neural message passing for quantum chemistry." ICML. 2017. [2] Morris, Christopher, et al. " Weisfeiler and leman go neural: Higher-order graph neural networks." AAAI.
2019.



Message Passing In GNNs

Instantiations:
1. Compute Messages fumsg(h, hi) = MLP([h}, hi]) [1]
!, = funse (1, B Fonse (15, 1) = By 2]
(1}, 1 o) = MLP([h, b, ) [1]
Edge Feature
2. Aggregate Messages fage ({mi]5 € Ni}) =3 e n, mj, [1,2,4]

rhf — fagg ({mzz‘] S M})

[1] Gilmer, Justin, et al. "Neural message passing for quantum chemistry." ICML. 2017. [2] Morris, Christopher, et al. " Weisfeiler and leman go neural: Higher-order graph neural networks." AAAI.
2019. [3] Hamilton, Will, et al. "Inductive representation learning on large graphs." NeurlPS. 2017. [4] Li, Yujia, et al. "Gated graph sequence neural networks." ICLR. 2016.



Message Passing In GNNs

Instantiations:
1. Compute Messages fumsg(h, hi) = MLP([h}, hi]) [1]
! = g 1) s (B ) = b 2]
(1}, 1 o) = MLP([h, b, ) [1]
Edge Feature
2. Aggregate Messages fage ({mi]5 € Ni}) =3 e n, mj, [1,2,4]
! = Fuge ((mislj € M) Foss ({05l € NGY) = i e, s 3

[1] Gilmer, Justin, et al. "Neural message passing for quantum chemistry." ICML. 2017. [2] Morris, Christopher, et al. " Weisfeiler and leman go neural: Higher-order graph neural networks." AAAI.
2019. [3] Hamilton, Will, et al. "Inductive representation learning on large graphs." NeurlPS. 2017. [4] Li, Yujia, et al. "Gated graph sequence neural networks." ICLR. 2016.



Message Passing In GNNs

Instantiations:
1. Compute Messages fumsg(h, hi) = MLP([h}, hi]) [1]
! = g 1) s (B ) = b 2]
(1}, 1 o) = MLP([h, b, ) [1]
Edge Feature
2. Aggregate Messages fage ({mi]5 € Ni}) =3 e n, mj, [1,2,4]
! = Fuge ((mislj € M) Foss ({105l € NGY) = i e, 5 3

fage <{m§z‘] € Ni}) = maxjep, mj, [3]

[1] Gilmer, Justin, et al. "Neural message passing for quantum chemistry." ICML. 2017. [2] Morris, Christopher, et al. " Weisfeiler and leman go neural: Higher-order graph neural networks." AAAI.
2019. [3] Hamilton, Will, et al. "Inductive representation learning on large graphs." NeurlPS. 2017. [4] Li, Yujia, et al. "Gated graph sequence neural networks." ICLR. 2016.



Message Passing In GNNs

Instantiations:
1. Compute Messages fumsg(h, hi) = MLP([h}, hi]) [1]
m?i = fmsg(h§7 h;) fmsg(h;» h}) = h; [2]
(1}, 1 o) = MLP([h, b, ) [1]
Edge Feature
2. Aggregate Messages fage ({mi]5 € Ni}) =3 e n, mj, [1,2,4]
0] = fags ({mly]j € A3}) s ({17 € NiY) = 7 X, 20l [3]
fage <{m§z‘] € Ni}) = maxjep, mj, [3]
fage ({mf;1j € Ni}) = LSTM ((mi;[j e N;])  [3]

[1] Gilmer, Justin, et al. "Neural message passing for quantum chemistry." ICML. 2017. [2] Morris, Christopher, et al. " Weisfeiler and leman go neural: Higher-order graph neural networks." AAAI.
2019. [3] Hamilton, Will, et al. "Inductive representation learning on large graphs." NeurlPS. 2017. [4] Li, Yujia, et al. "Gated graph sequence neural networks." ICLR. 2016.



Message Passing In GNNs

Instantiations:
1. Compute Messages fumsg(h, hi) = MLP([h}, hi]) [1]
m?i = fmsg(h§7 h;) fmsg(h;» h}) = h; [2]
(1}, 1 o) = MLP([h, b, ) [1]
Edge Feature
2. Aggregate Messages fage ({mfilj € Ni}) =32 e, mj, [1,2,4]
0] = fags ({mly]j € A3}) s ({17 € NiY) = 7 X, 20l [3]
fage <{m§z‘] € Ni}) = maxjep, mj, [3]
fage ({mf;1j € Ni}) = LSTM ((mi;[j e N;])  [3]

3. Update Node Representations Fupdate (B!, m!) = GRU(h!, m!) [1,4]

hg—l_l — fupdate(hgv mt)

1

[1] Gilmer, Justin, et al. "Neural message passing for quantum chemistry." ICML. 2017. [2] Morris, Christopher, et al. " Weisfeiler and leman go neural: Higher-order graph neural networks." AAAI.
2019. [3] Hamilton, Will, et al. "Inductive representation learning on large graphs." NeurlPS. 2017. [4] Li, Yujia, et al. "Gated graph sequence neural networks." ICLR. 2016.



Message Passing In GNNs

Instantiations:
1. Compute Messages fumsg(h, hi) = MLP([h}, hi]) [1]
', = finsg (0, 1) fmsg (g i) = 1 [2]
(1}, 1 o) = MLP([h, b, ) [1]
Edge Feature
2. Aggregate Messages fage ({mf;lj € Ni}) = 3 e, mj; [1,2,4]
! = fugs ({mi)j € Ai}) Foss (Sl € NGD) = iy 2o, 3]
fage <{m§z‘] € Ni}) = maxjep, mj, [3]
fage ({m;|j € Ni}) = LSTM (fm,|j e A7) [3]
3. Update Node Representations Fupdate (B!, m!) = GRU(h!, m!) [1,4]
fupdate(hgv rhf) - MLPl(hf) + MLP2(m$) [2]

hg—l_l — fupdate(hgv mt)

1

[1] Gilmer, Justin, et al. "Neural message passing for quantum chemistry." ICML. 2017. [2] Morris, Christopher, et al. " Weisfeiler and leman go neural: Higher-order graph neural networks." AAAI.
2019. [3] Hamilton, Will, et al. "Inductive representation learning on large graphs." NeurlPS. 2017. [4] Li, Yujia, et al. "Gated graph sequence neural networks." ICLR. 2016.



Message Passing In GNNs

Instantiations:
1. Compute Messages fumsg(h, hi) = MLP([h}, hi]) [1]
0, = fog(hl, h) s (B 1) = I [2]
(1}, 1 o) = MLP([h, b, ) [1]
Edge Feature
2. Aggregate Messages fage ({mi;]7 € Ni}) = ZjeN‘ mj; [1,2,4]
t
! = fugs ({015 € M) Foss ({515 € N2Y) = g By 0 3]
fage ({mf;]j € Ni}) = max;en; mj; 3]
fagg ({m’;]j € N;}) = LSTM ([mjiu e Ni)) [3]
3. Update Node Representations Fupdate (B!, m!) = GRU(h!, m!) [1,4]
ht.—l_l _ fupdate(hﬁ, ﬁlt) fupdate(h m.; ) MLPl(ht) + MLPQ(IYIZZ) [2]
fupdate (h, mj) = MLP([h{, mj]) 3]

[1] Gilmer, Justin, et al. "Neural message passing for quantum chemistry." ICML. 2017. [2] Morris, Christopher, et al. " Weisfeiler and leman go neural: Higher-order graph neural networks." AAAI.
2019. [3] Hamilton, Will, et al. "Inductive representation learning on large graphs." NeurlPS. 2017. [4] Li, Yujia, et al. "Gated graph sequence neural networks." ICLR. 2016.



Readout iIn GNNSs

Instantiations:

1. Node Readout

Y = freadout (hizr)

2. Edge Readout

Yij — freadout(hgv hf)

3.  Graph Readout

y = freadout ({h@T})



Readout iIn GNNSs

Instantiations:

1. Node Readout

Y: = freadout (hizr) freadout (h?) — MLP(hf)



Readout iIn GNNSs

Instantiations:

1. Node Readout

Y = freadout (h?)

2. Edge Readout

Yij — freadout(hgv hf)

freadout (hzT) — MLP(h?)

freadout (hfa hrjr) — MLP([thv h?])

freadout(hgy hf,@ — MLP([hzT7 hf7 eij])
Edge Feature




Readout iIn GNNSs

Instantiations:

1.

Node Readout

Y = freadout (hizr)

Edge Readout

Yij — freadout(hgv hf)

Graph Readout

Y = freadout ({hzT})

freadout (hzT) — MLP(h;F)

freadout (hfa hrjr) — MLP([thv h?])

freadout (hzTa hf)

9 = MLP([h7, h7 e;;])

Edge Feature

freadout({hy }) = 3=, o(MLPy (hi"))MLP; (h/)

freadout ( {hzT }

g)

— Zz U(MLpl (hzT7 g)>MLP2<h;'F7 g)

Graph Feature



Implementations

1. Although %_raph could be very sparse, we should maximally exploit dense operators since
they are efficient on GPUs!

2. Parallel message passing is very GPU friendly!



Implementations

1. Although %_raph could be very sparse, we should maximally exploit dense operators since
they are efficient on GPUs!

2. Parallel message passing is very GPU friendly!

Tips:
» Use adjacency list representation
» Compute messages for all edges in parallel
« Compute aggregations for all nodes in parallel
» Compute updates for all nodes in parallel



Outline

« Motivating Applications

« Graph Neural Networks (GNNSs)

» Graph representations

» Graph isomorphism & automorphism

» Challenges of graph data

» Graph Neural Networks (GNNS): history & basics
» Message passing framework of GNNs

* |Instantiation of message passing

» Relationship with Transformers



Relationships with Transformer

Output
Probabilities

e N
Add & Norm
Feed
Forward
r 3
( ) I
- \ (Add & Norm J+— .
( r—>| Add & Norm l : Embeddlng
Multi-Head
Feed Attention Nx
Forward L g g3 g ) A A A A
1 | I
_ : | ! :
Nx Add & Norm I | i |
r—>| Add & Norm l I 1 [ [
Masked u
Multi-Head Multi-Head H| hOW are you
Attention Attention
r 3 r 3
N S=E R =
Positional _9 E_ Positional
Encoding Encoding
Input Qutput
Embedding Embedding
Inputs Outputs

(shifted right)

Image Credit: Vaswani, A., et al. Attention is all you need. NeurlPS 2017. https://towardsdatascience.com/illustrated-guide-to-transformers-step-by-step-explanation-f74876522bc0



https://towardsdatascience.com/illustrated-guide-to-transformers-step-by-step-explanation-f74876522bc0

Relationships with Transformer

Output
Probabilities

Scaled Scores

e “
Add & Norm

Feed
Forward
F 3
I

4 N\ l Add & Norm |<ﬂ
r—>| Add & Norm l

Multi-Head
Feed Attention Nx

Forward I Hi how are you

r

— .
Add & Norm l Maskad
m askKe
Attention Attention S oftm a X( % ) - ’ ’ )

Positional _9 E_ Positional
Encoding Encoding you § 0.1 §0.3 §0.3 §0.3
Input Qutput

Embedding Embedding
Inputs Outputs softmax(z);

(shifted right)

Image Credit: Vaswani, A., et al. Attention is all you need. NeurlPS 2017. https://towardsdatascience.com/illustrated-guide-to-transformers-step-by-step-explanation-f74876522bc0
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Relationships with Transformer

Output
Probabilities

« Attention can be viewed as the weighted

adjacency matrix of a fully connected graph!

e “
Add & Norm

Feed
Forward
F 3
I

4 N\ l Add & Norm |<ﬂ
r—>| Add & Norm l =
Multi-Head

Feed Attention Nx ‘
Forward I Hi how are you
r N

— .
= H.
MNorm

I Masked h .
Multi-Head Multi-Head ow 0.1 m
Attention Attention S Oﬂm 3 X( @ ) -

Positional _9 E_ Positional
Encoding Encoding you § 0.1 §0.3 §0.3 §0.3
Input Qutput

Image Credit: Vaswani, A., et al. Attention is all you need. NeurlPS 2017. https://towardsdatascience.com/illustrated-guide-to-transformers-step-by-step-explanation-f74876522bc0

Embedding

f

Inputs

Embedding

f

Outputs
(shifted right)

softmax(z);
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Relationships with Transformer

Output
Probabilities

« Attention can be viewed as the weighted

adjacency matrix of a fully connected graph!

r ) ®
Add & Norm

Transformers (esp. encoder) can be viewed as

— GNNs applied to fully connected graphs!
Forward
' ™\ l Add & Norm |<ﬂ
r—>| Add & Norm l =
Multi-Head
Feed Attention Nx
Forward I Hi how are you

— .
o= :
MNorm

I Masked h .
Multi-Head Multi-Head ow 0.1 m
Attention Attention S Of'tm 3 X( @ ) -

Positional _9 E_ Positional
Encoding Encoding you § 0.1 §0.3 §0.3 §0.3
Input Qutput

Image Credit: Vaswani, A., et al. Attention is all you need. NeurlPS 2017. https://towardsdatascience.com/illustrated-guide-to-transformers-step-by-step-explanation-f74876522bc0

Embedding

f

Inputs

Embedding

f

Outputs
(shifted right)

softmax(z);

exp(x;)
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Encode Graph Structures in Transformers

» Apply the adjacency matrix as a mask to the attention and renormalize it, like Graph
Attention Networks (GAT) [1]

» Encode connectivities/distances as bias of the attention [2]
« Systematic investigation of various designs for graph Transformers [3]

Hi how are you

. o [oror [or Jor
@ Hi how are you
- row |01 Jos Joz for
Softmax () =
OO we [or]os s [or
e

you

_ exp(x;)
Y eap(ay))

softmax(x);

[1] Velickovi¢, Petar, et al. "Graph attention networks." ICLR. 2018. [2] Ying, Chengxuan, et al. "Do transformers really perform badly for graph representation?." NeurlPS. 2021. [3] Rampasek,
Ladislav, et al. "Recipe for a general, powerful, scalable graph transformer." NeurlPS. 2022.
Image Credit: https://towardsdatascience.com/illustrated-guide-to-transformers-step-by-step-explanation-f74876522bc0
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Questions?
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