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Autoencoders (AEs)

• Autoencoders are feed-forward neural networks that reconstruct/predict the input
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Autoencoders (AEs)

• Autoencoders are feed-forward neural networks that reconstruct/predict the input

• To make it non-trivial, we need a bottleneck (i.e. the dimension of code being much smaller compared to the 

input). Why? Otherwise, Encoder and Decoder can learn to just copy input (show you later).

Image Credit: [1]
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Autoencoders (AEs)

Why should we care?

• Dimension reduction

e.g., visualizing high-dimension data

• Unsupervised representation learning

e.g., if we have abundant data without annotations, learned representations will potentially be useful for 

downstream tasks like classification and regression
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Linear Autoencoders

Simplest autoencoders: a single hidden layer with linear activations

We can train them by minimizing the mean squared errors (MSE):

The network is 
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Linear Autoencoders

Simplest autoencoders: a single hidden layer with linear activations

We can train them by minimizing the mean squared errors (MSE):

The network is 

If               ,   one can choose U and V such that                     (copying input)

Underdetermined system of equations, possibly having infinite solutions

Else               , we are reducing the dimension

The reconstructed output lies in the column space of  U, which is a K-dimensional subspace

Image Credit: [2]
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We know linear autoencoders map D-dimensional input to a K-dimensional subspace

What is the best possible K-dimensional mapping?

The one that minimizes the reconstruction error!

To obtain it, let us first center the data, i.e.,

By Pythagorean Theorem, we have:

Maximizing the projected variance is equivalent to minimizing the reconstruction error!
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Linear Autoencoders & Principle Component Analysis

We know linear autoencoders map D-dimensional input to a K-dimensional subspace

What is the best possible K-dimensional mapping?

The one that minimizes the reconstruction error!

To obtain it, let us first center the data, i.e.,

By Pythagorean Theorem, we have:

Maximizing the projected variance is equivalent to minimizing the reconstruction error!

You can maximize the variance in closed-form via principle component analysis (PCA)!

Image Credit: [2]
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When you train a linear autoencoder, it may not give you the optimal K-dimensional mapping returned by PCA
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Linear Autoencoders & Principle Component Analysis

When you train a linear autoencoder, it may not give you the optimal K-dimensional mapping returned by PCA

In fact, given                        , the minima of the reconstruction loss                                  is not unique!

The objective is invariant under any invertible matrix A s.t. 

One can add regularization terms [3] so that the returned minima 

can exactly recover principled components!

Principle components of faces (“Eigenfaces”) from CBCL dataset: 

Image Credit: [2]



Linear Autoencoders & Principle Component Analysis

Principle components of digits from MNIST dataset: 

Image Credit: [2]
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Deep Autoencoders

Deep autoencoders learn to project data onto a manifold instead of a subspace

This is a kind of nonlinear dimension reduction

Image Credit: [2]
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Deep autoencoders learn to project data onto a manifold instead of a subspace

This is a kind of nonlinear dimension reduction

Image Credit: [2,4]



Deep Autoencoders

Deep autoencoders learn to project data onto a manifold instead of a subspace

This is a kind of nonlinear dimension reduction

Deep autoencoders can learn more powerful codes/representations compared to linear ones (PCA)

Reconstructions with various methods on MNIST dataset:

Image Credit: [4]
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Denoising Autoencoders (DAEs)

Reconstructing input data is not the only way to learn useful representations in an unsupervised way.

We can also achieve a similar goal via denoising!

We add random noise (e.g., additive Gaussian) and force the neural network to learn useful representations so 

that structures in images are preserved whereas noise is removed! 

Image Credit: [1]



Denoising Autoencoders (DAEs)

DAEs can do a great job in denoising:

Image Credit: [1]



Denoising Autoencoders (DAEs)

DAEs can learn correct vector fields (reconstruction – noisy input) that point to data manifold (spiral):

Image Credit: [5]

zoom in zoom out 
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Variational Autoencoders (VAEs)

Suppose we have trained an autoencoder

Image Credit: [6]
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Variational Autoencoders (VAEs)

Suppose we have trained an autoencoder and would like to use it to generate data

What would happen? Sampled data could be very bad if sampled latent codes are far off the manifold!

Ideally, we hope to learn a regular latent space that similar latent codes generate similar data!

Image Credit: [6]

Can AEs learn such latent spaces that are good for reconstruction + generation? Yes, VAEs [7,8]!
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Maximum Likelihood

Given data                  , Maximum Likelihood is:
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Maximum Likelihood

Given data                  , Maximum Likelihood is:

Variational Auto-Encoders (VAEs)

  We introduce latent variable 

Intractable Integration!
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Evidence Lower Bound (ELBO)

Variational Approximation

Integrating from both sides:

Evidence Lower Bound (ELBO) Kullback-Leibler (KL) Divergence

Why is it a lower bound? KL is nonnegative!

Why is it called variational approximation?

We choose one distribution (function) from a 

family to approximate the target!
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Evidence Lower Bound (ELBO)

Reconstruction Error/Loss Regularizer
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Variational Autoencoders

Encoder:

Decoder:

Prior:

Since we typically use continuous latent variable Z, Gaussian distribution is 

a natural choice for the encoder:

Similarly, Gaussian distribution is often adopted for the decoder:

We often fix the prior as, e.g., standard Normal



Variational Autoencoders

Encoder:

Decoder:

Prior:

Illustration of VAEs:

Image Credit: [6]
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Amortized Variational Inference
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whereas in traditional variational inference (VI) one needs to find the 

optimal variational distribution per     



Amortized Variational Inference

Encoder:

Decoder:

Prior:

Since we typically use continuous latent variable Z, Gaussian distribution is 

a natural choice for the encoder:

Encoder is amortized: every      shares the same set of parameters

We thus only need to optimize ELBO over one set of parameters     , 

whereas in traditional variational inference (VI) one needs to find the 

optimal variational distribution per     

Different      still have different encoder distributions
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Reconstruction Error/Loss Regularizer



Reparameterization Trick

Negative ELBO:

We want to minimize negative ELBO w.r.t. encoder parameters      and decoder parameters 

The expectation in reconstruction loss is intractable and often approximated by Monte Carlo estimation

Reconstruction Error/Loss Regularizer



Reparameterization Trick

Negative ELBO:

We want to minimize negative ELBO w.r.t. encoder parameters      and decoder parameters 

The expectation in reconstruction loss is intractable and often approximated by Monte Carlo estimation

Once we draw samples of     , we can get the Monte Carlo gradient of reconstruction loss w.r.t.      via 

backpropagation

Reconstruction Error/Loss Regularizer



Reparameterization Trick

Negative ELBO:



Reparameterization Trick

Negative ELBO:

Gradient of the decoder (assuming prior is not learnable for simplicity) [7]:



Reparameterization Trick

Negative ELBO:

We want to minimize negative ELBO w.r.t. encoder parameters      and decoder parameters 

The expectation in reconstruction loss is intractable and often approximated by Monte Carlo estimation

Once we draw samples of     , we can get the Monte Carlo gradient of reconstruction loss w.r.t.      via 

backpropagation

We will use reparameterization trick (a.k.a. pathwise derivatives) to equivalently rewrite the expectation in 

reconstruction loss so that the Monte Carlo gradient w.r.t.       has a low variance.

Reconstruction Error/Loss Regularizer
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Reparameterization Trick

For any function f, we have

Therefore, 

Change of Variable



Reparameterization Trick

In original VAE,



Reparameterization Trick

In original VAE,

Using Gaussian integrals, we have 

where 
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Therefore, in original VAE, we have

We only need reparameterization trick and Monte Carlo estimation in the first term



Reparameterization Trick

Therefore, in original VAE, we have

We only need reparameterization trick and Monte Carlo estimation in the first term

Now we can get the gradient directly!
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Reparameterization Trick

In the illustration of VAEs, the latent variable is reparameterized as below:

Image Credit: [6]

What if we have discrete latent 

variables in VAEs?

Reparameterization trick does 

not work exactly since sampling 

path is non-differentiable! 

We need Monte Carlo gradient 

estimation methods which are 

covered by a separate lecture.



VAEs on MNIST

Image Credit: [9]

Visualize                              during training: Visualize                              during training:
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Graph VAEs [10, 11] generalize VAEs to graph structured data:

 

 Node feature:

 Node latent variables: 

 Adjacency matrix: 

Graph Variation Autoencoders



Graph VAEs [10, 11]:

 

Encoder:

Graph Variation Autoencoders
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Encoder:

Prior:
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Decoder:
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Decoder:

Adjacency Matrix Decoder:
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Graph VAEs [10, 11]:

 

Decoder:

Adjacency Matrix Decoder:

Node Feature Decoder:

Graph Variation Autoencoders



Graph VAEs [10, 11]:

 

Learning:
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Graph VAEs [10, 11]:

 

Learning:

Are we done?
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Graph VAEs [10, 11]:

 

Learning:

Are we done?

No! We hope ELBO is permutation invariant!

Graph Variation Autoencoders
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Learning:

Recall we use GNN as the encoder and the encoder is conditional independent
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Learning:

Recall we use GNN as the encoder and the encoder is conditional independent, we have
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Learning:

Similarly, recall we use GNN as the decoder and the decoder is conditional independent, we have
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Graph VAEs [10, 11]:

 

Learning:

Similarly, recall we use GNN as the decoder and the decoder is conditional independent, we have

And prior is standard multivariate Normal, which is permutation invariant.

Therefore, the ELBO is permutation invariant!

Graph Variation Autoencoders

Decoder is permutation invariant!



Graph VAEs [10, 11]:

 

If you use a permutation invariant encoder or decoder, ELBO is not longer invariant.

How to approximately achieve permutation-invariance?

Graph Variation Autoencoders



Graph VAEs [10, 11]:

 

If you use a permutation invariant encoder or decoder, ELBO is not longer invariant.

How to approximately achieve permutation-invariance?

• Sample a few random permutations 

     (e.g., importance sampling, special permutations from domain knowledge)

Graph Variation Autoencoders
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