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Convolution on Graphs?

• Let us review Fourier Transform and Convolution Theorem
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is the eigenfunction of Laplacian operator!

Inverse Fourier transform
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How can we generalize 

them to graphs?
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Convolution on Graphs?

• Let us review Fourier Transform and Convolution Theorem

1. Based on the eigenfunction of Laplacian operator, we define Fourier transform

2. Based on the convolution theorem, we can define convolution in Fourier domain

• How can we generalize convolution to graphs?

1. What is the Laplacian operator on graph?

2. How can we define convolution in (graph) Fourier domain?
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Graph Laplacian

Graph G = (V, E), graph signal (node feature) X

Degree matrix: 

(Combinatorial) Graph Laplacian:

Image Credit: https://en.wikipedia.org/wiki/Laplacian_matrix

Compute difference between 

current node and its neighbors!

https://en.wikipedia.org/wiki/Laplacian_matrix


Graph Laplacian

For undirected graphs, (Combinatorial) Graph Laplacian:

• Symmetric

• Diagonally dominant

• Positive semi-definite (PSD)

• The number of connected components in the graph is the algebraic multiplicity of the eigenvalue 0. 

Image Credit: https://en.wikipedia.org/wiki/Laplacian_matrix

https://en.wikipedia.org/wiki/Laplacian_matrix


Graph Laplacian

Symmetrically Normalized Graph Laplacian:

Eigenvalues lie in [0, 2], why? (Try to show it by yourself!)

Image Credit: https://en.wikipedia.org/wiki/Laplacian_matrix

https://en.wikipedia.org/wiki/Laplacian_matrix


Spectral Theorem

If L is a symmetric matrix, we have

where                                                       contains eigenvectors of L and is orthogonal
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Spectral Theorem

If L is a symmetric matrix, we have

where                                                       contains eigenvectors of L and is orthogonal

                                                                         contains the eigenvalues of L

Spectral Decomposition
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Graph Fourier Transform

Given signal             , the classical Fourier transform is:

i.e., expansion in terms of complex exponentials (eigenfunction of Laplacian operator)

Given graph signal                       , the Graph Fourier Transform is:

i.e., expansion in terms of eigenvectors of Graph Laplacian operator

Inverse Graph Fourier Transform

Eigenvalue corresponds to frequency!



Graph Convolution (Spectral Filtering)

Convolution:
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Convolution:

Graph Fourier Transform:



Graph Convolution (Spectral Filtering)

Convolution:

Graph Fourier Transform:

Graph Convolution in Fourier domain (Spectral Filtering):
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Spectral Filters

Graph Convolution in Fourier domain (Spectral Filtering):

Directly construct h requires spectral decomposition which is O(N^3)!

Can we find some efficient construction of h?

• Chebyshev polynomials [7]

• Graph wavelets [7]
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Chebyshev polynomials of the first kind:
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Chebyshev Polynomials

Chebyshev polynomials of the first kind:

Image Credit: https://en.wikipedia.org/wiki/Chebyshev_polynomials
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Chebyshev polynomials of the first kind:

Image Credit: https://en.wikipedia.org/wiki/Chebyshev_polynomials

They provide orthonormal basis in some Sobolev space on [-1, 1]:

https://en.wikipedia.org/wiki/Chebyshev_polynomials


Spectral Filters

Chebyshev expansion:
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Chebyshev expansion:

Spectral filtering:



Spectral Filters

Chebyshev expansion:

Spectral filtering:

Truncated Chebyshev polynomials approximation:



Spectral Filters

Truncated Chebyshev polynomials approximation:

Graph Convolution:



Spectral Filters

Truncated Chebyshev polynomials approximation:

Graph Convolution:

Truncated Chebyshev polynomials based Graph Convolution:
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Spectral Filters

Recall we do not want explicit spectral decomposition since it is expensive!

Are Chebyshev polynomials efficient?
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Spectral Filters

Truncated Chebyshev polynomials based Graph Convolution:

where

What if we truncate to 1st order?

That is Graph Convolutional Networks (GCNs) [8] !
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Truncated Chebyshev polynomials based Graph Convolution:

We can use the normalize graph Laplacian so that its eigenvalues are in [0, 2]

Assuming 



Graph Convolutional Networks (GCNs)

Simplified Truncated Chebyshev polynomials based Graph Convolution:
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Graph Convolutional Networks (GCNs)

Simplified Truncated Chebyshev polynomials based Graph Convolution:

eigenvalues are in [0, 2] eigenvalues are in [-1, 1]

Final Form of Graph Convolution:



Graph Convolutional Networks (GCNs)

Graph convolution in GCNs for 1D graph signal:



Graph Convolutional Networks (GCNs)

Graph convolution in GCNs for 1D graph signal:

Generalize to multi-input and multi-output convolution:



Graph Convolutional Networks (GCNs)

Graph convolution in GCNs for 1D graph signal:

Generalize to multi-input and multi-output convolution:

Add nonlinearity:



Graph Convolutional Networks (GCNs)

Our Spectral Filters are Localized:

1

1

1

1

2

2

1-step Graph Convolution:

2-step Graph Convolution:

…
…

Exponent of matrix power indicates how far the propagation is!
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Graph Convolutional Networks (GCNs)

• We start with Chebyshev Polynomials which can represent any spectral filters (eigenvalues in [-1, 1])

• Truncate the expansion at 1st order for efficiency

• Further simplification/approximation

We can remedy the lost expressiveness by stacking multiple graph convolution layers!



Graph Convolutional Networks (GCNs)

Graphs



Graph Convolutional Networks (GCNs)

GraphConv

Graphs



Graph Convolutional Networks (GCNs)

PredictionsGraphConv

Graphs

GraphConv …
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Aggregated Message

Node State 

Message Network

Message

Compute 

Messages

State Update Network

Updated Node State

Update 

Representation

(t+1)-th message passing step/layer 

Message Passing GNNs



GCNs are Message Passing Networks

• Node State • Graph Laplacian



• Node State 

• State Update Network

GCNs are Message Passing Networks

• Graph Laplacian

• Aggregated Message
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Our Spectral Filters are Localized:

1

1

1

1

2

2

1-step Graph Convolution:

2-step Graph Convolution:

What if the graph diameter m is large?

Revisit Spectral Filtering

m...
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Our Spectral Filters are Localized:

1

1

1

1

2

2

m-step Graph Convolution:

Revisit Spectral Filtering

m...

Spectral Decomposition:

Cubic complexity O(N^3) !



Lanczos Algorithm
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=

𝐾

Lanczos Algorithm

Tridiagonal Decomposition



≈

Lanczos Algorithm

Tridiagonal Decomposition

Low-rank approximation



Low-rank approximation with top K eigenpairs

≈

Tridiagonal Decomposition

O(𝑁3)                     O(𝐾𝑁2)

Lanczos Algorithm



• m-step GraphConv 

• Learn Nonlinear Spectral Filter

• Learning Graph Kernel / Metric

• m-step GraphConv (Prior Work) 

Multi-scale Graph Convolutional Networks

LanczosNet [9]:



SignNet

Adjacency 

Matrix

Node 

Features

Laplacian 

Eigenvectors SignNet

Prediction 

Model 

(e.g. GNN,

Transformer) 

Compute

Eigvecs

Input Graph Model

Eigenvectors of graph Laplacian are shown to be powerful node features, e.g., [10].

However, the sign-change of eigenvectors leaves the eigenspace unchanged. In other words, we need a 

network that is invariant to the sign-change. SingNet [11] does the job!

Image Credit: [11]



SignNet

Image Credit: [11]

The variant of SingNet [11], called BasisNet [11], is also invariant to the change of basis of the eigenspaces:

In particular, the model has the form:



Specformer

Previous work employ scalar-to-scalar spectral filters

𝜆1
𝜆2
𝜆3
𝜆4

𝜆1
′

𝜆2
′

𝜆3
′

𝜆4
′

𝜆′ = 𝑁𝑁(𝜆)

𝜆1
𝜆2
𝜆3
𝜆4

𝜆1
′

𝜆2
′

𝜆3
′

𝜆4
′

𝜆′ = 1 + 𝜆1 + 𝜆2…

𝜆1
𝜆2
𝜆3
𝜆4

𝜆1
′

𝜆2
′

𝜆3
′

𝜆4
′

𝜆′ = 𝜃𝜆

Advanced Filter
e.g., LanczosNet [9]

Polynomial Filter
e.g., ChebyNet [12]

Linear Filter
e.g., GCN [8]

Scalar-to-Scalar Filter



Specformer

Previous work employ scalar-to-scalar spectral filters, which may fail to capture global graph properties.

Algebraic

Connectivity

Diameter

Clusterability

Count(𝜆 = 0)

[
4

𝑛𝜆2
,

1

2𝑚𝜆1
]

𝜆2 − 𝜆1
(𝜆1 ≠ 𝜆2 ≠ 0)

Spectrum

Information
Example Definition Scalar Input Set Input



Specformer

Instead of employing scalar-to-scalar spectral filters, Specformer [13] uses set-to-set spectral filters:

Due to the eigenvalue encoding, the 

spectral filter is permutation invariant!
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